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Abstract. The multipole expansion (in general relativity) of the gravitational field generated
by a slowly-moving isolated source is constructed. We introduce some definitions for the source
multipole moments, valid to all orders in a post-Newtonian expansion, and depending in a well
defined way on the total stress—energy pseudo-tensor of the material and gravitational fields.
The source moments parametrize the linearized approximation of the gravitational field exterior
to the source, as computed by means of a specific post-Minkowskian algorithm defined in a
previous work. Since the radiative multipole moments parametrizing the radiation field far from
the source can be obtained as nonlinear functionals of the source moments, the present paper
allows one to relate the radiation field far from a slowly-moving source to the stress—energy
pseudo-tensor of the source. This should be useful when comparing theory with the future
observations of gravitational radiation by the LIGO and VIRGO experiments.

PACS numbers: 0430D, 0425N

1. Introduction

The multipole expansion is one of the most useful tools of theoretical physics. Extensively
used in the past for dealing with wave emission and/or propagation problems in
electromagnetism, the multipole expansion has also contributed much to gravitational
radiation theory, starting with Einstein’s pioneering work [1] (see also [2]) showing that
gravitational radiation from a localized slowly moving source is dominantly quadrupolar,
unlike electromagnetic radiation which is dipolar in general.

The multipole expansion of the field generated by an isolated gravitating source can be
said to be fully understood at thi@earized approximation of general relativity. Some early
studies extended the Einstein quadrupole formula for the energy to include higher multipole
contributions [3, 4], and obtained the corresponding formulae for linear momentum [3-6]
and angular momentum [7, 8]. Then a number of authors [9-12] investigated the general
structure of thanfinite multipole expansion of the linearized field outside the source, and
computed the associated fluxes of energy and momenta. It emerged from these works that the
multipole expansion is entirely characterized by two and only two sets of multipole moments,
which are the analogues of the electric and magnetic moments of electromagnetism and, in
the gravitational case, are referred to as the mass and current moments. Notably, the full
expression of the linearized vacuum metric as parametrized by symmetric and trace-free
(STF) mass and current multipole moments was given by Thorne [12] (we shall refer below
to this expression as ‘canonical’). The use of STF harmonics is very convenient when
performing computations of gravitational radiation [12].
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Knowing the structure of the multipole expansion is not sufficient by itself, and one
must relate the multipole moments to the material content of the source. In linearized
gravity this relationship was achieved in a second series of papers [13-16], in which the
multipole moments of the source were obtained as some explicit integrals extending over the
stress—energy distribution of the matter fields, independently of any assumption concerning
the source (such as being fast moving). The last of these papers, by Damour and lyer [16],
put the finishing touches to the theory by expressing the multipole expansion in STF form,
and by correcting some errors in the previous paper [15].

The problem is more difficult, but more interesting, in the full nonlinear theory where
the (source) multipole moments mix with each other causing nonlinear effects in the
radiation field, for instance the so-called ‘tail' effect—scattering of the quadrupolar waves
off the spacetime generated by the mass monopole of the source. Several approaches have
attempted to define a multipole expansion consistent with the nonlinear field equations.
In particular, when the source is stationary (i.e. existence of a timelike Killing vector),
the multipole moments in the far field are determined by the convergent expansion of the
metric at spatial infinity { — +o00, t = constant). Several equivalent definitions of the
far-field moments are named after Geroch and Hansen [17, 18], Thorne [12] and Simon
and Beig [19]. In the non-stationary case, the expansion at future null infinity (oo,

u = constant where is a null coordinate) was constructed by Bowedlial [20] and Sachs

[21]. By decomposing the so-called Bondi news function [20] in spherical harmonics (or
in STF harmonics), one obtains the multipole moments which are actually ‘measured’ at
infinity (radiative multipole moments). Another attempt at defining the multipole expansion
for non-stationary sources is that of Bonnor and collaborators [22—-25], who combined the
multipole expansion with a weak-field or post-Minkowskian expansion (i.e. a power series
in Newton’s constantG). This type of approach, in which the multipole moments can be
viewed as the source moments (distinct from the radiative moments), was later investigated
by Thorne [12] and Blanchet and Damour [26] (we shall refer to [26] as paper |).

The main result of paper | was to show that one can define, starting from the Thorne
‘canonical’ linearized metric, an explici#igorithm for the computation of the exterior field
up to any order in the post-Minkowskian expansion. The resulting metric represents the
most general post-Minkowskian solution of the vacuum equations outside the source (up to
a coordinate transformation). It is parametrized by two and only two sets of STF (source)
multipole moments. Following paper I, we shall call this nonlinear metric MPM (multipolar
post-Minkowskian). It was also proved [27] that the re-expansion of the MPM metric at
future null infinity is consistent with the corresponding expansion constructed by Bondi
al [20]. This permits defining the radiative multipole moments within the framework of
MPM metrics.

After dealing with the structure of the multipole expansion [12, 22, 26, 27], the next
step is, like in the linearized theory, to express the multipole moments as explicit integrals
extending over the source. At the leading order in a slow-motion expansion (speed of light
¢ — o0), the multipole moments are given by the standard moments of the Newtonian
mass and current densities in the source (see, e.g., [12]). At the first post-Newtonian (1PN)
order, the source moments depend on the total stress—energy distribution of the matter
fields and the gravitational field. Because of the contribution of the gravitational field,
the support of the total stress—energy distribution is not spatially compact, and therefore
the standard formulae used in the linearized theory [13-16] do not apply. If, nevertheless,
one tries to define the source multipole moments using these formulae, one obtains some
expressions which are (typically) divergent due to the behaviour of the integrals at spatial
infinity. This was the approach followed initially by Epstein and Wagoner [28] (see also
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[29]) and generalized formally by Thorne [12] to all post-Newtonian orders. The problem of
divergences becomes very important starting at the 1.5PN order because of the appearance
of nonlinear tails in the radiation field. Indeed one can show [30] that ignoring the divergent
terms in the multipole moments as defined previously is equivalent to neglecting the latter
tail effects. Recently this problem has been solved by Will and Wiseman [31] who showed
how to compute the tails within the Epstein—~Wagoner—Thorne approach by means of finite
expressions for the multipole moments.

A satisfying derivation of the mass-type multipole moments of the source at 1PN order
was done in [32] using a method of asymptotic matching to the interior field of the source.
The moments were shown to be actually compact-supported, and to agree with the moments
of Epstein and Wagoner modulo the formal discarding of infinite surface terms. The current-
type multipole moments at 1PN order were obtained in [33] using a similar method of
matching. At the 1PN order there is agreement between the radiative moments (at infinity)
and the source moments. Only at the 1.5PN order do they start differing because of the
contribution of tails in the wave zone [34].

To 2PN order the multipole moments were obtained using a matching by Blanchet [30]
(we shall refer to [30] as paper Il), with a rather transparent result which seemed to be
amenable to generalization. Namely, it was found that the expressions of the multipole
moments depend on the stress—energy (pseudo-)tensor of the matter and gravitational fields
in the same way as would be obtained by using incorrectly the formulae valid for compact-
supported sources (i.a.la Epstein—Wagoner—Thornd)ut that the multipole moments are
endowed with a finite part operation based on analytic continuation which makes them
perfectly well defined mathematically. The latter finite part operation was found to be the
same as used in the construction of the exterior field in paper I; it was carried in paper Il
all the way from the definition of the exterior field to the final expression of the moments.

