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Abstract In the classical multiple scales perturbation
method for ordinary difference equations (OΔEs) as
developed in 1977 by Hoppensteadt and Miranker, dif-
ference equations (describing the slow dynamics of the
problem) are replaced at a certain moment in the per-
turbation procedure by ordinary differential equations
(ODEs). Taking into account the possibly different be-
havior of the solutions of an OΔE and of the solu-
tions of a nearby ODE, one cannot always be sure that
the constructed approximations by the Hoppensteadt–
Miranker method indeed reflect the behavior of the ex-
act solutions of the OΔEs. For that reason, a version of
the multiple scales perturbation method for OΔEs will
be presented and formulated in this paper completely
in terms of difference equations. The goal of this pa-
per is not only to present this method, but also to show
how this method can be applied to regularly perturbed
OΔEs and to singularly perturbed, linear OΔEs.
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1 Introduction

Nowadays, the multiple time-scales perturbation
method for differential equations is a well developed,
well accepted, and a very popular method to approxi-
mate solutions of weakly nonlinear differential equa-
tions. This method was developed in the period 1935–
1962 by Krylov and Bogoliubov, Kuzmak, Kevorkian,
and Cole, Cochran, and Mahony. In the early 1970s,
Nayfeh popularized this method by writing many pa-
pers and books on this subject (see for instance [20]).
More recent books on this method and its historical
development are, for instance, the books by Andri-
anov and Manevitch [3], Holmes [5], Kevorkian, and
Cole [10], Murdock [18], and Verhulst [24]. The de-
velopment of the multiple scales perturbation method
for ordinary difference equations (OΔEs) started in
1960 with the work of Torng [23]. In this paper, a
second order OΔE is reduced to a system of two
first order OΔEs by means of the method of varia-
tion of parameters for OΔEs. Then nonlinear terms
are expanded in discrete Fourier series, and a Krylov–
Bogoliubov method (or equivalently, an averaging
method) is applied to obtain the equations that de-
scribe the slow dynamics of the problem approxi-
mately. A similar method was presented in 1970 by
Huston in [7]. From the results in [7] and in [23], it
is clear that the solution of a weakly perturbed (non)
linear OΔE behaves differently on different iteration
scales. In 1977, Hoppensteadt and Miranker intro-
duced in [6] the multiple scales perturbation method
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for OΔEs. For a problem with two significant itera-
tion scales, these authors assume that the solution xn

of an OΔE, for instance, depends on n and s = εn

(that is, depends on a fast iteration scale and on a
slow iteration scale). In the OΔE, xn+1 is then re-
placed by x(n + 1, ε(n + 1)) = x(n + 1, s + ε). In
the perturbation scheme, x(n + 1, s + ε) is expanded
in a Taylor polynomial, that is, x(n + 1, s + ε) =
x(n + 1, s) + ε ∂x

∂s
(n + 1, s) + O(ε2), and to avoid un-

bounded terms (or secular terms) in the perturbation
expansion for xn, one finally has to solve ordinary dif-
ferential equations (ODEs) due to the derivatives in
the Taylor expansions. It should be remarked that in
the perturbation procedure only for the description of
the slow dynamics of the problem, the OΔEs are re-
placed by ODEs. A similar continuation approach was
introduced in 1975 by Kovalev and Kosevich in [12]
to study the vibrations of a one-dimensional anhar-
monic chain which is described by a system of ODEs.
In this paper [12], the slow dynamics of the prob-
lem leads to a partial differential equation (see also
[11]). A slightly different multiple scales perturbation
method for OΔEs was introduced in [22] by Subra-
manian and Krishnan in 1979. In their approach, the
difference operator � is replaced by partial difference
operators. For a problem with two significant iteration
scales, the authors of [22] introduced:

xn+1 − xn = �xn = �x(n, s)

= �n(n, s) + ε�sx(n, s), (1)

where �nx(n, s) = x(n + 1, s) − x(n, s), and
�sx(n, s) = x(n, s + ε)−x(n, s). This replacement is
based on the two-timescales perturbation method for
ODEs, where x(t) is replaced by x̃(t, τ ) with τ = εt

and

dx(t)

dt
= ∂x̃(t, τ )

∂t
+ ε

∂x̃(t, τ )

∂τ
.

Nowadays, the method of Hoppensteadt and Miranker
is assumed to be the standard form of the multiple
scales perturbation method for OΔEs (see for instance
[5, 15–17]). Also recently, this method was “rediscov-
ered” by Luongo [13] and by Maccari [14]. It should
be observed, however, that many results concerning
ODEs carry over quite easily to corresponding results
for OΔEs, while other results are completely different
from their continuous counterparts. To illustrate some
of these differences, the following examples can be
considered.

Example 1 Consider the following ODE for x = x(t):

dx

dt
= ax(1 − x), t > 0, (2)

where a is a positive constant, and x(0) = x0. A for-
ward Euler method is applied with positive stepsize h,
and xn is an approximation of x(t) at t = nh. The cor-
responding OΔE becomes:

xn+1 = xn + ahxn(1 − xn)

for n = 0,1,2, . . . . Introducing xn = (1+ah)
ah

yn, and
b = (1 + ah) > 0, the following OΔE for yn is ob-
tained:

yn+1 = byn(1 − yn). (3)

For all a > 0, the ODE (2) has two equilibrium points
(one stable point at x = 1, and an unstable one at
x = 0), and the dynamics are simple. Whereas the
logistic difference (3) is well known for its period-
doublings and its chaotic behavior for b-values be-
tween 3 and 4. So, for certain parameter values, the
solution of the ODE and the solution of the (nearby)
OΔE behave quite differently.

Example 2 Consider the following ODE for x = x(t):

ε
dx

dt
= −x, t > 0, (4)

where ε is a small, positive parameter, i.e., 0 < ε � 1,
and x(0) = 1. The solution of the ODE (4) is: x(t) =
exp(− t

ε
). When an explicit, forward Euler method is

applied to (4) with positive stepsize h, and where xn is
an approximation of x(t) at t = nh, then the following
OΔE for xn will be obtained: (for n = 0,1,2, . . . , and
x0 = 1)

xn+1 =
(

1 − h

ε

)
xn ⇒ xn =

(
1 − h

ε

)n

.

For a fixed value of h and for ε ↓ 0 xn obviously blows
up, whereas x(nh) rapidly tends to zero. When an im-
plicit Euler method is applied to (4), then the follow-
ing OΔE for xn is obtained (again h is a positive step-
size, xn is an approximation of x(t) at t = nh,n =
0,1,2, . . . , and x0 = 1):

xn+1 − xn = −h

ε
xn+1 ⇒ xn+1 = ε

h + ε
xn ⇒

xn =
(

ε

h + ε

)n

.
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For a fixed value of h and for ε ↓ 0 xn behaves
like ( ε

h
)n = exp(n ln( ε

h
)), whereas x(nh) behaves like

exp(−nh
ε

). From the asymptotical point of view for
ε ↓ 0, the behavior of xn and x(nh) is quite differ-
ent. When the trapezoidal formula is applied to (4),
then the following OΔE for xn is obtained (again h is
a positive stepsize, xn is an approximation of x(t) at
t = nh, n = 0,1,2, . . . , and x0 = 1):

xn+1 − xn = − h

2ε
(xn+1 + xn) ⇒

xn+1 = − (h − 2ε)

h + 2ε
xn ⇒

xn = (−1)n
(h − 2ε)n

(h + 2ε)n
.

Now, xn behaves like (−1)n exp(n(−4ε
h

+ O(ε3))),
that is, xn is oscillatory (whereas x(nh) is nonoscil-
latory), and the amplitudes of xn and x(nh) behave
differently for ε ↓ 0.

