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ON THE MULTILINEAR HAUSDORFF PROBLEM OF

MOMENTS

A. IBORT AND P. LINARES, J.G. LLAVONA

Abstract. Given a multi-index sequence µk, k = (k1, . . . , kn) ∈
Nn

0
, necessary and sufficient conditions are given for the existence

of a regular Borel polymeasure γ on the unit interval I = [0, 1]

such that µk =
∫

In
tk1

1
⊗ · · · ⊗ tkn

n γ. This problem will be called
the weak multilinear Hausdorff problem of moments for µk. Com-
parison with classical results will allow us to relate the weak mul-
tilinear Hausdorff problem with the multivariate Hausdorff pro-
blem. A solution to the strong multilinear Hausdorff problem of
moments will be provided by exhibiting necessary and sufficient
conditions for the existence of a Radon measure µ on [0, 1] such
that Lµ(f1, . . . , fn) =

∫

I
f1(t) · · · fn(t)µ(dt) where Lµ is the n-

linear moment functional on the space of continuous functions on
the unit interval defined by the sequence µk. Finally the previ-
ous results will be used to provide a characterization of a class
of weakly harmonizable stochastic processes with bimeasures sup-
ported on compact sets.

MSC Classification: Primary 44A60; Secondary 46G25.

1. Introduction

The moment functional Lµ associated to a sequence µk, k ∈ N0 of
real numbers is the element in the (algebraic) dual of the space of poly-
nomials R[t] defined by Lµ(p) =

∑

k≥0 pkµk, where p(t) =
∑

k≥0 pkt
k ∈

R[t] is an arbitrary polynomial. Given an interval I ⊂ R the classical
problem of moments for the sequence µk asks for the integrality of the
linear operator Lµ, that is, under what conditions there exists a (pos-
sibly signed) Radon measure µ on I ⊂ R such that Lµ(t

k) =
∫

I
tkdµ(t),

k = 0, 1 . . . . If I is the unit interval [0, 1] the problem of moments is
known as the Hausdorff moment problem.

The well-known solution to the classical Hausdorff problem (see for
instance [Sh70] and references therein) establishes that such a measure
µ exists provided that there is a constant C such that:

(1.1)
k
∑

m=0

|λ(k;m)| < C,

Key words and phrases. Problem of moments, multilinear, polymeasures, second
order stochastic processes.
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for all k = 0, 1, . . ., where λ(k;m) =

(

k
m

)

Lµ(t
m(1− t)k−m).

There are various natural extensions of the moment problem to the
multilinear case. Given the multi–index sequence µk, k = (k1, . . . , kn) ∈
Nn

0 , we will denote as before by Lµ the n–linear functional defined on
the space of polynomials R[t] by:

(1.2) Lµ(t
k1, . . . , tkn) = µk ∀k = (k1, . . . , kn) ∈ N

n
0 .

Thus the strong multilinear Hausdorff problem of moments will consist
in determining under what conditions there exists a (possibly signed)
Radon measure µ on [0, 1] such that
(1.3)

Lµ(p1(t), . . . , pn(t)) =

∫ 1

0

p1(t) · · · pn(t)µ(dt), ∀p1(t), . . . , pn(t) ∈ R[t].

A weaker version of the multilinear Hausdorff moment problem, the
classical (multivariate) Hausdorff moment problem, can be stated by
demanding the existence of a (possibly signed) Radon measure µ on
[0, 1]n ⊂ Rn such that:

(1.4) Lµ(p1(t1), . . . , pn(tn)) =

∫

In
p1(t1) · · ·pn(tn)µ(dt1, . . . , dtn).

Integrality properties of bilinear functionals related to the notion
of the total variation of functions in many variables were studied by
Morse and Transue [Mo49]. These questions led to the concept of C–
bimeasures [Mo56]. These results were also deeply rooted in the pro-
blem of studying the structure of stationary stochastic processess (see
for instance [Ra82] and references therein). The notion of bimeasures,
and polymeasures in general, provide a natural framework to answer
these questions. Thus we are naturally led to consider an even weaker
version of the classical multilinear Hausdorff problem of moments. We
will say that µk satisfies the weak multilinear Hausdorff problem of
moments if there exists a polymeasure γ on Bo[0, 1] × · · · × Bo[0, 1]
such that:

(1.5) µk =

∫

In
tk11 ⊗· · ·⊗tknn γ(dt1, . . . , dtn), ∀k = (k1, . . . , kn) ∈ N

n
0 .