In this paper we shall show basically that the expressions of the multipole moments
at 2PN order given in paper I, i.e. in terms of the total stress—energy pseudo-tensor, are
actually valid up toany post-Newtonian order. We shall not perform a matching ‘order
by order as was done in paper I, but rather construct directly the multipole expansion
generated by the total stress—energy pseudo-tensor of the source. This entails finding a
formula for the multipole expansion generated by a non-compact-supported source. The
multipole moments we shall obtain are valid for slowly-moving sources, to all orders in
the slow-motion (post-Newtonian) parameter. Of course, the lowest-order post-Newtonian
terms in these general expressions agree with the previous results obtained in [32, 33, 30].
On the other hand, we have agreement in the limit of linearized gravity with the result of
[16].

The multipole moments we obtain are fully consistent with the construction of MPM
metrics in paper | as they parametrize the so-called ‘particular’ linearized metric of paper |
(which differs from the ‘canonical’ metric by a gauge transformation). In a sense, the present
paper realizes a complete matching of the external field of paper | to a slowly-moving source.
Note that the multipole moments, though allowing correctly for all the nonlinearities in the
near-zone field, parametrize thieearized (exterior) metric which needs to be iterated in
order to obtain the radiative moments at infinity (see paper | and [27]). Thus the present
results have to be combined with what we know about the relation between the source
multipole moments and the radiative ones (see, e.g., [34, 35] and section 6).

Computing the moments to very high post-Newtonian order is part of a research program
accompanying the development of the gravitational-wave detectors LIGO and VIRGO.
Its motivation comes from the fact that in the case of the radiation emitted by compact
binary systems an extremely precise prediction from general relativity will be necessary in
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order to extract the full potential information contained in the signal. By application of
paper I, the theoretical prediction for binary systems was obtained at the 2PN order [36]
(and subsequently at 2.5PN order [37]). Will and Wiseman [31] obtained independently the
result at 2PN order by application of their improved Epstein—Wagoner formalism. The work
at the 3PN order [38] will rely to a large part on the general expressions of the multipole
moments as derived in the present paper.

The plan of this paper (besides this introduction and two appendices) is as follows.
In section 2 we recall some material from paper | and state our basic assumptions. In
section 3 we derive the expression of the multipole expansion of the gravitational field valid
outside a general (slowly-moving) source. Rewriting the multipole expansion in a different
form, we obtain in section 4 the ‘linearized’ metric (i.e. a solution of the linearized field
equations) which is at the basis of the post-Minkowskian iteration of paper |. Decomposing
the linearized metric into irreducible STF tensors yields in section 5 the general expressions
for the moments. The paper ends with a discussion on the link between the source moments
and the radiative moments (section 6).

2. Review and basic assumptions

The assumptions on which the present investigation is based are twofold. First we have
the assumptions concerning the constructionadfuummetrics by means of the multipolar
post-Minkowskian (MPM) method of paper | [26]. The so-called MPM metrics aim at
describing the gravitational field in the regierterior to a general isolated system. Second

we supplement the MPM method by other assumptions concerning the metric inside the
isolated system. Essentially we assume that the metric is everywhere regular (smooth),
and admits inside the system a post-Newtonian expansion, which matches in the exterior
to the vacuum MPM metric. The matching is understood in the usual sense of matching
of asymptotic expansions. Physically the formalism is restricted to slowly-moving sources,
whose typical internal velocities define a small post-Newtonian parametegi.

2.1. Review concerning the exterior field

The multipolar post-Minkowskian ‘exterior’ metric of paper | is defined in the open domain
R x R (whereR3 = R3 — {0}), i.e. in R* deprived of the spatial origin = || = 0. We
denote it byhby = /—gext Soxi— 1", Whereghy, is the inverse andey: the determinant of the
usual covariant metric, and when¢” = n,, = diag(—1, 1, 1, 1) is the Minkowski metric.
The MPM metrichly; is in the form of a formal (infinite) post-Minkowskian expansion,

haw = GhY' + G%hy" 4+ -+ G"h™ + - (2.1)

(G is Newton’s constant), which is such that all the coefficients ofd@i&s admit afinite
multipolar expansion in symmetric and trace-free (STF) products of unit veatetse/r,
i.e. n, = STHn.} wheren, = n;n;,---n;, (wWith L = ijip---i; a multi-index with/
indices). The decomposition on the tensoig is equivalent to the usual decomposition

T Our conventions and notation are the following: signature++; Greek indices 0,1,2,3; Latin indices 1,2,3;
r=lxl = (xf +x§ +x§)l/2; n'=n; =x'/r; 8 =08/0x"; x* =x; = Xig Xiy -+ Xj; anddy, = 9;, 9, - - ~£)i,, where

L =ijip---i; is a multi-index with/ indices;x;_1 = xj; - - - Xi;_4, XaL—1 = XaXiy - - - Xi;_;, €1C; X andd;, are the
(symmetric) and trace-free parts of andd,, for instancex;; = x;x; — %Bijrz; more generally the STF part of
a tensor7T; is denoted indifferentlny =STR T, = T<1-; T = %(T,-j + Tj); A is the time derivative and
JAW) = ffoo du’ A(u) the time antiderivativeN, Z, R andC are the usual sets of integeﬁ&f =R3 — {0}
CP(Q) is the set ofp-times continuously differentiable functions on the openet
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on the basis of spherical harmonics. Thds,e N,

Imax

WY (. ) =Y ALO.¢) Lhl (1), (2.2)
=0

The expansion is considered to be finite at any given orddbecause in practical
computations we construct the metric for each multipolar piece separately. Note, though,
that /max tends to infinity as: — oco. It is hoped that at the end of the construction it is
possible to take the limit of an infinite number of multipole contributions.

The MPM metric satisfies the Einstein vacuum equations everywhere except at the origin
r =0 (i.e.V(z, 1) € R? x R). Using harmonic coordinates, this means

d,hh =0, (2.3)

Dh’é)‘()t = Ag;(}tﬂ (2.4)
where the box symbol denotes the flat d’Alembertian operaior= 7°°9,9, (with
d, = 0/0x”), and where AL, = A" (hex) iS a gravitational source term, whose

support extends out to infinity, and which encompasses all the nonlinearities, quadratic
at least, of the field equations\{"(k) depends om: and its spacetime derivatives:

and 3°h). The relation betweem\*’(h) and the Landau-Lifshitz [2] pseudo-tensor is
AR =167 G|glt() /c* + 0,h"° 0,h" — h*° 92 h™’. By the harmonic-coordinate condition
(2.3) we haveY(z, 1) € R? x R,

AL =0. (2.5)

Following paper |, we further assume that the metric is stationary in a neighbourhood
of past timelike infinity, i.e. that there exists a finite instarif’ in the past such that

t<—-T = 0/dt hlyy(x, 1) =0. (2.6)

This assumption permits one to implement in a simple way the condition of no incoming
radiation, and, more technically, to avoid any problem of divergence at infinity of retarded
integrals of nonlinear source terms (with non-compact support). The assumption (2.6) could
presumably be weakened in order to allow for some always radiating matter systems. We
assume also that the metric is asymptotically Minkowskian in the past, in the sense that

By substituting the MPM metric (2.1),(2.2) into the field equations (2.3),(2.4) and
equating the coefficients of th&"’s on both sides, we obtain an infinite set of perturbation
equations to be satisfied by all th¢”, va > 1,

dn" =0, (2.8)

Oh™ = N (2.9)

Forn = 1 we haveN; = 0. To any orden > 2 the sourceV, is known from the previous
iterations. For instance, ik (h) = No(h) + O(h®) then N, = N(hy). The solutioniby
represents the infinite sum of the solutions of the perturbation equations (2.8), (2.9) to every
post-Minkowskian order. Damour and Schmidt [39] have proved that the MPM expansion
is ‘reliable’, in the sense that it is possible to construct smooth one-parameter families of
solutions of the vacuum equations whose Taylor expansion when 0 belongs to the
class of MPM metrics.