Example 3 Consider the following ODE for x = x(t):

dx

dt
= εx2, t > 0, (5)

where ε is a small, positive parameter, i.e., 0 < ε � 1,
and x(0) = 1. The solution of this problem is: x(t) =
(1 − εt)−t . Obviously, the solution does not exist for
t ≥ ε−1. When an explicit, forward Euler method is
applied to (5) with positive stepsize h, and where xn is
an approximation of x(t) at t = nh, then the following
OΔE for xn will be obtained: (for n = 0,1,2, . . . , and
x0 = 1)

xn+1 = xn + εh x2
n. (6)

For fixed values of h and ε xn obviously blows up, but
not for t = ε−1 (but for n → ∞). For instance, when
ε = 0.1 and h = 0.01, a simple computation shows
that x1000 (which is an approximation of x(1)) is equal
to 193.1367 . . . . When an implicit Euler method is ap-
plied to (5), then the following OΔE for xn is obtained
(again h,xn,n, and x0 are defined as before):

xn+1 = xn + εh x2
n+1. (7)

This quadratic equation in xn+1 can be solved,
yielding

xn+1 = 1

2εh
± 1

2εh
(1 − 4εh xn)

1
2 . (8)

Only the minus sign in (8) leads to xn-values which
approximate x(t). For the plus sign in (8), xn becomes
extremely large after one time-step. But also when the
minus sign in (8) is used, xn will finally blow up, but
not for t = ε−1 (but earlier). It should also be ob-
served that for xn ≥ (4εh)−1 the OΔE (8) is not de-
fined. Finally, it should be remarked that when the
classical Hoppensteadt–Miranker perturbation method
for OΔEs is applied to the OΔEs (6) or (7), then for
the slow dynamics of the solution the ODE (5) is ob-
tained, and one should be aware of the possibly differ-
ent behavior near blow-up (in particular when blow-up
occurs).

These examples clearly indicate that the solution
of an ODE and the solution of an (nearby) OΔE can
behave quite differently. The reader is referred to [1,
2, 4, 5, 8, 9, 16] for some further striking differ-
ences (and similarities) in the theory for ODEs and
for OΔEs. In the multiple scales perturbation method
for OΔEs as developed in [6] by Hoppensteadt and
Miranker, difference equations (for the slow dynamics
of the problem) are replaced at a certain moment by
differential equations. Taking into account the possi-
bly different behavior of the solutions of an OΔE and
of the solutions of an (nearby) ODE, one cannot al-
ways be sure that the constructed approximations by
the Hoppensteadt–Miranker method indeed reflect the
behavior of the exact solutions of the OΔE. For that
reason, an improved version of the multiple scales per-
turbation method for OΔEs will be presented and for-
mulated in this paper completely in terms of difference
equations.

The goal of this paper is not only to present this
method, but also to show how this method can be ap-
plied to regularly perturbed OΔEs and to singularly
perturbed OΔEs.

This paper is organized as follows. In Sect. 2 of
this paper, the multiple scales perturbation method for
OΔEs will be presented completely in terms of dif-
ference operators. How this method can be applied to
a second order regularly perturbed, weakly nonlinear
OΔEs will be shown in Sect. 3 of this paper. The as-
ymptotic validity of the constructed approximations
on sufficiently long iteration scales will be discussed
in Sect. 4. How solutions of singularly perturbed,
linear OΔEs can be approximated will be shown in
Sect. 5. Compared to the existing rescaling procedures
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for singularly perturbed ODEs and OΔEs (see, for in-
stance, [10, 19, 21, 24]) also a slightly revised rescal-
ing procedure will be presented in Sect. 5 of this paper
to find the significant scalings for some singularly per-
turbed, linear OΔEs. Finally, in Sect. 6 of this paper,
some conclusions will be drawn, and some remarks on
future research will be made.

2 The multiple scales perturbation method for
OΔEs

In this section, the multiple scales perturbation method
for OΔEs will be presented in a complete “difference
operator” setting. Before introducing this method, sev-
eral operators have to be defined (and motivated).
The well-known shift operator E, the difference op-
erator �, and the identity operator I are defined as
follows:

Exn = xn+1, �xn = xn+1− xn, and Ixn = xn.

(9)

The relationship between these operators easily fol-
lows from (9):

E = � + I ⇔ � = E − I. (10)

The solution of a weakly perturbed OΔE usually con-
tains a rapidly changing part in n, and a slowly chang-
ing part in n. This is usually referred to as multiple
scales behavior. Consider the following functions:

an = 3n ⇒
�an = 3n+1 − 3n = (3 − 1)3n = 2an = O(an),

bn = eεn ⇒ �bn = eε(n+1) − eεn = O(εbn),

cn = (1 + ε)n ⇒
�cn = (1 + ε)n+1 − (1 + ε)n = O(εcn),

dn = 3n(1 + ε)n ⇒
�dn = 3n+1(1 + ε)n+1 − 3n(1 + ε)n = (2 + 3ε)dn.

(11)

From (11), it is obvious that an only has a rapidly
changing part in n, that bn and cn only have a slowly
changing part in n, and that dn has a rapidly chang-
ing part in n and a slowly one. To make this be-
havior more clear in notation, the following notations

are proposed: an = a(n), bn = b(εn), cn = c(εn), and
dn = d(n, εn). It should be observed that these no-
tations are similar to the ones used in the multiple
timescales perturbation method for ODEs. Now it is
assumed that xn = x(n, εn). This assumption implies
that the solution of the OΔE depends on two vari-
ables. So, the OΔE actually becomes a partial differ-
ence equation. For that reason also, partial shift opera-
tors and partial difference operators have to be defined.
The following definitions are proposed:

E1x(n, εn) = x(n + 1, εn),

Eεx(n, εn) = x
(
n, ε(n + 1)

)
,

�1x(n, εn) = x(n + 1, εn) − x(n, εn)

= (E1 − I )x(n, εn),

�εx(n, εn) = x
(
n, ε(n + 1)

) − x(n, εn)

= (Eε − I )x(n, εn).

(12)

From (9), (10), and (12), it follows that (assuming
xn = x(n, εn)):

�xn = xn+1 − xn = x
(
n + 1, ε(n + 1)

) − x(n, εn)

= E1Eεx(n, εn) − Ix(n, εn)

= (�1 + I )(�ε + I )x(n, εn) − Ix(n, εn)

= (�1 + �ε + �1�ε)x(n, εn).

And so, it follows that

� = �1 + �ε + �1�ε, and E = E1Eε. (13)

Furthermore, for the partial difference operators �1

and �ε it is assumed that (also based on (11)):

�1x(n, εn) = O
(
x(n, εn)

)
, and

�εx(n, εn) = O
(
εx(n, εn)

)
.

(14)

In fact, this assumption (14) implies that the varia-
tion in the dependent variable x(n, εn) with respect to
one of the independent variables is proportional to the
product of the absolute value of the dependent variable
and the variation in that particular independent vari-
able. The examples as given by (11) are a motivation
for the assumption (14).

From (13), it is obvious that in (1) the operator
�1�ε is missing (see also [22]). When xn depends
on m + 1 scales, the given definitions can readily be
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generalized, yielding: (for j = 0,1, . . . ,m)

xn = x
(
n, εn, ε2n, . . . , εmn

)
,

Eεj x
(
n, . . . , εmn

) = x
(
n, εn, . . . ,εj (n+1), . . . ,εmn

)
,

�εj x
(
n, . . . , εmn

) = (Eεj − I )x
(
n, . . . , εmn

)
,

(15)
E = E1EεEε2 · · ·Eεm,

� = (�1 + I )(�ε + I ) . . . (�εm + I ) − I,

�εj x
(
n, . . . , εmn

) = O
(
εj x

(
n, . . . , εmn

))
.

Now it will be shown how these operators can be
used. For that reason, a simple example will be treated.
Consider the weakly perturbed, linear, second order
OΔE

xn+2 + εxn+1 + xn = 0, (16)

where ε is a small parameter with 0 < ε � 1. Using
(9) and (10), it follows that (16) can be rewritten in:

E2xn + εExn + Ixn = 0 ⇔
(� + I )2xn + ε(� + I )xn + Ixn = 0 ⇔
�2xn + (ε + 2)�xn + (2 + ε)xn = 0. (17)

Assuming that xn depends on two scales (a fast
scale n, and a slow scale εn), it follows that xn =
x(n, εn) and that (16) or (17) becomes

(�1 + �ε + �1�ε)
2x(n, εn)

+ (ε + 2)(�1 + �ε + �1�ε)x(n, εn)

+ (2 + ε)x(n, εn) = 0 ⇔
(
�2

1 + 2�1 + 2
)
x(n, εn)

+ (
2�1(�ε + �1�ε)

+ 2(�ε + �1�ε)

+ ε�1 + ε
)
x(n, εn) + O

(
ε2x(n, εn)

) = 0 ⇔
(
�2

1 + 2�1 + 2
)
x(n, εn)

+ (
2(�1 + I )(�ε + �1�ε)

+ ε(�1 + I )
)
x(n, εn)

+ O
(
ε2x(n, εn)

) = 0. (18)

To construct an approximation for xn = x(n, εn), one
now has to substitute into (18) a formal power series
(in ε) for xn, that is,

x(n, εn) = x0(n, εn)+εx1(n, εn)+ε2x2(n, εn)+· · ·.
(19)

Then by taking together those terms of equal powers
in ε, one obtains as O(1)-problem

(
�2

1 + 2�1 + 2
)
x0(n, εn) = 0

⇔ x0(n + 2, εn) + x0(n, εn) = 0, (20)

and as O(ε)-problem

ε
(
�2

1 + 2�1 + 2
)
x1(n, εn)

+
(

2(�1 + I )

(
�ε + �1�ε + ε

2

))
x0(n, εn) = 0,

(21)

and so on. The O(1)-problem (20) can readily be
solved, yielding

x0(n, εn) = f0(εn) cos

(
nπ

2

)
+ g0(εn) sin

(
nπ

2

)
,

(22)

where f0(εn) and g0(εn) are still arbitrary functions,
which can be used to avoid unbounded behaviour in
x1(n, εn) on the O( 1

ε
) iteration scale.