As it turns out, the solution to the weak multilinear Hausdorff pro-
blem of moments is given by a nontrivial generalization of condition
eq. (1.1) as it will be proved in section 2, Thm. 2.2. This condition is
different from the characterization obtained in the analogous weak mul-
tilinear trigonometric problem of moments [Ib10]. Using these ideas the
classical condition (1.1) and the solution to the classical multivariate
Hausdorff problem are easy consequences of the general properties of
polymeasures on compact sets as it will be discussed briefly at the end
of section 2. The strong multilinear Hausdorff problem of moments will
be solved in section 3 by using recent results on integral representations
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of orthogonally additive polynomials on Banach lattices. In addition
the existence of the integrating measure will be completely character-
ized as an algebraic property of multimoment sequences, Thm. 3.1.
Finally, as an application of the previous results we will provide a new
characterization of a class of weakly harmonizable stochastic processes
in section 4.

2. The weak multilinear Haussdorff moment problem and

a multilinear Riesz theorem

A polymeasure γ on the σ-algebras Σ1, . . . ,Σn is a separately σ-
additive function on the cartesian product of Σ1, . . . ,Σn [Do87] (we
will consider here only real or complex polymeasures). The variation
of the polymeasure γ is defined as the set function v(γ) : Σ1×· · ·×Σn →
[0,+∞]:

v(γ)(A1, . . . , An) = sup

{

r1
∑

k1

· · ·
rn
∑

kn

|γ(Ak1
1 , . . . , Akn

n )|

}

,

where the supremum is taken over all finite partitions {Akl
l }

rl
kl=1 of the

set Al ∈ Σl. The semivariation ||γ|| : Σ1 × · · · × Σn → [0,+∞] of the
polymeasure γ is defined as:
(2.1)

||γ||(A1, . . . , An) = sup

{

∣

∣

∣

r1
∑

k1

· · ·

rn
∑

kn

ak11 · · · aknn γ(Ak1
1 , . . . , Akn

n )
∣

∣

∣

}

,

where the supremum is taken over all finite partitions {Akl
l }

rl
kl=1 of the

set Al ∈ Σl and all collections of numbers {akll }
rl
kl=1 such that |akll | ≤ 1.

In the linear case n = 1 the semivariation and variation of a measure
coincide.

An integral denoted as
∫

f1⊗ . . .⊗fn γ, can be constructed for poly-
measures of finite semivariation for families of bounded Σk-measurable
scalar functions fk, by taking the limits of the integrals of n-tuples of
simple functions uniformly converging to the fk’s [Do87]. This inte-
gral coincides for compact sets with the integral discussed by Morse
and Transue [Mo56] whose main properties were reviewed in [Ch83].
Among them we must point it out an extension of Lebesgue dominated
convergence theorem (see example 2.5 and the comments below, Thm.
2.8 and Cor. 2.9 (iii) in [Ch83]).

Let Bo(Kl) denote the Borel σ-algebra on the compact space Kl. A
polymeasure γ on the product of the σ-algebras Bo(K1)×· · ·×Bo(Kn)
is said to be regular if for any Borel subsets Al ⊂ Kl, l 6= k, the set
function:

γk(A) = γ(A1, . . . , Ak−1, A, Ak+1, . . . , An)

is a signed Radon measure on Kl, l = 1, . . . , n.
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The space of regular countably additive polymeasures on Bo(K1)×
· · · × Bo(Kn) will be denoted by rcapm(Bo(K1), . . . ,Bo(Kn)) which is
a Banach space equipped with the semivariation norm. On the other
hand, we will denote by Ln(C(K1), . . . , C(Kn);R) the space of conti-
nuous scalar n-linear maps on the Banach spaces C(Kl). Then there ex-
ists a natural isometric isomorphism between Ln(C(K1), . . . , C(Kn);R),
and the space of regular countably additive polymeasures rcapm(Bo(K1), . . . ,
Bo(Kn)) [Bo98].