The construction of the MPM metric proceeds iteratively starting from any linearized
metric k1, solution inR3 x R of the ‘linearized’ vacuum equations (i.e. (2.8), (2.9) where
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n = 1 andN; = 0) and the condition of retarded potentials. The most general linearized
metric can be written as an explicit multipolar expansion parametrized by a set of STF
time-varying multipole moments. This is the so-called ‘particular’ metric of paper | we
present in (4.9)—(4.13) below. The ‘particular’ metric differs from the ‘canonical’ metric of
Thorne [12] by a gauge transformation.

As hj is in the form of a multipole expansion, it is singularrat= 0, and so iSNo,
and then successively, ..., N,. To deal with this problem, we apply when solving (2.9)
the standard retarded integnﬁll,;l on the product ofV, and a factor(z/ro)® where B is
a complex number angy a constant with the dimension of a length. TBedependent
retarded integrall;'[(r/ro)® N,] then defines a function oB which is valid (by analytic
continuation) for all values oB in C — Z. Near the valueB = 0, this function admits a
Laurent expansion, and it was shown in paper | thatfihiée part at B = 0 (denoted by
FPgz_o) of the Laurent expansion wheB — 0, i.e. the coefficient of the zeroth power of
B, is a solution inR3 x R of the d’Alembertian equation with sour@é,. That is, we set

u = FPg_o Ox' [(r/ro) N1, (2.10)
where(J;* denotes the retarded integral
1 d®y

-1 _
O N @, 1) = =1~ P—

Then we havey(z, 1) € R? x R, Ou,,” = N

In order to satisfy the gauge condition (2.8), it is necessary to add to the particular
solutionu,, a certain homogeneous solutiopwhose divergence cancels out the divergence
of u,: d,v)" = —a,uly”. Following the algorithm proposed in paper I, we must decompose
o,uy"” into four STF tensorsi;, B;, C; and D, and apply the equations (4.13) in paper I.
A slightly modified algorithm, which is more convenient for our purpose, has been defined
in equation (2.12) of [35]. In appendix B we recall the definition of the modified algorithm
for v, in terms of the tensord;, B,, C; and D;. Thus the solution of (2.8),(2.9) reads
(Vn > 2)

N(y,t—|x—yl/c). (2.11)

A =y 4y (2.12)

When starting from the ‘particular’ linearized metrigat: (see (4.11)—(4.13)), the
previous algorithm for the construction of the MPM metric generates in factntbst
general solution of the vacuum equations under the MPM assumptions. When starting
from the ‘canonical’ metrichcani, the MPM algorithm still generates the most general
solution but modulo a coordinate transformation. See theorems 4.2 and 4.5 in paper I.
Crucial to the construction of the MPM metric is the knowledge of the general structure
of the singularity whenr — 0 of each of the post-Minkowskian coefficients, which
legitimizes the application of the operator [BP* at each post-Minkowskian order. The
following result was proved in paper I.

Theorem. The expansion whem — 0 of any post-Minkowskian coefficient, reads,
V(z,t) € R3 x R andVN €N,

hn(@, 1) =Y " Ar(Nr)P L Fyap(t) + Ry (@, 1), (2.13)
as<N
wherea € Z with —ag < a < N (andag € N), p € N with p < n — 1, and stilll < Inax
(see (5.4) in paper 1). Bothg andmax depend om, and tend to infinity whem — oo,
as does the maximal power of the logarithmg,ax = n — 1. (The logarithms in (2.13)
should really be Itr/rp) but we include the constantsginto the definition of, F;, , ,.)
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The functions, F, ., ,(¢) are smooth ¢*°) functions of time (starting withC> multipole
moments at the linearized level), and constant in the remote pd&t; ,(r) = constant
whent < —7. They are given by some complicated nonlinear functionals of the (source)
multipole moments parametrizing the linear metric. The remaijey (x, ) belongs to

the so-called class of functions™@") introduced in paper |, i.e. basically all its time
derivatives are zero in the past { —7), are of classC" (R%), and are of order @)
whenr — 0 (refer to paper | for full mathematical details).

To prove this theorem, one assumes as an induction hypothesis, tlzaimits the same
type of structure as (2.13), with the only exception thatx = n — 2. Then one shows
that applying FE;l on each of the terms composing (2.13) makes sense (by analytic
continuation), and that this is a stable operation in the sense that the ‘solticemd then
h, = u, + v,, admits the same structure as the ‘sourdg, with merely an increase by
one unit of the maximal power of the logarithms. Since (2.13) is manifestly correét; for
if pmax = 0, one concludes that (2.13) is corrgeh) with the result thatpyma = n — 2 for
N, and pmax =n — 1 for h,,.

2.2. Assumptions concerning the inner field

We now address the problem of the gravitational field inside an actual isolated system,
described by a stress—energy tenB6ér (x, r) in some coordinate systeq, ¢), with spatial

origin r = |x| = 0 located within the system. We suppose tii&t is stationary in the

past, and that its support is spatially compakt,’(x,t) = 0 whenr > d. The metric

v = /—gg" — n* satisfies the Einstein field equations through®it thus (using
harmonic coordinates like in (2.3))

9,k =0, (2.14)

167G ,,

O = o,

(2.15)
C

where we have defined the effective stress—energy (pseudo-)tensor

4

C
o= g TR 4+ — AR, 2.16
T lg|T"" + 160G (2.16)

The first term in (2.16) is the matter source term, which is of compact support. The second
term is the non-compact-supported gravitational source term, which is the same as in (2.4)
but is computed with: instead offiey, i.€. A = A*Y(h). From (2.14) the divergence of

the (relaxed) Einstein equation (2.15) yields the equation of motion of the matter fields,

9,7 =0, (2.17)

which is equivalent to the equation of conservatiorf'éf in the covariant sensgv, 7" =
0). The retarded solution of the system of equations (2.14)—(2.16) is obtained by simple
inversion of the flat d’Alembertian operator,

167G

7Y
h 4

Ot o, (2.18)

C

where D;l is given by (2.11). Since the pseudo-tensét depends orh itself and its
derivatives, the equation (2.18) (with the constraint equation (2.17)) should be viewed in
fact as an integro-differential equation equivalent to (2.14)—(2.16) and the condition of
retarded potentials.
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We now assume thadt"”, as given by (2.18) with (2.17), satisfies certain mathematical
properties complementing the properties of the exterior MPM metrics. Here we state our
assumptions and comment on their adequacy in the case of the gravitational field. Based
on these assumptions, we shall construct in section 3 the multipole expangi6h. of

Assumption 1 (Smoothnes3he field » (dropping the spacetime indices) is a smooth
function of the harmonic coordinates,(t), namely

h(z, 1) € C®RY. (2.19)

In particular, we assume no singularities in the distribution of matter fields (no point
particles or black holes). The formalism will zepriori valid only for continuous matter
distributions. However, there are indications that the formalism applies also to point particles
modelling compact objects like black holes (see [34, 36, 38]). Simply, one needs to represent
the matter fields by delta-functions and to use a regularization in order to deal with the field
near the point particles.