The O(ε)-problem (21) now becomes:

ε
(
x1

(
n + 2, εn

) + x1(n, εn)
)

+ 2
(
x0(n + 2, ε(n + 1)) − x0(n + 2, εn)

)
+ εx0(n + 1, εn) = 0 ⇔

ε
(
x1(n + 2, εn) + x1(n, εn)

)

= (
2�εf0(εn) − εg0(εn)

)
cos

(
nπ

2

)

+ (
2�εg0(εn) + εf0(εn)

)
sin

(
nπ

2

)
. (23)

In the OΔE (23) for x1(n, εn), it is obvious that
the right-hand side contains terms (i.e., cos( nπ

2 ) and
sin( nπ

2 )), which are solutions of the homogeneous
OΔE. Then to avoid unbounded or secular behavior
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in x1(n, εn), it follows that f0(εn) and g0(εn) have to
satisfy:

2�εf0(εn) − εg0(εn) = 0,

2�εg0(εn) + εf0(εn) = 0.
(24)

System (24) for f0(εn) and g0(εn) can readily be
solved (see, for instance, [4, Chap. 3]), yielding

f0(εn) = a0

(
1 + ε2

4

) n
2

cos
(
nμ(ε)

)

+ b0

(
1 + ε2

4

) n
2

sin
(
nμ(ε)

)
,

g0(εn) = −a0

(
1 + ε2

4

) n
2

sin
(
nμ(ε)

)

+ b0

(
1 + ε2

4

) n
2

cos
(
nμ(ε)

)
,

(25)

where a0 and b0 are arbitrary constants, and where

μ(ε) is given by cos(μ(ε)) = (1 + ε2

4 )− 1
2 , and

sin(μ(ε)) = ε
2 (1 + ε2

4 )− 1
2 . From these expressions,

μ(ε) can be approximated by

μ(ε) = 1

2
ε − 1

24
ε3 + O

(
ε5), (26)

and from (23), x1(n, εn) can be determined, yielding

x1(n, εn) = f1(εn) cos

(
nπ

2

)
+ g1(εn) sin

(
nπ

2

)
,

(27)

where f1(εn) and g1(εn) are still arbitrary functions
which can be used to avoid secular terms in x2(n, εn).

At this moment, however, we are not interested in the
higher order approximations. For that reason, we will
take in (27) f1(εn) and g1(εn) equal to the constants
a1 and b1, respectively. So far, we have constructed
an approximation for the solution of the OΔE (16).
In this case, the approximation x0(n, εn) can be com-
pared with the exact solution of the OΔE (16). The
exact solution is given by

xn = a cos
(
nθ(ε)

) + b sin
(
nθ(ε)

)
, (28)

where a and b are arbitrary constants, and where
θ(ε) is given by cos(θ(ε)) = − ε

2 and sin(θ(ε)) =
(1 − ε2

4 )
1
2 , and θ(ε) can be approximated by θ(ε) =

π
2 + ε

2 + ε3

48 + O(ε5). The approximation x0(n, εn) is
given by (22), (25), and (26). This approximation can
be rewritten in the following form

x0(n, εn) = a0

(
1 + ε2

4

) n
2

cos

(
nπ

2
+ nμ(ε)

)

+ b0

(
1 + ε2

4

) n
2

sin

(
nπ

2
+ nμ(ε)

)
.

(29)

From (28) and (29), it can readily be deduced that
the difference between the exact solution xn and the
approximation x0(n, εn) is of order ε for n ∼ 1

ε
.

So, the constructed approximation is O(ε) accurate
on an iteration scale of order 1

ε
. Usually, of course,

the exact solution of a weakly (non)linearly perturbed
OΔE will not be available. In Sect. 4 of this pa-
per, it will be shown how for such cases the asymp-
totic validity of an approximation can be obtained
on a sufficiently long iteration scale. In the next sec-
tion of this paper, it will be shown how the mul-
tiple scales perturbation method can be applied to
a second order, weakly nonlinear, regularly perturbed
OΔE.

3 On a weakly nonlinear, regularly perturbed
OΔE

In this section, an approximation of the solution of
a second order, weakly nonlinear, regularly perturbed
OΔE with a Van der Pol type of nonlinearity will be
constructed. The OΔE can be obtained by using a cen-
tral finite difference approximation of the continuous
Van der Pol equation. The OΔE is given by

xn+2 − 2 cos(θ)xn+1 + xn = ε
(
1 − x2

n+1

)
(xn+2 − xn),

(30)

where ε is a small parameter, that is, 0 < ε � 1, and
where θ is constant (which is related to the stepsize in
making the continuous van der Pol equation discrete).
Other studies of (30) or similar equations as discretiza-
tions of the continuous van der Pol differential equa-
tion or similar differential equations can be found in
[5, 6, 13, 14, 16, 17, 22]. It turns out that a straight-
forward, naive perturbation expansion for xn(that is,
x0(n) + εx1(n) + ε2x2(n) + · · · ) will lead to secular
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behavior in the expansion. To avoid this, a two scales
perturbation method will be used with xn = x(n, εn).
To apply the perturbation method, the OΔE (30) first
has to be rewritten with difference operators (see also
(9), (10)), yielding

�2xn + (
2 − 2 cos(θ)

)
(�xn + xn)

= ε
(
1 − (�xn + xn)

2
)(

�2xn + 2�xn

)
. (31)

Then the operator � in (31) is replaced by �1 + �ε +
�1�ε (see (13) or (15)), and the function xn is re-
placed by x(n, εn). The OΔE (31) then becomes

(
�2

1 + 2�1(�ε + �1�ε) + �2
ε

+ 2�1�
2
ε + �2

1�
2
ε

)
x(n, εn)

+ (
2−2 cos(θ)

)
(�1 +�ε +�1�ε + I )x(n, εn)

= ε
(
1 − ((�1 + �ε + �1�ε + I )x(n, εn))2)

× ((
�2

1 + 2�1(�ε + �1�ε)

+ �2
ε + 2�1�

2
ε + �2

1�
2
ε

)
x(n, εn)

+ 2(�1 + �ε + �1�ε)x(n, εn)
)
. (32)

Then the function x(n, εn) is expanded in a formal
power series in ε, that is,

x(n, εn) = x0(n, εn)+εx1(n, εn)+ε2x2(n, εn)+· · ·,
(33)

and is substituted into (32). By taking together
those terms of equal powers in ε, one obtains as
O(1)-problem:

�2
1x0(n, εn) + (

2 − 2 cos(θ)
)
(�1 + I )x0(n, εn) = 0,

(34)

and as O(ε)-problem

ε�2
1x1(n, εn) + ε

(
2 − 2 cos(θ)

)
(�1 + I )x1(n, εn)

= −2�1(�ε + �1�ε)x0(n, εn)

− (
2 − 2 cos(θ)

)
(�ε + �1�ε)x0(n, εn)

+ ε
(
1 − (

(�1 + I )x0(n, εn)
)2)

× ((
�2

1 + 2�1
)
x0(n, εn)