We will use throughout the rest of this paper a consistent multi–index
notation. We introduce the symbols ∇rµs = ∇r1

1 ∇r2
2 · · ·∇rn

n µs1...sn ,
where∇l denotes the difference operator on the lth component, ∇lµk =
µk − µk+1l

. Then we obtain easily:

∇rµs =

r
∑

l=0

(−1)|l|
(

r

l

)

µs+l

where r, s, l denote multindexes of length n. We define the Bernstein
coefficients λ(k;m) of a n–linear functional L as:
(2.2)

L

((

k1
m1

)

tm1(1− t)k1−m1 , . . . ,

(

kn
mn

)

tmn(1− t)kn−mn

)

= λ(k;m).

If L is the functional defined by µk, then λ(k;m) =

(

k

m

)

∇k−mµm.

A function µ on Nn
0 is called completely monotone if ∇rµ ≥ 0 for

all r. Because of eq. (2.2) this is equivalent to the positivity of the
functional Lµ, hence to the existence of a Radon measure solving the
classical Hausdorff problem of moments and to the τ–positivity of the
function µ (see [Be84] for a thorough discussion of these results, Thm.
4.6.4). We will introduce now two notions of uniform boundedness
for a multi–index sequence µk that will characterize the solutions of
the classical and weak multilinear Hausdorff problems in the situation
where the function µ is not completely monotone.

Definition 2.1. A multi–index sequence µk is said to be bounded with
constant C > 0 if:

(2.3)

k
∑

m=0

|λ(k;m)| ≤ C, ∀k ≥ 0,

and µk is said to be weakly bounded with constant C > 0 if:

(2.4)

∣

∣

∣

∣

∣

k
∑

m=0

ak

m
λ(k;m)

∣

∣

∣

∣

∣

≤ C, ∀k ≥ 0,

where ak

m
= ak1m1

· · · aknmn
, for all aklml

such that |aklml
| ≤ 1, l = 1, . . . , n.

It is clear from the definitions that condition (2.3) implies (2.4).
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Theorem 2.2. A multi–index sequence µk, k ∈ Nn
0 solves the weak

Hausdorff problem if and only if it is weakly bounded.

Proof: If µk is a solution of the weak Hausdorff multilinear moment
problem, eq. (1.5), then there exists a continuous multilinear functional
L on C[0, 1] such that L(tk) = µk. Let ak

m
= ak1m1

· · · aknmn
, k ≥ 0, with

|aklml
| ≤ 1, l = 1, . . . , n. Then:

∣

∣

∣

∣

∣

k
∑

m=0

ak

m
λ(k;m)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

m=0

ak

m
L(λ(k1,m1)(t), . . . , λ(kn,mn)(t))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

L

(

k1
∑

m1=0

am1

k1
λ(k1,m1)(t), . . . ,

kn
∑

mn=0

amn

kn
λ(kn,mn)(t)

)
∣

∣

∣

∣

∣

≤ ||L||
n
∏

l=1

||

kl
∑

ml=0

aml

kl
λ(kl,ml)(t)||∞

Moreover, because
∣

∣

∣

∑kl
ml=0 a

ml

kl
λ(kl,ml)(t)

∣

∣

∣
≤
∑kl

ml=0

(

kl
ml

)

tkl−ml(1 −

t)ml = 1, we reach the conclussion.

Conversely, if we assume that the multi–index sequence µk of length
is weakly bounded, we will show by induction on n that |L(p1, . . . , pn)| ≤
2nC||p1||∞ · · · ||pn||∞, for any family of polynomials p1, . . . , pn.

For n = 1, because of (1.1) the weakly bounded condition for se-
quences is equivalent to the condition of boundedness.

We will assume that if L′ is a (n− 1)–multilinear functional associ-
ated to the bounded (n− 1)–multi–index sequence µ′

k′ with bounding
constant C ′, then

|L′(q1, . . . , qn−1)| ≤ 2n−1C ′||q1||∞ · · · ||qn−1||∞,

for any family of polynomials q1, . . . , qn−1. Let L be the multilin-
ear functional associated to the weakly bounded n–multi–index se-
quence µk. We denote by Lp the (n − 1)–multilinear functional ob-
tained by fixing the nth argument of L to be the polynomial p, i.e.,
Lp(q1, . . . , qn−1) = L(q1, . . . , qn−1, p).