Assumption 2 (Multipole expansiorf).admits a multipolar expansion in the open domain
exterior to the compact support of the matter souf¢é, in the sense that it agrees there
with the MPM metrichey constructed in paper I. Throughout this paper, we denote the
multipole expansion using the script letté#. Thus, by definition,

M(h) = hext. (2.20)

Let the exterior domain be > R, where the constark is such thatR > d (with d the
maximal radius of the compact support Bf”). Our assumption reads

r>R = Mh =h. (2.21)

Note that (2.20) simply means that we have givenitg the name M (k) (multipole
expansion ofz); thus M (h) is a solution of the vacuum equations valid everywhere except
at the spatial origin, i.e¥(x, t) € R® x R. In contrast, (2.21) states that at any field point
located in the exterior of our physical system>{ R > d), M(h) agreesnumerically with

h. Of course, inside the systemn satisfies the non-vacuum field equations and therefore
differs from the vacuum solutiomm (h). For instanceh is smooth throughout the system
(assumption 1) whileM (k) is singular at- = 0.

Summing all the post-Minkowskian contributions given by (2.13), let us write the
theorem giving the structure of the expansion wher> 0 of M(h): V(z,t) € R? x R,
VN €N,

M) (x, 1) = Z Aprt(Inr)? L F, ,(t) + Ry(x, 1), (2.22)

as<N

where the functionsg F, , and Ry are of the type) ", G".F, ., and)_, G"R, . Note
that, in contrast to (2.13), the summation integersp and!/ in (2.22) take an infinite
number of valuesu € Z is not bounded below (i.e-oo < a < N),andp e N,/ € N are
not bounded above (& p,! < +00). We refer to the ‘complete’ expansion including all
values ofa € Z in (2.22) as the ‘near-zone’ expansion-{ 0) of the multipole expansion,
and denote it by an overbar,

M), ) =Y Aprt(nr)? L F, (1) . (2.23)

This expansion should be considered in the sense of a formal series, i.e. as an infinite set
of coefficients ofr¢(Inr)?.
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Assumption 3 (Post-Newtonian expansiof).any fixed spacetime positior:(¢), ~ admits
an asymptotic expansion when the speed of light- +o0o along the basis of functions
¢ !(Inc)? wherei,q € N (h depends orr as a solution of the field equations). Thus,
VN €N,

h(x,t,¢) =Y ¢ (ne)loiq (@, 1) + Ty(x, 1,¢), (2.24)
I<N
where the coefficients; , are smooth functions ofxf t), and where the remaindéiy is
of order Q1/c") whenc — oo (non-uniformly in|x|). The corresponding expansion up
to any orderi € N is referred to as the post-Newtonian expansioth aind is also denoted
by an overbar (this abuse of notation being justified by the matching below),

h(x,t,c) = Z ¢7i(n c)lojq(x,t). (2.25)

Like (2.23), this expansion is to be viewed in the sense of formal series. Clearly the assumed
structure (2.24), (2.25) of the post-Newtonian expansion is consistent with (2.22), (2.23).
Indeed it is known (paper I) that the MPM exterior field, namely the multipole expansion
M(h), depends on the radial coordinatenly through the ratio'/c (when the multipole
moments are considered to be independent functions of time). Thus the near-zone re-
expansion of the multipole expansiah{(k), can be equivalently viewed as an expansion
whenc — oo, which should be necessarily of the typéc=(Inc)? (replacingr by r/c in

(2.23)). Our assumption (2.25) means in fact that the multipole moments parametrizing the
linearized metric admit themselves, when expressed in terms of the source parameters, the
same type of expansiol ¢~/ (Inc)*. There are many indications that the post-Newtonian
expansion involves, besides the usual powers/of 4ome (powers of) logarithms of(see

paper | and references therein). As usual (because all retardafiorssociated with the
propagation of gravity at the speed of light tend to zero), the post-Newtonian expansion is
valid only in a region surrounding the source which is of small extent as compared to one
characteristic wavelength of the emitted radiation, A.eonstitutes a good approximation

to i only in the regionr < A.

Assumption 4 (Matching)A ‘matching’ region around the source exists, where the
multipole expansionM (k) and the post-Newtonian expansibrare simultaneously valid.
In this region one expects> R and r < A so thatR <« A, which implies, sinceR > d,
that the size of the source i « A or equivalently that the typical internal velocities
within the source are ~ dc/A < c¢. Existence of the matching region implies therefore a
slowly-movingsource. In this region we have the numerical equality (from (2.21))

R<r<ir = MMh)=h. (2.26)

We now transform (2.26) into a matching equation, i.e. an equation relating two
mathematical expressions of the same nature, by replacing in the left-hand\side

by its near-zone expansioM (k) as given by (2.23), and in the right-hand sideby its
multipole expansion\ () obtained from (2.25) by substituting each of the coefficients

by their multipole expansion\(o; ). Actually we have not defined what we mean by
M(o;4), as this would necessitate performing a ‘multipolar post-Newtonian’ iteration of
the vacuum equations, analogous to the MPM iteration of paper I. We simply assume the
existence of eaclM (o; ,), and we shall determine its structure (2.30) as a consequence of
the matching. Similarly to (2.21), the multipole expansionio$atisfies ferm by termin

the post-Newtonian expansion)

r>R = h=M(®). (2.27)
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Now the matching equation associated with (2.26) reads
M(h) = M(h). (2.28)

Formally this equation is true ‘everywhere’, in the sense that it represents an infinite set
of functional equalities (validv(z, r) € R? x R) between each of the coefficients of the
series on both sides. Of course, the two series should be rearranged as expansions along the
same basis of functions, i.e. eithei(Inr)? or ¢~ (Inc)?. Note that the matching equation
shows that the right-hand side of (2.23) represents, equivalently, the ‘near-zone’ expansion
(r — 0) of M(h) and the ‘far-zone’ expansiofr — +oo) of 4. From (2.28) one deduces

that the structure of the functiong, , in (2.23) in terms of the independent varialblés

LFap(t.0) = ¢ INA) L Gapig(t) (2.29)
and that the structure of each multipole expansibt(o; ,) reads
M(0i )@, 1) =D Ar“UNr)? L Gapig(t). (2.30)

It is important to realize that although the matching is performed in the (exterior) near-zone
where the post-Newtonian expansion is valid (because of the small retardatiprthe
multipole expansion (2.30) of the post-Newtonian coefficients is valid wherexeR, and

in particular whenr — oco. Actually (2.30) represents the far-zone expansiom;Qf (at
spatial infinity). Typically M (o;,) blows up in the far zone, as is clear from the positive
powers ofr in (2.30). But this is not a problem, as this simply reflects the fact that the post-
Newtonian expansion is not valid in a neighbourhood of infinity (where it would constitute
a very poor approximation of).

Assumption 4 is an application of the method of matched asymptotic expansions. In
the present context it permits one to ‘anchor’ the multipole expansion to the field inside the
actual source. Matched asymptotic expansions were used in general relativity originally for
dealing with radiation reaction problems [40, 41], and, within MPM expansions, in order
to find the expression of the multipole moments with increasing post-Newtonian precision
[32, 33, 30, 37]. Each time, the matching was found consistent in the sense that satisfying
(2.28) determined all the desired information at the required order.