)
, (35)

and so on. The O(1)-problem (34) can readily be
solved, yielding

x0(n, εn) = f0(εn) cos(nθ) + g0(εn) sin(nθ), (36)

where f0(εn) and g0(εn) are still arbitrary functions
which can be used to avoid secular terms in x1(n, εn).
Then by substituting (36) into the O(ε)-problem (35),
and after rearranging terms, one finally obtains as
O(ε)-problem

ε�2
1x1(n, εn) + ε(2 − 2 cos θ)(�1 + I )x1(n, εn)

= cos(nθ)

{(
1 − cos(2θ)

)

×
(

�εf0(εn) − εf0(εn)

(
1 − 1

4
f 2

0 (εn)

− 1

4
g2

0(εn)

))
− sin(2θ)

(
�εg0(εn)

− εg0(εn)

(
1 − 1

4
f 2

0 (εn) − 1

4
g2

0(εn)

))}

+ sin(nθ)

{
sin(2θ)

(
�εf0(εn) − εf0(εn)

×
(

1 − 1

4
f 2

0 (εn) − 1

4
g2

0(εn)

))

+ (
1 − cos(2θ)

)(
�εg0(εn) − εg0(εn)

×
(

1 − 1

4
f 2

0 (εn) − 1

4
g2

0(εn)

))}

+ ε

{
cos(3nθ + 2θ)

[(
cos(2θ) − 1

)

×
(

−1

4
f 3

0 (εn) + 3

4
f0(εn)g2

0(εn)

)

+ sin(2θ)

(
−3

4
f 2

0 (εn)g0(εn) + 1

4
g3

0(εn)

)]

+ sin(3nθ + 2θ)

×
[(

cos(2θ) − 1
)(−3

4
f 2

0 (εn)g0(εn) + 1

4
g3

0(ε)

)

+ sin(2θ)

(
1

4
f 3

0 (ε) − 3

4
f0(εn)g2

0(εn)

)]}
.

(37)

In the OΔE (37) for x1(n, εn), it is obvious that the
right-hand side contains terms (that is, cos(nθ) and
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Fig. 1 The dynamics of the
solutions of the OΔE (40)
for 0 < ε < 1

sin(nθ)), which are solutions of the corresponding ho-
mogeneous OΔE. It should be observed that the terms
involving cos(3nθ + 2θ) and sin(3nθ + 2θ) are no so-
lutions of the homogeneous OΔE. So, to avoid un-
bounded or secular behavior in x1(n, εn), it follows
from (37) that f0(εn) and g0(εn) have to satisfy:

�εf0(εn) = εf0(εn)

(
1 − 1

4
f 2

0 (εn) − 1

4
g2

0(εn)

)
,

�εg0(εn) = εg0(εn)

(
1 − 1

4
f 2

0 (εn) − 1

4
g2

0(εn)

)
.

(38)

From (38), it is obvious that when f0(εn) (or g0(εn))
is equal to zero for some n = n0, then f0(εn) (or
g0(εn)) is zero for all n ≥ n0. It also follows from
(38) that g0(εn)�εf0(εn) − f0(εn)�εg0(εn) = 0 or
equivalently (assuming that f0(εn) 
= 0):

�

(
g0(εn)

f0(εn)

)
= 0 ⇔ g0(εn) = k f0(ε, n) (39)

for some constant k, which is determined by the initial
conditions. The system of two first order OΔEs (38)
then reduces by using (39) to the following first order
OΔE for f0(εn).

�εf0(εn) = εf0(εn)

(
1 − 1

4

(
1 + k2)f 2

0 (εn)

)
. (40)

As far as we know, there are no exact solutions
available for the OΔE (40). However, for 0 < ε < 1,
the OΔE (40) has three equilibrium points: an un-
stable one for f0 = 0, and two stable ones: one for
f0 = −2√

1+k2
and one for f0 = 2√

1+k2
. The dynamics

of the solutions of the OΔE (40) is depicted in Fig. 1.
For ε ≥ 1, the dynamics becomes much more

complicated (three unstable equilibrium points, pe-
riod doublings, chaotic behavior), but since 0 <

ε � 1, that case is beyond the scope of the analysis.
From (39), (40), and Fig. 1, it now follows that (for
f 2

0 (εn)+g2
0(εn) 
= 0) f 2

0 (εn)+g2
0(εn) tends (slowly)

to 4 for n → ∞. From (37), x1(n, εn) can now be de-
termined such that x1(n, εn) is bounded for n ∼ 1

ε
, and

from (36) and (39), it follows that

x0(n, εn) = f0(εn)
√

1 + k2 sin(nθ + ϕ), (41)

where ϕ is given by sin(ϕ) = 1√
1+k2

and cos(ϕ) =
k√

1+k2
, and where f0(εn) is a solution of the OΔE

(40) (see also Fig. 1). So far, an approximation
xapprox(n, εn) = x0(n, εn)+εx1(n, εn) has been con-
structed, where x1(n, εn) still contains some arbitrary
functions which can be used to avoid secular terms
in x2(n, εn). Since we are not interested in the higher
order approximations, there arbitrary functions will
or can be chosen equal to their initial values. The
approximation xapprox(n, εn) satisfied the OΔE (30)
accurately, that is, up to O(ε2). In fact, it can be shown
that

xapprox

(
n + 2, ε(n + 2)

)
− 2 cos(θ)xapprox

(
n + 1, ε(n + 1)

)
+ xapprox(n, εn)

− ε
(
1 − x2

approx(n + 1, ε(n + 1))
)

× (
xapprox(n + 2, ε(n + 2))

− xapprox(n, εn)
) = ε2R(n, εn), (42)

where R(n, εn) depends on x0(n, εn) and on x1(n, εn),
and where R(n, εn) is bounded for n ∼ 1

ε
. It requires

an additional analysis to show that xapprox(n, εn) and
x0(n, εn) are both O(ε) accurate approximations of
the solution of (30) for n ∼ 1

ε
. The proof of asymp-

totic validity of the approximation(s) on long iteration
scales (that is, for n ∼ 1

ε
) will be given in the next

section of this paper.

4 On the asymptotic validity of approximations

In this section, a justification of the multiple scales
perturbation method for OΔEs will be given, which
covers all the examples that have been presented in
this paper. Consider the following system of k first or-
der OΔEs:

u(n + 1) = Au(n) + εf
(
u(n),n; ε), (43)

where u(n) is a (k × 1)-vector, A is a (k × k)-matrix
with constant and ε-independent elements, ε is a small
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parameter with 0 < ε � 1, and where f is (k × 1)-

vector, with f : R
k × R → R

k . Moreover, f satisfies
the following Lipschitz condition, that is,

∥∥f (u(n),n; ε) − f (ũ(n), n; ε)∥∥ ≤ L
∥∥u(n) − ũ(n)

∥∥
(44)

for some constant L, and where ũ(n) is a (k × 1)-
vector, and where ‖.‖ is assumed to be the maximum
norm. The vector function f is not necessarily lin-
ear in u(n). Let ũ(n) be an approximation of u(n),
which has been constructed by some kind of perturba-
tion method (for instance, a multiple scales perturba-
tion method or another perturbation method), and let
ũ(n) satisfy

ũ(n + 1) = Aũ(n) + εf
(
ũ(n), n; ε) + εm+1R(n; ε),

(45)

where R(n; ε) is a (k × 1)-vector, and where m is a
positive integer (usually m = 1). Now it will be as-
sumed that matrix A is similar to a diagonal matrix,
that is, it will be assumed that there exists a nonsin-
gular matrix P (with ‖P ‖ and ‖P −1‖ bounded by a
constant M0) such that P −1AP is a diagonal matrix
with on the diagonal the eigenvalue λ1, λ2, . . . , λk of
matrix A. When A is not similar to a diagonal matrix
(that is, when the algebraic multiplicity of an eigen-
value is not equal to the geometric multiplicity of this
eigenvalue), then a similar proof can be given by using
the Jordan form of matrix A. This almost similar proof
will be omitted in this paper. Now let u(n) = Pv(n)

and ũ(n) = P ṽ(n). Then (43) and (45) become

v(n + 1) = P −1APv(n) + εP −1f
(
Pv(n),n; ε),

ṽ(n + 1) = P −1AP ṽ(n) + εP −1f
(
P ṽ(n), n; ε)

+ εm+1P −1R(n; ε),
(46)

where P −1AP is a diagonal matrix with on the diago-
nal the eigenvalues λ1, . . . , λk of matrix A. Now let