Notice that if p(t) is a polynomial of degree r then [Sh70]:

BN(p)(t) = p(t) + SN(t) = p(t) +
r−1
∑

l=1

pr,l(t)

N l
,

where BN(p) denotes the Nth Bernstein polynomial of the function p(t)
and pr,l are polynomials of degree less than or equal to r, not depending
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on N . Denoting by ak
′

m′ = ak1m1
· · · akn−1

mn−1
with |aklml

| ≤ 1, it is clear that:

∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′LBN (p)(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1))

∣

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

k′

∑

m′=0

N
∑

mn=0

ak
′

m′p(mn/N)L(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1), λN,mn
(tn))

∣

∣

∣

∣

∣

≤

≤ ||p||∞

∣

∣

∣

∣

∣

k
∑

m=0

ak
m
L(λk1,m1

(t1), . . . , λkn−1,mn−1
(tn−1), λkn,mn

(tn))

∣

∣

∣

∣

∣

with k = (k1, . . . , kn−1, N),m = (m1, . . . , mn1
, mn) and ak

m
= ak

′

m′(p(mn/N)/||p||∞).
Hence,

∣

∣

∣

∣

∣

k
′

∑

m′=0

ak
′

m′LBN (p)(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1))

∣

∣

∣

∣

∣

≤

≤ ||p||∞

∣

∣

∣

∣

∣

k
∑

m=0

ak
m
λ(k;m)

∣

∣

∣

∣

∣

≤ C||p||∞

because µk is weakly bounded with constant C. Then the (n − 1)–
multimoment sequence defined by LBN (p) is weakly bounded with bound
C||p||∞, and by the induction hypothesis we obtain:

|LBN (p)(p1, . . . , pn−1)| ≤ 2n−1C||p1||∞ · · · ||pn−1||∞||p||∞.

Similarly, we consider now SN(t) =
∑r−1

l=1
pr,l(t)

N l . If the polynomials
pr,l have the form, pr,l(t) =

∑r

j=0 aljt
j , then by choosing:

(2.5) a = max{|alj|}, N ≥
a(r − 1)(r + 1)

||p||∞
,

and using the notations above, we will get:
∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′LSN (p)(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1))

∣

∣

∣

∣

∣

≤(2.6)

≤

∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′

r−1
∑

l=1

L(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1),
pr,l(tn)

N l
)

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′

r
∑

j=0

r−1
∑

l=1

alj
N l

L(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1), t
j
n)

∣

∣

∣

∣

∣

≤

≤
||p||∞
r + 1

r
∑

j=0

∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′

(

r + 1

||p||∞

r−1
∑

l=1

alj
N l

)

L(λk1,m1
(t1), . . .

. . . , λkn−1,mn−1
(tn−1), λj,j(tn))

∣

∣ .
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If we denote by ajj the quantity r+1
||p||∞

∑r−1
l=1

alj
N l , conditions eq. (2.5),

imply that |ajj | ≤ 1. We will consider now the numbers ajmn
= 0 for all

0 ≤ mn < j. With these definitions the last term in the sequence of
inequalities (2.6), can be written as:

=
||p||∞
r + 1

r
∑

j=0

∣

∣

∣

∣

∣

k′

∑

m′=0

j
∑

mn=0

ak
′

m′ajmn
L(λk1,m1

(t1), . . .

. . . , λkn−1,mn−1
(tn−1), λj,mn

(tn))
∣

∣ =

=
||p||∞
r + 1

r
∑

j=0

∣

∣

∣

∣

∣

k
∑

m=0

ak
m
L(λk1,m1

(t1), . . . , λkn−1,mn−1
(tn−1), λj,mn

(tn))

∣

∣

∣

∣

∣

with k = (k1, . . . , kn−1, j) and m = (m1, . . . , mn). Hence finally we
obtain:

∣

∣

∣

∣

∣

k′

∑

m′=0

ak
′

m′LSN (p)(λk1,m1
(t1), . . . , λkn−1,mn−1

(tn−1))

∣

∣

∣

∣

∣

≤

≤
||p||∞
r + 1

r
∑

j=0

∣

∣

∣

∣

∣

k
∑

m=0

ak
m
λ(k;m)