The above assumptions 1-4 are natural complements of the MPM framework; they
should apply generically to the field generated by an isolated system. However, let us stress
that we have made three physical restrictions on the system: that it be stationary in the
remote past (before the instantZ), slowly moving (existence of a small post-Newtonian
parameter~ v/c), and without singularities (no point particles or black holes).

3. Multipole expansion of the gravitational field

Having stated our assumptions, we now start our investigation. Notice that the
assumptions 1-4 have been written for the figldbut we can readily prove, with the
help of the field equation (2.15), that they also apply to the stress—energy pseudo-tensor
7. In particular, sinceM(A) = 167G /c*M(z) (because the matter stress—energy tensor
T has compact support) we see thiet(A), which is nothing other than the MPM source
Aext in (2.4), admits exactly the same structure (2.22)\d§1). Therefore we can apply on
M(A) the finite part atB = 0 of the operatoD;l(r/ro)B whose definition was given in
(2.10), (2.11). We have seen that sine&(A) involves an infinite sum of post-Minkowskian
contributions, the summation in (2.22) is infinite (notablyo < a < N). Thus we mean

by FPD;lM(A) the infinite sum of the FE;l’s acting on each separate term composing
M(A). Recall that we are working in the context of approximate solutions, which are



On the multipole expansion of the gravitational field 1981

constructed only up to a given (though arbitrary) post-Minkowskian order, and thus involve
only a finite number of separate contributions. Here we assume that we can consider the
formal series of approximations, but we do not control the precise mathematical nature of
this series (see, however, [39]).

We can perform our derivation restricting our attention to the case whéfa) is not
only constant in the past baeroin the past{ < —7). Indeed we can check posteriori
that the derivation can be redone straightforwardly in the case of constant terkigAn
by simply using the Poisson operatar?® instead of the retarded integnﬁlgl. Thus the
constant terms can be added to the result at the end with no modification exceptthat
becomesA~! when acting on such terms.

From paper |, theB-dependent retarded integﬁéll;l[(r/ro)BM(A)] admits a Laurent
expansion wherB — 0 whose finite part solves the d’Alembertian equation with source
M(A): Y(z, 1) € RS x R,

O{FPs—o O [FEM(A)]} = M(A). (3.1)

From now on we sef = r/ro. Beyond the finite part, all possible multiple polesB~
exista priori (Vi € N; indeedi < imax t0 any post-Minkowskian ordet but imax — 00
whenn — ©0).

We want to compute the multipole expansion of the field, naméiyh) =
16nG/c4M(D;1r). To do this we notice that because the multipole expansion satisfies
OM(h) = M(A) (throughoutR? x R), we have for anyB the relationO[7 M (h)] =
FE{M(A)+2Br=19, M(h)+ B(B+1)r—2>M(h)}, whered, = n;d;. Applying on both sides
of this relation the retarded integrﬁl;1 and considering the finite part & = 0, yields

M(h) = FPg_o O [FEM(A)]
+ FPg_o Ot [F2{2Br~18, M(h) + B(B + L)r 2M(h)}]. (3.2)

The first term will ensure thajM (k) is a particular solution of the correct equation
OM(h) = M(A) (see (3.1)). This particular solution is already in the appropriate form,
thus we concentrate our attention on the second term, which constitutes a homogeneous
solution of the wave equation, as will follow from the fact that this second term in (3.2)
involves an explicit factoB (so it appears like a residue rather than a finite part). Because
of this factor B we see that the contribution of any term in (2.22) which is regular-at0

will be exactly zero. This is, in particular, the case for the remairRigrin (2.22) which

will give zero, and since this is truéN € N we conclude thatM(A) can be replaced by

the infinite expansionM(A) given by (2.23). Thus, writing the retarded integral in the
form (2.11),

3 ~|B
M) = FPy_o D [P MA)] — PPy [ T
7 1z — vy
x [2Br~t8, M(h) + B(B + )r >M(h) |(y.t — |z — yl/c), (33)

wherey = y/ro. The factorB shows that the only contribution to the triple integral is

due to a (simple) pole aB = 0, which in turn comes only from the integration on an
infinitesimal neighbourhood of the spatial originy| < ¢ wheree is an arbitrary small
number (O< ¢ < |z| say). (As we have assumed that the functigi$ , are zero in

the past (we add the constant parts at the end) there is no problem at the upper bound
ly| — o0.) Itis then legitimate to replace the integrand in (3.3) by its Taylor expansion
when |y| — 0. The Taylor expansion of an¥X (+ — |x — y|/c)/|x — y| IS given by
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S (=1)!y a0 {K (t —r/c)/r}/I' (see the footnote in section 2 for our notation). In this way
we obtain

4G IR (-1
Z =Y

1
M(h) = FPs_o Ot [P M(A)] — — ) {;ICL(z - r/c)} : (3.4)

=0
where the ‘multipole momentsC; (u) are given explicitly by 4 =1 — r/c¢)

C4

K@) = ——FPs_g / oy §1®y.[2Br 9, M(h) + B(B + Dr >M(h) |(y. u).
167TG lyl<e
(3.5)

Next we perform a sequence of transformationskpf(u). By (2.23), the structure
of M(h)(y,u) is that of a series of terms of the tyge n.|y|*(n|y))? L F, ,(u). This
shows that after integrating over the angléS;(«) consists of a series of terms of
the type FR_oB [; diy|g|%|y/?"*“(n|g|)? times a function ofu. The latter radial
integrals are defined by analytic continuation Bn Now the point is that th&eomplete
radial integral extending from 0 te-co, i.e. f0+°° dyl 9|8 |y|>*(n |§])?, is rigorously
zero by analytic continuation, for all values oB € C. (We repeat the reasoning
already made in paper II: the integral can be split into the sum of two integrals, namely
(d/dB)? fOA dy| 9|8 |y/?*+* and(d/dB)? ;“’ dyl |9|%|y|?*?, whereA is some positive
constant. When the real part d& is a large positive number, the first integral reads
(d/dB)P{AB A3t /(B + 3+ [ + a)}; and when the real part oB is a large negative
number, the second integral is equal to the opposiid/dB)?{ A2 A3+ /(B + 3+1+a)).
These expressions represent the unique analytic continuations of the two integrals for all
values ofB except—(3+1+4a). Now f0+°° dyl 19!8|y|>*(n |§])? is defined by analytic
continuation to be the sum of the analytic continuations of the two separate integrals, and
is therefore identically zerov(B € C).) Thus all the previous terms can be equivalently
written as—FPz_oB fs+°° dy||9|8|y/>"+*(n|g|)?. Furthermore, using now the presence
of the explicit factorB, we see that the only contribution to the finite partBat= 0 comes
from an arbitrary neighbourhood of the upper bolpd= +occ. In this paper it is sufficient
to consider as a neighbourhood of infinity the domain> R, whereR denotes the radius
giving the limit of validity of multipole expansions. Therefof&, («) is also given by a
series of terms of the typeFPs_oB [ ™ djy| [§1®|y|>***(In|§)”, which shows that (3.5)
is in fact equivalent to

4

Kru) = —C—FPH/ Py 918y, [2Br 19, M(h) + B(B + Dr M) |(y, u) .
167G lyl>R

(3.6)

Note the minus sign with respect to the previous expression (3.5). The next step is to
employ our assumption 4 of consistent matching between the post-Newtonian and multipole
expansions, according to which one can commute the order of taking the post-Newtonian
and multipole expansions: by (2.28\{(h) and M (h) are functionally equal (term by
term), so (3.6) can be rewritten as