λ = max
1≤i≤k

|λi |. (47)

If λ ≤ 1, it will be assumed that for n ∼ 1
ε∥∥R(n; ε)∥∥ ≤ M1, (48)

where M1 is a positive constant. And for λ > 1, it will
be assumed that for n ∼ 1

ε∥∥R(n; ε)∥∥ ≤ M2λ
n(1 + M3ε)

n, and (49)∥∥f (u(n),n; ε)∥∥
≤ M4

∥∥u(n)
∥∥ + M5 for

∥∥u(n)
∥∥ → ∞, (50)

where M2,M3,M4, and M5 are positive constants.
Condition (50) for λ > 1 indicates that the linear
part in (43) dominates the dynamics of the problem
(or equivalently, the term εf in (43) remains relatively
small compared to the other terms in (43)). Now first,
the case 0 < λ ≤ 1 will be considered. The degenerate
case λ = 0 will not be considered in this paper. By sub-
tracting the two equations in (46), and by using (44),
(47), and (48), the following estimate can be obtained.
∥∥v(n + 1) − ṽ(n + 1)

∥∥
≤ (λ + εLM0)

∥∥v(n) − ṽ(n)
∥∥ + εm+1M0M1 ⇒∥∥v(n) − ṽ(n)

∥∥
≤ (λ + εLM0)

n
∥∥v(0) − ṽ(0)

∥∥
+ εm+1M0M1

(
(λ + εLM0)

n − 1

λ + εLM0 − 1

)
. (51)

From (51), it follows that for 0 < λ < 1

∥∥v(n) − ṽ(n)
∥∥ ≤ ∥∥v(0) − ṽ(0)

∥∥O
(
λneεn

LM0
λ

)

+ O
(
εm+1λneεn

LM0
λ

)
, (52)

and for λ = 1 that∥∥v(n) − ṽ(n)
∥∥

≤ ∥∥v(0) − ṽ(0)
∥∥O

(
eεnLM0

) + O
(
εmeεnLM0

)
. (53)

Now if ‖u(0) − ũ(0)‖ = O(εm+1) for 0 < λ < 1,
and if ‖u(0) − ũ(0)‖ = O(εm), for λ = 1, it follows
from (52) that for 0 < λ < 1
∥∥u(n) − ũ(n)

∥∥ = ∥∥P −1v(n) − P −1ṽ(n)
∥∥

≤ M0
∥∥v(n) − ṽ(n)

∥∥ = O
(
εm+1λn

)
(54)

for n = O( 1
ε
), and it follows from (53) that for λ = 1

∥∥u(n) − ũ(n)
∥∥ = O

(
εm

)
(55)

for n = O( 1
ε
).
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Now the case λ > 1 will be considered. Again, con-
sider (46) and let v(n) = λnw(n) and ṽ(n) = λnw̃(n).
System (46) then becomes

w(n + 1) = 1

λ
P −1APw(n)

+ ε

λn+1
P −1f

(
λnPw(n),n; ε),

w̃(n + 1) = 1

λ
P −1APw̃(n)

+ ε

λn+1
P −1f

(
λnP w̃(n), n; ε)

+ εm+1

λn+1
P −1R(n; ε).

(56)

In (56), it should be observed that 1
λ
P −1AP is a

diagonal matrix for which the modulus of the largest
diagonal element in modules is equal to one. Then by
subtracting the two equations in (56), and by using
(44), (47), (49), and (50), it follows that (assuming that
‖w(0) − w̃(0)‖ = O(εm))

∥∥w(n + 1) − w̃(n + 1)
∥∥

≤ 1.
∥∥w(n) − w̃(n)

∥∥ + εLM0

λ

∥∥w(n) − w̃(n)
∥∥

+ εm+1

λn+1
M0

∥∥R(n; ε)∥∥ ⇒
∥∥w(n) − w̃(n)

∥∥
≤

(
1 + εLM0

λ

)n

× {‖w(0) − w̃(0)‖ + O
(
εmeεnM3

)} ⇒
∥∥w(n) − w̃(n)

∥∥ = O
(
εm

)
for n ∼ 1

ε
. (57)

From u(n) = Pv(n) = λnPw(n) and ũ(n) =
λnP w̃(n), and from (57), it can then be deduced that
for λ > 1

∥∥u(n) − ũ(n)
∥∥ = O

(
εmλn

)
(58)

for n = O( 1
ε
). The results which have been proved so

far are summarized in the following theorem.

Theorem 4.1 Let u(n) and ũ(n) satisfy (43) and (45),
respectively, where f satisfies (44) and where ma-
trix A is assumed to be similar to a diagonal matrix.
Let λ be defined by (47), and let R and f addi-
tionally satisfy (48) or (49), (50) for 0 < λ ≤ 1 or
λ > 1, respectively. Furthermore, let ‖u(0)− ũ(0)‖ be

O(εm+1) for 0 < λ < 1 and O(εm) for λ ≥ 1. Then for
n = O( 1

ε
), it follows that

∥∥u(n) − ũ(n)
∥∥ = O

(
εm+1λn

)
for 0 < λ < 1,

and
∥∥u(n) − ũ(n)

∥∥ = O
(
εmλn

)
for λ ≥ 1.

Since each k-th order OΔE can be rewritten as a
system of k first order OΔEs, it follows that Theo-
rem 4.1 directly can be applied to the examples as
treated in the previous sections (see the linear OΔE
(16) and the weakly nonlinear OΔE (30)). For both
examples, it can be simply shown that λ = 1 and that
|xn−(x0(n, εn)+εx1(n, εn))| = O(ε) for n = O( 1

ε
).

It also follows for n = O( 1
ε
) that

∣∣xn − x0(n, εn)
∣∣

= ∣∣xn − (x0(n, εn) + εx1(n, εn)) + εx1(n, εn)
∣∣

≤ ∣∣xn − (x0(n, εn) + εx1(n, εn))
∣∣ + ε

∣∣x1(n, εn)
∣∣

= O(ε) + O(ε) = O(ε)

since x1(n, εn) is bounded for n = O( 1
ε
). So, in both

examples, the functions x0(n, εn) are O(ε) accurate
approximation of xn for 0 ≤ n ≤ K

ε
, where K is an

ε-independent constant.

5 On singularly perturbed, linear OΔEs

In this section, the following three singularly per-
turbed, linear, second order OΔEs will be studied for
n = 0,1,2, . . .:(

ε − 1

4

)
xn+2 +

(
1

2
− 2ε

)
xn+1 + εxn = 0, (59)

(ε + 2)yn+2 − (1 + 2ε)yn+1 + εyn = 0, and (60)

zn+2 + εzn+1 + εzn = 0, (61)

where ε is a small parameter with 0 < ε � 1. A singu-
larly perturbed OΔE is characterized by the fact that
the order of the OΔE is reduced when the small pa-
rameter ε is taken equal to zero (in this case). In the
OΔEs (59) and (60), the order of the OΔEs will be re-
duced by one, whereas for OΔEs (61) with ε = 0, one
can hardly speak of an OΔE. When a naive, straight-
forward perturbation approach is used to approximate
the solution of the OΔE, it is usually impossible to
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satisfy all the initial conditions because of this or-
der reduction in the OΔE. For ODEs, rescaling pro-
cedures are used to tackle this problem. In this sec-
tion, a rescaling procedure for OΔEs like (59)–(61)
will be proposed to solve the aforementioned problem
for OΔEs. When the significant scalings in the OΔEs
are known, the multiple scales perturbation method for
OΔEs (as developed in Sect. 2 of this paper) will be
applied to approximate the solutions of the OΔEs. In
fact, a two scales method will be used for (59), and a
three scales method will be used for (60), and for (61).
It will turn out that the constructed approximations of
the solutions are accurate ones on long iteration scales.
This can be shown by using the theory as developed in
the previous section or by comparing the approxima-
tions directly with the exact solutions. Now the OΔE
(59) will be considered firstly.