∣

∣

∣

∣

∣

≤
||p||∞
r + 1

r
∑

j=0

C = C||p||∞

and the sequence of multimoments µ′′
k′′ = LSN (p)(λk1,m1

(t1), . . . , λkn−1,mn−1
)

is weakly bounded with constant C||p||∞.
We conclude the argument by using the induction hypothesis and

computing:

|L(p1, . . . , pn)| = |Lpn(p1, . . . , pn−1)|

≤ |LBN (pn)(p1, . . . , pn−1)|+ |LSN (pn)(p1, . . . , pn−1)|

≤ 2nC||p1||∞ · · · ||pn||∞ �

It is clear that if the multi–index sequence µk is nonnegative, i.e.,
µk are positive or zero real numbers for all k, then the sequence µk is
weakly bounded iff is bounded because,

k
∑

m=0

|λ(k;m)| =

k
∑

m=0

λ(k;m) ≤ sup
ak
m,|a

kl
ml

|≤1

∣

∣

∣

∣

∣

k
∑

m=0

λ(k;m)

∣

∣

∣

∣

∣

≤ C.

Moreover under these circumstances, it is simple to see that the total
variation of the polymeasure γ determined by µk is finite, hence the
polymeasure γ determines a Radon measure on [0, 1]n [Bo01]. Thus we
have obtained a particular instance of the fact that Radon bimeasures
on Hausdorff spaces are extensions of Radon measures on the product
spaces (see [Be84], Thm. 1.1.10).
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3. The strong Hausdorff multilinear moment problem:

orthogonally additive polynomials

Given a multi–index sequence µk, k = (k1, · · · , kn), kl = 0, 1, . . .,
l = 1, . . . , n, we will call it Hänkel if µk+1l

= µk+1l+1
, where the multi-

index 1l is defined as (1l)j = δlj, for all l = 1, . . . , n.

Theorem 3.1. Let µk be a multi–index sequence solving the classical

Hausdorff problem of moments. Then µk solves the strong Hausdorff

problem of moments if and only if µk is Hänkel.

Proof: Consider the n–linear functional defined on the space P of real
polynomials on I = [0, 1] by the multi–index sequence µk. Because the
multi–index sequence µk is bounded, then L can be extended to C(I)
(Thm. 2.2). We shall denote such extension with the same symbol L.

The homogeneous polynomial PL determined by L is orthogonally
additive. To prove it we notice that L(f1, . . . , g · fl, fl+1, . . . , fn) =
L(f1, . . . , fl, g · fl+1, . . . , fn) for all f1, . . . , fn, g ∈ C(I). In fact we can
construct a sequence of polynomials pml

, qm converging uniformly to fl
and g respectively (l = 1, . . . , n) on I, hence because µk is Hänkel, we
have:

L(pm1
, . . . , qm·pml

, pml+1
, . . . , pmn

) = L(pm1
, . . . , pml

, qm·pml+1
, . . . , pmn

),

and the conclusion follows because of the continuity of L.
Now suppose we have two disjoint positive functions f, g on C(I),

|f | ∧ |g| = 0. We compute:

PL(f + g) = L(f + g, . . . , f + g) =
∑

r≥0

(

n
r

)

L(f, n−r
··· , f, g, r···, g) =

= L(f, . . . , f) +

n−1
∑

r=1

(

n
r

)

L(1, f, n−r−1
··· , f, g, r−1

··· , g, f · g)

+ L(g, . . . , g) = PL(f) + PL(g),

because f · g = 0.
Using the representation theorem for orthogonally additive polyno-

mials on Banach lattices [Be06] and because the n-concavification of the
Banach lattice E = C(I) coincides with itself, this is C(I)(n) = C(I)
(see also [Ca06] and [Pe05]), the polynomial PL defines a bounded lin-
ear functional T : C(I) → R,

T (fn) = PL(f) = L(f, · · · , f)

and then, by Riesz theorem, there will exists a Radon measure µ such
that T (fn) =

∫

I
f(t)n µ(dt). Hence L(tk1 , . . . , tkn) =

∫

I
tk1+···+kn µ(dt),

and L(f1, . . . , fn) =
∫

I
f1(t) · · · fn(t)µ(dt). �
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4. The weak bilinear Hausdorff problem of moments and

weakly harmonizable stochastic processes

We will use now the characterization of polymeasures with compact
support obtained before to provide a description of a class of weakly
harmonizable processes. Let us consider an stochastic process Xt mod-
elled on a probability space (Ω,Σ, P ) where Σ is a σ–algebra on the set
Ω, P is a probability measure on Ω, and the map X : R → L2(Ω, P ),
Xt := X(t), is strongly continuous. We denote by C(t, t′) = E(X̄tX

′
t)

the covariance function of Xt. If the second order process Xt is weakly
stationary, i.e., there exists an univariate continuous function Φ such
that C(t, t′) = Φ(t′ − t), Cramér–Kolmogorov’s theorem shows that
there exists a stochastic measure ξ on R with values on L2(Ω, P ) such
that the process Xt is the Fourier transform of ξ:

(4.1) Xt =

∫

R

eits ξ(ds),

Moreover if A,B are two Borel sets on R, then

(4.2) 〈ξ(A), ξ(B)〉L2(Ω,P ) = µ(A ∩B).