4

Ki() = ———FPy_g / oy §1%y.[2Br 9, M(h) + B(B + Dr 2M ™) [(y. u).
167TG ly|>R
3.7)
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But now in the regiony| > R one can replace the multipole expansion by the function
itself (see (2.27)), thus
4

l6n G

Finally, we recall that by assumption 1 the fididand all theo; ,'s in the post-Newtonian
expansionk are regular ¢*°) functions onRR?*, and in particular near the origin — 0.
Therefore we see that the range of integration in (3.8) can be harmlessly extended to the
whole three-dimensional space. Indeed, because of the f&cttine contribution to the
integral due to any ball of finite radius, for instance the bgl|l< R, will be zero after
taking the finite part aB = 0. Thus we have

4

C - _ — o
Kpu) = —MFPB:O Py 918y, [2Br 9,k + B(B + Lr ?h |(y, u). (3.9)

SincelJh = 167 G T/c* we can re-combine the terms in the integrand and find the equivalent
expression

Kp(w) =—

FPs_o f Py 918y, [2Br 9,k + B(B + Dr ?h |(y, u). (3.8)
ly|>R

6‘4

Kr(u) =FPs_g | d® FT —
() B_O/ ny|:r1: 167G

The point about (3.9) or (3.10) is that because of the faBtdhe numerical values of
the multipole moments depend on the post-Newtonian expansion of the source as integrated
formally in a neighbourhood of (spatial) infinity. This is despite the fact that the post-
Newtonian expansion is expectedpriori to be valid only near the origin. As we have
shown here, this seemingly contradictory result is possible thanks to the properties of analytic
continuation, which permit one to jump from a ‘near-zone’ integration range in (3.5) to the
‘far-zone’ in (3.6). However, we now remark that the contributions in the complete multipole
expansion (involving all théC;'s) which are due to the second term in (3.10) actually sum
up to give zero. Indeed we separate the d’Alembertian into a Laplacian and a second time
derivative, J(7%h) = AFBh) — 7832h/c?, and we integrate by parts the Laplacian using
Ay, = I(I — Dd,i,_,yL—2), generating in this way a Kronecker symbol (the surface term
during the integration by parts is zero by analytic continuation). Since itdicesi; - - - i
are contracted with théindices carried by the spatial gradiedis = 9;, - - - 9;, present in
the multipole expansion (see (3.4)), the latter Kronecker symdijo] generates a Laplacian
which is then equivalent (because it acts on a spherical retarded wave) to a second time
derivative. It is not difficult to check that the sum of all these terms with second time
derivatives cancels exactly the other second time derivatives issuing from the separation
made above of the d’Alembertian into a Laplacian. Therefore we can rewrite the multipole
decomposition by ignoring the second term in (3.10) and taking into account only the first
term which really represents the multipole moment as generated by the (post-Newtonian
expansion of the) source. Denoting B the first term in (3.10), we obtain the main result
of this paper (restoring the spacetime indigag:

) L ) 4G +00 _1)[
M) = FPp—o ! [FPM(A™)] = — 3 : I

O (fBE)](y, u). (3.10)

o {}H’Lw(t - r/c)} , (3.11)
1=0 r

where the (source) multipole moments are given by the simple expression

H () = FPy—o / By (91 v, T (g ). (3.12)

with 7" the post-Newtonian expansion of'. In this expression there is no explidit-
factor left out, so in contrast to (3.10) the integration over the whole three-dimensional
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space contributes to the multipole moment, including the regions at infinity, as well as the
intermediate regions and most importantly the near zone. As we shall see in section 4, the
first term in (3.11) represents the nonlinear corrections to be added in a post-Minkowskian
expansion to the (linear-looking) multipole expansion as given by the second term. Due to
the presence of this first term, the radiative multipole moments defined in the wave zone
will differ from the source moments (see section 6). It can be shown that the multipole
expansionM (h*") is actually independent of the length scajeentering inF = r/ro and

9 = y/ro (namely, therg’s cancel out between the two terms of (3.11)).

Let us emphasize the interesting role played by the analytic continuation throughout
the proof of (3.12). Witness in particular the crucial passage from (3.5) to (3.6), which
permitsin fine to get rid of the reference to the multipole expansion in the integrand of
the multipole moments themselves. See also the last step from (3.10) to (3.12) where we
discard some surface terms which are zero by analytic continuation, and which permit one
to express the result in terms of an integral over the sdsithout explicit reference ta).

The result (3.11), (3.12) was already obtained (in STF form) in paper Il at the 2PN order.
What we have proved here is that the formulae for the multipole moments given in paper Il
admit a generalization to any post-Newtonian order. This is important for theoretical and
also practical reasons, because the application to binary systems is currently done to very
high order (3PN order in [38]). Furthermore, the method that we have employed—direct
construction of the multipole expansion—is rather different from paper Il, which obtained
the result by means of a matching ‘order by order’ (looking for a coordinate transformation
between the inner and outer fields). In appendix A we present an alternative proof of the
result (3.11), (3.12), which is based (similarly to paper Il) on the direct comparison between
the field and the multipole expansion BBy Dgl [FEM(A)].

The multipole expansion (3.11), (3.12) has been written using non-trace-free multipole
moments. Actually it is better to rewrite it using symmetric and trace-free (STF) moments,
because the non-trace-free moments are not uniquely defined (for ingiarased 7, yield
the same multipole expansion). Here we simply report the result of the STF multipole
expansion (which readily follows from equation (Bal4n [32]):

+00 !
MB"") = FPg_o Ot [FEM(AM)] — i—f (l#aL {%]—‘f“(r — r/c)} , (3.13)
=0 )

where the STF multipole moments are given by

1
F1' () = FPp—o / Py 19155, f dz 81(2)T"" (y, u + zlyl/c) (3.19)
-1

(y. denotes the trace-free part of, see the footnote in section 2 for our notation). The
STF moments (3.14) involve an integration over theependent cone= u + z|y|/c with
weighting function

2 +
2/+ll!

As a check of the result, let us consider the limit of linearized gravity where we can neglect
A" and M(A*Y), and wheret*’ reduces to the matter stress—energy teri&6t with
compact support, i.el'*’(x,t) = 0 when|xz| > d. In this limiting case the first term in
(3.13) vanishes. Furthermore, replacing’ by 7" in (3.14) we can remove the factor
|7]2 and the finite part aB = 0 for compact-supported integrals. Finally, we can replace
T"" by T within the compact support of a slowly-moving source (sidce& 1). Thus

we recover exactly the expression of the multipole moments derived for compact-support

1
81(z) = (1- 224 / dz 8;(z) = 1; z"m 81(z) =68(2). (3.15)
-1 —> 00
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sources in appendix B of [32] and used for studying the linearized gravity in [16] (in this
case the result is valid also for fast-moving sources).

The multipole decomposition (3.11)—(3.15) appears to be quite general. Physically it
should apply to any isolated slowly-moving source without singularities. Technically it does
not make any reference, for instance, to the post-Minkowskian (or rather MPM) expansion
which has been invoked in order to derive it. In a sense (3.11)—(3.15) represents a ‘complete’
matching equation (valid to any post-Newtonian and/or post-Minkowskian order), which is
the general consequence of our matching assumption 4. We shall leave open the possibility
that the multipole expansion (3.11)—(3.15), because of its generality, may have in fact a
domain of validity larger than the one of MPM approximate solutions. For instance, it is
plausible that (3.11)—(3.15) could be proved in a more general context of exact solutions
(using perhaps an analysis similar to that of [39]).