5.1 The OΔE (59)

To determine the significant scalings in (59), the fol-
lowing rescaling procedure is proposed. Let

xn = δn(ε)an, (62)

where δn(ε) is a rescaling function which might de-
pend on ε, and where an is a function which remains
O(1) on the iteration scale under consideration (usu-
ally this will be an iteration scale of O( 1

ε
)). Then (62)

is substituted into (59), yielding

(
ε − 1

4

)
δn+2(ε)an+2 +

(
1

2
− 2ε

)
δn+1(ε)an+1

+ εδn(ε)an = 0 (63)

and a balancing procedure will be followed to deter-
mine the rescaling function(s) δn(ε). When the first
term and the second term in (63) are assumed to be
the most significant ones, then δn(ε) has to satisfy

1

4
δn+2(ε) + 1

2
δn+1(ε) = 0 ⇒ δn(ε) = δ02n. (64)

It can readily be verified that the third term in (63)
(that is, εδn(ε)an) is indeed smaller. So, δ(ε) = 2n is
indeed a significant rescaling. When the second term
and the third term in (63) are assumed to be the most

significant ones, then δn(ε) has to satisfy

1

2
δn+1(ε) + εδn(ε) = 0 ⇒ δn(ε) = δ0(−2ε)n.

(65)

It can be verified that the first term in (63) is indeed
smaller, and so, δn(ε) = (−2ε)n is another signifi-
cant rescaling. Similarly, it can be checked that the
first term and the third term in (63) cannot be the
most significant ones simultaneously, since the sec-
ond term would be in that case larger. Now two func-
tionally independent approximations of the solutions
of the linear OΔE (59) will be constructed. The sum
of these two approximations will be an approximation
of the general solution of the OΔE (59). Firstly, let
xn = 2nan. The OΔE (59) then becomes

(−1 + 4ε)an+2 + (1 − 4ε)an+1 + εan = 0. (66)

A two scales perturbation method will be used to ap-
proximate the solution an of (66) since the straightfor-
ward perturbation expansion will lead to secular terms.
The following expansion for an

an = a(n, εn)

= a0(n, εn) + εa1(n, εn) + ε2a2(n, εn) + · · · (67)

is substituted into (66), and terms of equal powers in
ε are taken together (see also Sect. 2 of this paper),
yielding as O(1)-problem

�2
1a0(n, εn) + �1a0(n, εn) = 0

⇔ a0(n + 2, εn) − a0(n + 1, εn) = 0, (68)

and as O(ε)-problem

ε�2
1a1(n, εn) + ε�1a1(n, εn)

= −2�1(�1�ε + �ε)a0(n, εn)

+ 4ε�2
1a0(n, εn) − (�1�ε + �ε)a0(n, εn)

+ 4ε�1a0(n, εn) + εx0(n, εn), (69)

and so on. The O(1)-problem (68) can readily be
solved, yielding

a0(n, εn) = f0(εn), (70)
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where f0(εn) is an arbitrary function which will be
used to avoid secular terms in a1(n, εn). The O(ε)-
problem (69) then becomes

ε�2
1a1(n, εn) + ε�1a1(n, εn)

= −�εf0(εn) + εf0(εn). (71)

To avoid secular terms in a1(n, εn), it is obvious from
(71) that f0(εn) should satisfy

−�εf0(εn)+εf0(εn) = 0 ⇒ f0(εn) = c0(1+ε)n,

(72)

and

a1(n, εn) = f1(εn),

where c0 is an arbitrary constant, and where f1(εn) is
an arbitrary function which can be used to avoid sec-
ular terms in a2(n, εn). Since we are not interested in
the higher order approximation, f1(εn) will now be
taken equal to its initial value c1. So far, the following
approximation for an has been constructed (see (67),
(70), and (72)): c0(1 + ε)n + εc1, where c0 and c1 are
constants. And so, it follows that an approximation of
a solution of (59) is

2n
(
c0(1 + ε)n + εc1

)
. (73)

Another functionally independent approximation of
the solution of (59) can be constructed by using the
rescaling given by (65), that is, let xn = (−2ε)nbn. The
OΔE (59) then becomes

ε(1 − 4ε)bn+2 + (1 − 4ε)bn+1 − bn = 0. (74)

The following expansion for bn

bn = b(n, εn)

= b0(n, εn) + εb1(n, εn) + ε2b2(n, εn) + · · · (75)

is substituted into (74), and terms of equal powers in ε

are taken together, yielding as O(1)-problem

�1b0(n, εn) = 0, (76)

and as O(ε)-problem

ε�1b1(n, εn)

= −ε�2
1b0(n, εn) − (�1�ε + �ε)b0(n, εn)

+ 2ε�1b0(n, εn) + 3εb0(n, εn), (77)

and so on. The O(1)-problem (76) can readily be
solved, yielding

b0(n, εn) = g0(εn), (78)

where g0(εn) is an arbitrary function which will be
used to avoid secular terms in b1(n, εn). The O(ε)

(77) now becomes

ε�1b1(n, εn) = −�εg0(εn) + 3εg0(εn). (79)

To avoid secular terms in b1(n, εn) it is clear from
(79) that g0(εn) should satisfy

−�εg0(εn) + 3εg0(εn) = 0

⇒ g0(εn) = d0(1 + 3ε)n,

and

b1(n, εn) = g1(εn), (80)

where d0 is an arbitrary constant, and where g1(εn)

is an arbitrary function which can be used to avoid
secular terms in b2(n, εn). Since we are not interested
in the higher order approximations, g1(εn) will now
be taken equal to a constant d1. So far, the following
approximation for bn has been constructed (see (75),
(78), and (80)): d0(1+3ε)n +εd1, where d0 and d1 are
constants. And so, it follows that an approximation of
a solution of (59) is

(−2ε)n
(
d0(1 + 3ε)n + εd1

)
. (81)

Since the OΔE (59) is linear, the superposition prin-
ciple can be used, and then it follows from (73) and
(81) that an approximation x(n, εn) of the solution xn

of (59) is given by

x(n, εn) = 2n
(
c0(1 + ε)n + εc1

)
+ (−2ε)n

(
d0(1 + 3ε)n + εd1

)
, (82)

where c0, c1, d0, and d1 are constants which are de-
termined by the initial conditions for n = 0,1 (that is,
when x0 and x1, and their expansions in ε are given).
How well x(n, εn) approximates the exact solution xn

can now be determined in two ways. The first way
is to apply Theorem 4.1 (see the previous section).
For OΔE (59), we have that λ = 2 and x(n, εn) sat-
isfies the OΔE (59) up to (2 + 2ε)nO(ε2) + (−2ε −
6ε)nO(ε3). So, it follows from Theorem 4.1 that

∣∣xn − x(n, εn)
∣∣ = 2nO(ε) for n = O

(
1

ε

)
. (83)
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From (83), it follows that the absolute error be-
comes large on the iteration scale of O( 1

ε
), but that

the relative error is small for n ∼ 1
ε

, that is,

∣∣∣∣xn − x(n, εn)

x(n, εn)

∣∣∣∣ = O(ε) for n ∼ 1

ε
. (84)

Since the linear OΔE (59) has constant coefficients
also the exact solution xn can be computed directly,
yielding

xn = a
(

1 + (1 − 4ε)−
1
2

)n + b
(

1 − (1 − 4ε)−
1
2

)n

= a
(
2 + 2ε + 6ε2 + O

(
ε3))n

+ b
(−2ε − 6ε2 + O

(
ε3))n

, (85)

where a and b are constants. It can also readily be ver-
ified from (85) that x(n, εn) satisfies (83) and (84).

5.2 The OΔE (60)

The rescaling and balancing procedure as introduced
in Sect. 5.1 can be repeated for the OΔE (60), and it
turns out that the significant scalings are

δn(ε) =
(

1

2

)n

, and δn(ε) = εn. (86)

As in the previous example, two functionally inde-
pendent approximations of the solutions of the linear
OΔE (60) will be constructed, but in this example by
using a three scales perturbation method instead of a
two scales method. By putting yn = ( 1

2 )nan, the OΔE
(60) becomes

(ε + 2)an+2 − (2 + 4ε)an+1 + 4εan = 0. (87)

Then the following expansion for an

an = a0
(
n, εn, ε2n

) + εa1
(
n, εn, ε2n

)
+ ε2a2

(
n, εn, ε2n

) + · · · (88)

is substituted into (87), and as usual the follow-
ing O(εm)-problems are obtained for m = 0,1,2, . . .