Such processes are called (strongly) harmonizable. An important class
of second order stochastic processes Xt that admit generalized har-
monic representations are the so called weakly harmonizable and they
satisfy:

C(t, t′) =

∫

R×R

e−its ⊗ eit
′s′ γ(ds, ds′),

where γ is a positive definite bimeasure, this is:

(4.3) γ(A,B) = γ(B,A),

r
∑

i,j=1

āiajγ(Ai, Aj) ≥ 0 ,

for all families of complex numbers ai and Borel sets A,B,Ai on R.
Then if Xt is a weakly harmonizable process then there exists a har-
monic representation of the form eq. (4.1) for them, where now the or-
thogonality condition (4.2) is replaced by 〈ξ(A), ξ(B)〉L2(Ω,P ) = γ(A,B)
for any Borel sets A,B (see for instance the review [Ra82], Thm. 3.2.)

We will consider a complex regular bimeasure γ of finite semivaria-
tion with support in [0, 1]×[0, 1]. Let us call such bimeasures Hausdorff.
We will consider the Fourier–Stieltjes transform of the bimeasure γ:

γ̂(t, t′) =

∫

R×R

e−its ⊗ eit
′s′ γ(ds, ds′).

The function γ̂ is bounded by γ̂(0, 0) = γ([0, 1], [0, 1]) = µ00 ≤ ||γ|| <
∞ and the extension of Lebesgue’s dominated convergence theorem
mentioned in section 2.1 shows that the function γ̂ is analytic in the
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real plane (t, t′) with power series expansion given by:

(4.4) γ̂(t, t′) =
∑

n,m≥0

(−1)n
in+m

n!m!
µnmt

nt′m,

where the coefficients µnm, n,m ≥ 0 are the moments of the bimeasure
γ. Moreover the sequence of moments µnm is weakly bounded because
of Thm. 2.2. Now a simple argument shows that these conditions char-
acterize completely the Fourier-Stieltjes transform of Hausdorff poly-
measures.

A weakly harmonizable second order stochastic process Xt such that
the support of the stochastic measure ξ defining it is contained in the
interval [0, 1] will be called Hausdorff. Notice that in such a case be-
cause of eq. (4.1), the support of the corresponding bimeasure γ will
be contained in [0, 1]× [0, 1]. Now if we are given a arbitrary collection
of complex numbers a1, . . . , ar, and we compute

∑r

l,k=1 ālakγ̂(tl, tk) for
a positive definite bimeasure γ, we obtain:

r
∑

l,k=1

ālakγ̂(tl, tk) =

∫

R×R

r
∑

l=1

āle
−itls ⊗

r
∑

k=1

ake
itks

′

γ(ds, ds′) ≥ 0.

and we conclude that the function γ̂ is a positive definite kernel. Hence
the class of analytic positive definite kernels described above are just
the covariance functions of Hausdorff weakly harmonizable stochastic
processes.

Corollary 4.1. A function of two real variables Φ(t, s) is the covari-

ance function of a second order weakly harmonizable Hausdorff process

Xt if and only if is an analytic positive definite kernel on R
2 such that

the multi–index sequence µnm = ∂n+mΦ/∂tn∂sm(0, 0), n,m ∈ N0 is

weakly bounded. Moreover, the stochastic process Xt will be weakly sta-

tionary if and only if the multimoment sequence µnm is Hänkel, i.e.,

µn+1,m = µn,m+1 for all n,m.

Remark 4.2. Notice that the positivity condition can be dispensed
with as it follows from the previous discussion that an analytic function
Φ(s, t) wiill have the form (4.4) for a Hausdorff bimeasure γ iff its
sequence of moments is weakly bounded. However, unless the positivity
condition (4.3) is satisfied it is not possible to reconstruct a Hilbert
space where the stochastic process would be represented.
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