4. The linearized multipolar metric

The most general solution of the vacuum field equations (off the time axis) was constructed
within the MPM framework (see section 2). Therefore, if the present analysis makes
sense, it should be possible to recast the general multipole expangi@rt”) as given

by (3.13),(3.14) into a form which shows clearly that it belongs to the class of MPM
metrics. Namely, we would like to find a certaitinearized multipolar metric such
that M (k") appears to be the post-Minkowskian iteration of that metric (in the MPM
sense). The advantage is that the multipole moments parametrizing this linearized metric,
which constitute efficient tools in practical computations of gravitational radiation (see, e.g.,
[36—-38]), will then be obtained with full generality as computable functionals of the matter
fields in the source. This is what we shall do in this section and the following one, where

the linearized multipolar metric associated witti(h*") will be denoted by, following
the notation of paper I.
Let us denote the first term in (3.13) by
u"’ = FPp_o Ot [FPM(A™)]. (4.1)

The first step is to compute the divergertca”” of this term. To do this, one notices first
that M(h*") is divergenceless by (2.14), and therefore that, by (3.13),

+00  1\/
dou’ = i—fav(z( Vs, {;-Lf;“(t -~ r/c)}). (4.2)

=

If analytic continuation factorgy|? were absent in the expressionBf" given by (3.14),

the right-hand side of (4.2) would be (formally) zero by virtuedgt”” = 0. With factors

|18 included, it is straightforward to find (4.2). In fact, the computation is the same as the
one yielding (4.1) in paper Il. One must evaluate the time derivativiéfbfusingau?’” =0,

and perform some integrations by parts both with respegtdadz. We differentiate where
appropriate the factofy|?. During the integrations by parts all the surface terms are zero
by analytic continuation. Derivatives of the functiéf(z) are computed using

d
d—z[5z+1(Z)] = —(2+3)28(2) (4.32)

d2
d—Z2[5l+1(Z)] =—(2+3)(2 + D[§i(z) — §-1(2)] . (4.20)
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As a result, we find

d Fr =1 F 4 1 d sz“ GH 4.4
cdu Ty ra\ear) it YL (4.4)

where 71~} denotes the STF part of/" |, and where the functiog}’ is given by

1
F = FPao [ Sy BIT" 01 s [ 8@ ot alyl/o) . 49
-1
With (4.4) in hand, it is straightforward to transform (4.2) into
4G X (-1 (1
=— u8L ~gi@t—rloyg . (4.6)
c I r

=0

o,u™’

Another way of proving (4.5), (4.6) notices that the multipole expanmmw) = ALyis
divergenceless by (2.5), and so from (4.1) we hawe"’ = FPz_o 05 YBFEr1n; M(AM)],
where the factoB comes from the derivation 6f®. Thanks to this factor the finite part
is actually a residue, and we can perform an analysis analogous to the one performed in
going from (3.2) to (3.9) in the previous section. In this way we recover exactly the result
(4.5), (4.6).

Having obtained the divergence of* in the form (4.6), we proceed similarly to paper |
and construct from (4.6) a different obja¢t’ which is, like (4.6), a retarded solution of the
wave equation, and furthermore which is such that its divergence cancels out the divergence
of u*: 9,v*¥ = —a,u*’. In appendix B we recall from paper | (and [35]) the expression
of v*" in terms of STF tensord,, B,, C, and D;, and we show the equivalence to the
different expression:

4G : 1
200 — - {_Efg0+8a <; [cf92+c2ffga _g(’j,,]>} , (4.7a)
W0 AG

=21 e - 2aa]+ g (FUa - san)
_y & .1)18L 1< Q0 1)} (4.70)

1>2

i _ 4G 1.,
1% Z 8L 3 2 ijaL—3
>3 !
1) 1 1 1
+Z( ) [ . 2( gf}H) e 2( Gty 2> 1280, 1< gaH)

1>2

1 1
— 43 o <;g;m2> 20, _ 1( i, 1>]} , (4.7c)

where theG;’s are given by (4.5) (they are all evaluated at the retarded &imaer —r/c).
The notation isT;;, = 3 (T;; + T;;) and T,()’ = 1(Tj" + T/); G* = (G° G') meansG¥
with / = 0; time derivatives are denoted 18§(x) = dG(u)/du, and time antiderivatives
by [Gw) = [ dvG), [[Gw) = [* dv[G(). The main property ofv"’,
i.e. 9,v"" = —9,u™", is checked directly on (4.7).
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With the above construction of*’, we are able to define what will constitute a
‘linearized’ approximation to the multipolar expansigvi(4*") given by (3.13). Let us
set

4G X (-1
Y
thartl ? Z l_'

oL {%ff”(t—r/c)} — oMV, (4.8)

1=0
By the structure ofi,,, made out of retarded solutions of the source-free wave equation,
and by the construction af*’ ensuring its zero divergence (see (4.2)), we havéRfix R)

Ohppany =0, (4.9)

yhpaiy =0. (4.10)

This means that (4.8) satisfies the linearized field equations in the exterior region,
i.e. (2.8),(2.9) withn = 1. By theorem 2.1 of paper | (see also (4.7) in paper I), we
know that the most general solution of the system of equations (4.9), (4.10) can always
be written as the sum of a ‘canonical’ linearized metrfg ; (introduced by Thorne [12])

and a lineargauge transformation. Thereforie’artl (which is referred to in paper | as a
‘particular’ metric but which is in fact quite general) reads

hl;z:rtl = hcanl + 3“% + avq’f - 77/“)8)#)% . (4.11)
The canonical metric is parametrized two types of (STF) multipole moments , J;,

!
hean1 = —> Z - 1) 9 (11L(u)) (4.127)
= !
1) 1 [ 1
hoan1 = 3 ; = ] ) {3L 1 ( Iip - 1(u)) ¥ 1€iab8aLfl (;JbLl(M)>} , (4.120)

. 1! 1 2 1
hganl 642( ) {aL 2( UL 2(”)) l—|—1 aL 2< 8ab(1‘lj)bL 2(”))} . (412;)

1>2

On the other hand, the vector associated with the gauge transformation depefals on
STF moment,, X,, Y., Z;:

/1
o7 = 632( )aL< WL(u)) (4.1%)
=0 '
P (-1 1 (-1 1
‘01__9120 i <xL<u>) y ; ) {aL_l(;m_l(u))
! 3 1 4.1%
+l+—18iab uL—1 (; bLl(u)>}c (4.1%)

All these multipole moments; , J;, W, X, Y., Z; will be computed in section 5. Using
the previous definition of a linearized metric (4.8)—(4.13), we can thus rewrite our general
multipole expansion (3.13) as

M(h/u)) — Ghl“)rtl + ut? + v (414)