(see also Sect. 2 of this paper): the O(1)-problem:

2�2
1a0

(
n, εn, ε2n

) + 2�1a0
(
n, εn, ε2n

) = 0

⇔ a0
(
n + 2, εn, ε2n

) − a0
(
n + 1, εn, ε2n

) = 0,

(89)

the O(ε)-problem:

2ε�2
1a1

(
n, εn, ε2n

) + 2�1a1
(
n, εn, ε2n

)
= −(4�1 + 2)(�1�ε + �ε)a0

(
n, εn, ε2n

)
− ε�2

1a0
(
n, εn, ε2n

) + 2ε�1a0
(
n, εn, ε2n

)
− εa0

(
n, εn, ε2n

)
, (90)

the O(ε2)-problem:

2ε2�a2
(
n, εn, ε2n

) + 2ε2�1a2
(
n, εn, ε2n

)
= −ε(4�1 + 2)(�1�ε + �ε)a1

(
n, εn, ε2n

)
− ε2�2

1a1
(
n, εn, ε2n

) + 2ε2�1a1
(
n, εn, ε2n

)
− ε2a1

(
n, εn, ε2n

) − (
4�1(�1�ε2 + �ε2)

+ 2(�1�ε + �ε)
2)a0

(
n, εn, ε2n

)
− ε(2�1 − 2)(�1�ε + �ε)a0

(
n, εn, ε2n

)
− 2(�1�ε2 + �ε2)a0

(
n, εn, ε2n

)
, (91)

and so on. The O(1)-problem (89) readily can be
solved, yielding

a0
(
n, εn, ε2n

) = f0
(
εn, ε2n

)
, (92)

where f0(εn, ε2n) is still an arbitrary function which
will be used to avoid secular terms in a1(n, εn, ε2n)

and in a2(n, εn, ε2n). The O(ε)-problem (90) now be-
comes

2ε�2
1a1

(
n, εn, ε2n

) + 2ε�1a1
(
n, εn, ε2n

)
= −2�εf0

(
εn, ε2n

) − εf0
(
εn, ε2n

)
. (93)

To avoid secular terms in a1(n, εn, ε2n), it is obvious
from (93) that f0(εn, ε2n) has to satisfy

−2�εf0
(
εn, ε2n

) − εf0
(
εn, ε2n

) = 0

⇒ f0
(
εn, ε2n

) =
(

1 − ε

2

)n

g0
(
ε2n

)
, (94)

where g0(ε
2n) is still an arbitrary function which will

be used to avoid secular terms in the O(ε2)-problem
(91). From (93) and (94), it now also follows that

a1
(
n, εn, ε2n

) = f1
(
εn, ε2n

)
, (95)

where f1(εn, ε2n) is still an arbitrary function which
can be used to avoid secular terms in the higher or-
der problems. The O(ε2)-problem (91) now becomes
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(observe that �1a0 = 0 and �1a1 = 0):

2ε2�1a2
(
n, εn, ε2n

) + 2ε2�1a2
(
n, εn, ε2n

)
= −2ε�εf1

(
εn, ε2n

) − ε2f1
(
εn, ε2n

)
− 2�2

εf0
(
εn, ε2n

) − 2�ε2f0
(
εn, ε2n

)
+ 2ε�εf0

(
εn, ε2n

)
. (96)

Now it should be observed that all terms in the
right-hand side of (96) will lead to secular terms in
a2(n, εn, ε2n). To avoid these secular terms, the right-
hand side of (96) should be equal to zero, or equiva-
lently (by using (94)):

2ε�εf1
(
εn, ε2n

) + ε2f1
(
εn, ε2n

)

=
(

1 − ε

2

)n(
−2�ε2g0

(
ε2n

) − 3

2
ε2g0

(
ε2n

))
.

(97)

Now all terms in the right-hand side of (97) will
lead to secular terms in f1(εn, ε2n). To avoid this sec-
ular behavior, it follows from (97) that g0(ε

2n) has to
satisfy:

−2�ε2g0
(
ε2n

) − 3

2
ε2g0

(
ε2n

) = 0

⇒ g0
(
ε2n

) = c0

(
1 − 3

4
ε2

)n

, (98)

where c0 is a constant. From (97) it then also follows
that

f1
(
εn, ε2n

) =
(

1 − ε

2

)n

g1
(
ε2n

)
, (99)

where g1(ε
2n) is an arbitrary function. And from (96),

it then follows that

a2
(
n, εn, ε2n

) = f2
(
εn, ε2n

)
, (100)

where f2(εn, ε2n) is an arbitrary function. From yn =
( 1

2 )nan, (88), (92), (94)–(100), it follows that an ap-
proximation of yn is given by

c0

(
1

2

)n(
1 − ε

2

)n(
1 − 3

4
ε2

)n

+ O(ε)

(
1

2

)n

. (101)

In a completely similar way a second, functionally
independent approximation of yn can be constructed

(starting with yn = εnbn, and so on), yielding

d0ε
n
(
1 + ε2)n + εnO(ε), (102)

where d0 is a constant. The computations to obtain
(102) are left to the reader as an exercise. From (101)
and (102), it follows by using the superposition princi-
ple that an approximation y(n, εn, ε2n) of the general
solution yn of (60) is given by

y
(
n, εn, ε2n

)

= c0

(
1

2

)n(
1 − ε

2

)n(
1 − 3

4
ε2

)n

+ d0ε
n
(
1 + ε2)n

.

(103)

How accurate this approximation is, can directly be
seen by comparing y(n, εn, ε2n) with the exact solu-
tion yn which is given by

yn = a

(
1 + 2ε + (1 − 4ε)

1
2

2(ε + 2)

)n

+ b

(
1 + 2ε − (1 − 4ε)

1
2

2(ε + 2)

)n

= a

(
1

2
− 1

4
ε − 3

8
ε2 + O

(
ε3))n

+ b
(
ε + ε3 + O

(
ε4))n

. (104)

From (103) and (104), it can readily be deduced that
for n ∼ 1

ε2

∣∣yn − y
(
n, εn, ε2n

)∣∣ =
(

1

2

)n

O(ε).

5.3 The OΔE (61)

The rescaling and balancing procedure as introduced
in Sect. 5.1 can be repeated again for the OΔE (61),
and it turns out that only one significant scaling is
present:

δn(ε) = (√
ε
)n

. (105)

As in the previous examples, approximations of the
solution of the linear OΔE (61) will be constructed. In
this example, a three scales perturbation method will
be applied. By putting zn = (

√
ε)nan, the OΔE (61)

becomes

an+2 + √
εan+1 + an = 0. (106)
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Then the following expansion for an

an = a0
(
n,

√
εn, εn

) + √
εa1

(
n,

√
εn, εn

)
+ εa2

(
n,

√
εn, εn

) + · · · (107)

is substituted into (106), and as usual the following
O(ε

m
2 )-problems are obtained for m = 0,1,2, . . . :

the O(1)-problem:

�2
1a0

(
n,

√
εn, εn

) + 2�1a0
(
n,

√
εn, εn

)
+ 2a0

(
n,

√
εn, εn

) = 0 ⇔
a0

(
n + 2,

√
εn, εn

) + a0
(
n,

√
εn, εn

) = 0,

(108)

the O(
√

ε )-problem:

√
ε�2

1a1
(
n,

√
εn, εn

) + 2
√

ε�1a1
(
n,

√
εn, εn

)
+ 2

√
εa1

(
n,

√
εn, εn

)
= −2(�1 + I )(�1�√

ε + �√
ε)a0

(
n,

√
εn, εn

)
− √

ε(�1 + I )a0
(
n,

√
εn, εn

)
, (109)

the O(ε)-problem:

ε�2
1a2

(
n,

√
εn, εn

) + 2ε�1a2
(
n,

√
εn, εn

)
+ 2εa2

(
n,

√
εn, εn

)
= −√

ε
(
2�√

εE
2
1 + √

εE1
)
a1

(
n,

√
εn, εn

)

− (
2�3E

2
1 + �2√

ε
E2

1 + √
ε�√

εE1
)

× a0
(
n,

√
εn, εn

)
, (110)

and so on. The O(1)-problem (108) can easily be
solved, yielding

a0
(
n,

√
εn, εn

)

= f0
(√

εn, εn
)

cos

(
nπ

2

)
+ g0

(√
εn, εn

)
sin

(
nπ

2

)
,

(111)

where f0(
√

εn, εn) and g0(
√

εn, εn) are still arbi-
trary functions which will be used to avoid secular
terms in a1(n,

√
εn, εn) and in a2(n,

√
εn, εn). The

O(
√

ε)-problem (110) now becomes
√

ε�2
1a1

(
n,

√
εn, εn

) + 2
√

ε�1a1
(
n,

√
εn, εn

)
+ 2

√
εa1

(
n,

√
εn, εn

)

= cos

(
nπ

2

)(
2�√

εf0
(√

εn,εn
) − √

εg0
(√

εn,εn
))

+ sin

(
nπ

2

)(
2�√

εg0(
√

εn, εn)

+ √
εf0

(√
εn, εn

))
. (112)

Obviously, the right-hand side of (112) contains terms
(i.e., cos( nπ

2 ) and sin( nπ
2 )) which are solutions of the

corresponding homogeneous OΔE and which conse-
quently lead to secular terms in a1(n,

√
εn, εn). To

avoid this secular behavior in a1(n,
√

εn, εn), it fol-
lows from (112) that f0(

√
εn, εn) and g0(

√
εn, εn)

have to satisfy

2�√
εf0

(√
εn, εn

) − √
εg0

(√
εn, εn

) = 0,

2�√
εg0

(√
εn, εn

) + √
εf0

(√
εn, εn

) = 0.
(113)

System (113) can readily be solved, yielding

f0
(√

εn, εn
) = α0(εn)

(
1 + ε

4

) n
2

cos
(
nμ(ε)

)

+ β0(εn)

(
1 + ε

4

) n
2

sin
(
nμ(ε)

)
,

g0
(√

εn, εn
) = −α0(εn)

(
1 + ε

4

) n
2

sin
(
nμ(ε)

)

+ β0(εn)

(
1 + ε

4

) n
2

cos
(
nμ(ε)

)
,

(114)

where α0(εn) and β0(εn) are arbitrary functions which
will be used to avoid secular terms in a2(n,

√
εn, εn),

and where μ(ε) is given by

cos
(
μ(ε)

) =
(

1 + ε

4

)− 1
2

,

and

sin
(
μ(ε)

) = 1

2

√
ε

(
1 + ε

4

)− 1
2

, (115)

and

μ(ε) = 1

2

√
ε − 1

24
ε
√

ε + O
(
ε2√ε

)
for ε → 0.
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Then it follows from (112) that a1(n,
√

εn, εn) is
given by

a1
(
n,

√
εn, εn

)

= f1
(√

εn, εn
)

cos

(
nπ

2

)
+ g1

(√
εn, εn

)
sin

(
nπ

2

)
,

(116)

where f1(
√

εn, εn) and g1(
√

εn, εn) are arbitrary
functions which can be used to avoid secular terms
in the solutions of the higher order problems. By us-
ing (111), (114), and (116), it follows that the O(ε)-
problem (110) now becomes

ε�2
1a2

(
n,

√
εn, εn

) + 2ε�1a2
(
n,

√
εn, εn

)
+ 2εa2

(
n,

√
εn, εn

)

= cos

(
nπ

2

){
2
√

ε�√
εf1

(√
εn, εn

)

− ε g1
(√

εn, εn
)

+ 2�εf0
(√

εn, εn
) + ε

4
f0

(√
εn, εn

)}

+ sin

(
nπ

2

){
2
√

ε�√
εg1

(√
εn, εn

)

+ ε f1
(√

εn, εn
) + 2�εg0

(√
εn, εn

)

+ ε

4
g0

(√
εn, εn

)}
. (117)

To avoid secular terms in a2(n,
√

εn, εn), it is ob-
vious from (117) that f1, g1, f0, and g0 have to satisfy

2
√

ε�√
εf1

(√
εn, εn

) − ε g1
(√

εn, εn
)

= −
(

2�εα0(εn) + ε

4
α0(εn)

)(
1+ ε

4

) n
2

cos
(
nμ(ε)

)

−
(

2�εβ0(εn) + ε

4
β0(εn)

)(
1+ ε

4

) n
2

sin
(
nμ(ε)

)
,

2
√

ε�√
εg1

(√
εn, εn

) + εg1
(√

εn, εn
)

=
(

2�εα0(εn) + ε

4
α0(εn)

)(
1 + ε

4

) n
2

sin
(
nμ(ε)

)

−
(

2�εβ0(εn) + ε

4
β0(εn)

)(
1 + ε

4

) n
2

× cos
(
nμ(ε)

)
. (118)

Since (1+ ε
4 )

n
2 cos(nμ(ε)), and (1+ ε

4 )
n
2 sin(nμ(ε))

are solutions of the homogeneous system (118), it is
obvious that these terms lead to secular behavior in
f1(

√
εn, εn), and in g1(

√
εn, εn). To avoid this sec-

ular behavior, it follows from (118) that α0(εn) and
β0(εn) have to satisfy

2�εα0(εn) + ε

4
α0(εn) = 0,

2�εβ0(εn) + ε

4
β0(εn) = 0.

(119)

System (119) can readily be solved, yielding

α0(εn) = k0

(
1 − ε

8

)n

,

β0(εn) = l0

(
1 − ε

8

)n

,

(120)

where k0 and l0 are arbitrary constants. From (118), f1

and g1 can now be determined, and from (117) a2 can
be determined, yielding

f1
(√

εn, εn
) = α1(εn)

(
1 + ε

4

) n
2

cos
(
nμ(ε)

)

+ β1(εn)

(
1 + ε

4

) n
2

sin
(
nμ(ε)

)
,

g1
(√

εn, εn
) = −α1(εn)

(
1 + ε

4

) n
2

sin
(
nμ(ε)

)

+ β1(εn)

(
1 + ε

4

) n
2

cos
(
nμ(ε)

)
,

a2
(
n,

√
εn, εn

) = f2
(√

εn, εn
)

cos

(
nπ

2

)

+ g2
(√

εn, εn
)

sin

(
nπ

2

)
,

where α1, β1, f2, and g2 are arbitrary functions. To
determine these functions completely, the O(ε

√
ε )-

problem and the O(ε2)-problem have to be solved.
Since we are not interested in the higher order approx-
imations at this moment, we will take α1, β1, f2, and
g2 equal to constants (such that the initial conditions
(if present) can be satisfied up to O(ε)). From (111),
(114), (115), and (120), it follows that a0(n,

√
εn, εn)
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is given by

a0
(
n,

√
εn, εn

)

= k0

(
1 − ε

8

)n(
1 + ε

4

) n
2

cos

(
nπ

2
+ nμ(ε)

)

+ l0

(
1 − ε

8

)n(
1 + ε

4

) n
2

sin

(
nπ

2
+ nμ(ε)

)
,

(121)

where k0 and l0 are constants. The exact solution of
the OΔE (106) is given by

an = k 1n cos
(
nθ(ε)

) + l1n sin
(
nθ(ε)

)
, (122)

where k and l are constants, and where θ(ε) is given by

cos
(
θ(ε)

) = −1

2

√
ε,

and

sin
(
θ(ε)

) =
(

1 − ε

4

) 1
2

,

and

θ(ε) = π

2
+ 1

2

√
ε + 1

48
ε
√

ε + O
(
ε2√ε

)
for ε →0.

From (121) and (122), it is not difficult to deduce
that

∣∣an − a0
(
n,

√
εn, εn

)∣∣ = O
(√

ε
)

for n = O

(
1

ε

)
.

The examples as presented in this section and in
Sects. 2 and 3 of this paper clearly prove that the multi-
ple scales perturbation method gives accurate approx-
imations on long iteration scales.

6 Conclusions and remarks

In this paper, a version of the multiple scales pertur-
bation method for OΔEs has been presented and for-
mulated completely in terms of difference equations.
It has been shown how this method can be applied to
regularly perturbed OΔEs and to singularly perturbed,
linear OΔEs. The relative and/or absolute errors in
the constructed approximations of the solutions of the
OΔEs have been determined, and it has been shown
that these approximations are valid on long iteration
scales.

It is to be expected that the presented perturbation
method also can be applied successfully to weakly per-
turbed partial difference equations, and to singularly
perturbed, weakly nonlinear OΔEs. Of course, these
extensions will be interesting subjects for future re-
search. Finally, it should be remarked that the pre-
sented perturbation method also can be used in the nu-
merical analysis of certain classes of regularly or sin-
gularly perturbed differential equations to see whether
the solutions of the discretized equations (i.e., the dif-
ference equations) have the same type of behavior as
the solutions of the differential equations or not.
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