(where we recall that* andv*’ are functionals ofM (A#") given previously). Intuitively
from this equation, the termg*’ and v** should represent the nonlinear contributions
(of order G2 at least) to be added to the ‘linearized’ methif,;., in order to obtain the
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‘complete’ (including all powers o&;) multipole expansion\M (h*”). We shall prove that
this is true, i.e. that by performing the nonlinear iterationh{:}jrtl following exactly the
MPM algorithm of paper | (the only difference being that we have slightly modified the
algorithm for the computation of*”, see appendix B), we get an infinite power series in
G which agrees withM (h*") term by term in the post-Minkowskian expansion.
Consistently with the algorithm of paper |, we must consider that the first term in the
post-Minkowskian expansion, i.€hpart1, is purely of orderG, and thus thakpan itself is
of zeroth order inG. With this convention let us show that the termandv in (4.14) are
of order G2. Suppose they are not, so that Gupas + O(G?) andv = Gupart1 + O(G?)
for some ‘linearized’ coefficient8pai1 and vparrs. From (4.14) the multipole expansion of
the source, namelM(A) = A(M(h)), is given by A(Ghpan1 + u + v), and therefore,
inserting the previous assumptions foandv, by A(G[hpart1 + tpart1 + Vparta] + 0(G?)).
Remember tha is quadratic in:, and setA (k) = Na(h) + O(h%) (see (2.8), (2.9)). Thus,
obviously, A(M(h)) = G?Na(hpart1 + tpart1 + Vpart1) + O(G®). Now, according to (4.1),
the finite part of the retarded integral of the sourceM (h)) is u itself. Using this fact
and the fact that the operator [EIIIQ1 does not depend o6 (thus it does not mix up the
powers ofG), we obtain the equatiom = G2FP," [ Na(hpart1 + tpart1 + vpart1)] + O(G2).
The right-hand side of the latter equation is of ord& so we deduceipats = 0. Then
from the ‘linearization’ of the formulae (4.7) we further dedugg1 = 0. Thusu andv
are indeed of order @?), and thus (4.14) shows that! (2*¥) agrees with the ‘particular’
metric at linearized order:

M(B"™) = Ghlay

bart + O(G?) . (4.15)

Now let us denote:r = G2upanz + O(G®) andv = G?vpan2 + O(G®). By the equation
used just before (4.15), in which we can now insgght1 = vparz = 0, we have
u = G?FPOR! [Na(hpart1)] + O(G®), thus

Upartz = FPp—o 0" [ N3 (hpan1)] - (4.16)

Next vpar2 is obtained fromuparo by the formulae (4.7) (see also appendix B), which are
precisely those used in the algorithm of paper | (as redefined in [35]). The definition of
the quadratic part of the particular metric in paper | i@si> = part2 + Vparr2 (indeed
see (2.10)—(2.12)), so we find from (4.14) thiet(h*") agrees with the particular metric to
quadratic order,
M) = Ghipyyy + GPhipyin + O(GP) . (4.17)

The same reasoning is easily extended to all ordeis.in

In conclusion, the ‘particular’ metriépy, = Ghyay + G?hiyy, + O(G®) which was
defined in paper | agrees, in the sense of power serigs, iwith the general multipole
expansionM (h*"). This result is mandatory because it was shown in paper | (theorem 4.2)
that the general solution of the vacuum Einstein equatiof&ir R can be written adpan
for someset of momentd;, J., Wi, X1, Y., andZ,. This is of course consistent with
the fact that we have made no restriction when deriving the multipole expandigr*)
except that it should correspond to a slowly-moving isolated system (without singularities).
What we have gained with respect to paper | is that we understand from section 3 the

relation betweenM (h"") = hpadl, J, ..., Z] and the matter distribution in the source,
and therefore that we are able ¢computethe multipole moments,, J;, ..., Z; (given a

post-Newtonian algorithm for the computationof”).
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5. The irreducible multipole moments

By (4.11)—(4.13), the linearized metmg‘;rtl is parametrized by six sets of irreducible (STF)
multipole moments, with two setg, J, parametrizing the ‘canonical’ linear metrig, |,

and four setsW,, X,, Y., Z, parametrizing a gauge transformation. We can refer to the
moments/y, Jp, Wi, X;, Y1, Z; as the source multipole moments. Of course, since the
momentsW,, X;, Y,, Z, parametrize a gauge transformation, they do not play a physical
role at the level of thdinearizedapproximation. In this sense, these four moments are ‘less
important’ than the momentg, and J;, which constitute the ‘main’ multipole moments of

the source, respectively of mass type and current type. However, it is important to keep
the momentdv,, ..., Z, as they start playing a role at the nonlinear level (at a high post-
Newtonian approximation [37]). See the discussion in section 6 where we recall also that
the six sets of momentg , J;, W., ..., Z; are in fact equivalent physically to only two
sets of other moment®/; andS;.

In the present section we use the results of section 3 to compute explicitly the moments
Ip,J.,...,Z,. For this purpose it suffices to decompose into irreducible pieces the
functions 7" and G}’ which parametrize the multipole expansions (3.13) and (4.2). We
first decompose the components®f" according to

FO_R,, (5.18)
FI =T 460 OT 100 + 82 7 Tr1o (5.1

F = T2U; + STF S_-]rF[Saii,(H)quL—l +8i;, QUi 1

+ 8iiajip 1 P Uar—2 + 81,85, “PUL 2] + 8 Vi, (5.1c)

where the ten tensoB;, P T;,1,..., “?U;_,, V, are STF in all their indices. We use
the standard notation of [16, 26] (notabks denotes the STF projection, see the footnote
in section 2 for our notation). These ten tensors are uniquely given in terms 4 the

by the inverse formulae

Ry = 7. (5.22)
+) TL+1 — fl(‘)iilﬂ , (52))
l
OF, = T 1-7:1?21‘71 Eiy>ab (5.2)
_ 2 -1
T 1= Z—Hf;'g,l, (5.2d)
(+2 Upip = ]:L<;'/+2iz+1 i (528)
21 <ci;>
(+1)UL+1 = l_|__2 %I]I_:]:dl‘ll Ei1cd 5 (52f)
612 — 1) ,
(O)U == ~ gQTEF > 5
T U+ +3) at=1> (>-2)
) 20— 12 — 1)
Dy, =" L STFF i ab» 5.
LT U D@+ 1) 21 ekt G-2)
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PUL2 = %aﬁ;, (5.2)
v, =t Fe. (5.2)
See, for instance, (5.5)—(5.8) in [16]. Next we decompose the tegéoescording to
Gl =", (5.3)
G =0 + 64 Q01120+ 8, 70112, (5.30)
with inverse formulae
PL=G?, (5.4a)
O Qpy =G, (5.40)
©9, = l—|l—1gb<L 1Ei>ab » (5.4c)
Q0,1 = Z—: Iy (5.4d)

The tensors parametrizing,' are not independent of the tensors parametrizijg. This
is because the metrh’ggnl is divergenceless by (4.10). The (four) relations linking these
tensors are readily obtained from (4.4); we have

P = }RL — 11— 2(211+ 5 OF,, (5.59)
+ 0, = (+)TL (- 12y, — = 2(11(;1 1_)(12)1(42; ? 5 O, — Wil) V. G
P00 = %(O)TL B é(m LT 2e2 Jf 13(221 +1) 0 (5-%)
9, = 1o >TL—%(O)UL—M(‘Z)UL—(I—%DVL. (5.5d)

These relations permit one to express the ten independent componeggﬁloifn terms of

only six independent combinations of STF tensors. We substitute the decompositions (5.1)
and (5.3) into the definition of the linearized metric (4.7), (4.8). After some manipulation
of STF tensors, and use of the previous relations (5.5), we arrive at an expression that can
be compared directly with the general decomposition of a linearized metric as given by
equation (2.25) in paper I. Then the six sets of multipole moménts/,, W., X;, Y,

Z enteringh"”rtl are obtained by applying the definitions (2.26) in paper | (actually our
definitions d|ffer from paper | by some constant factors). First the momign#sd J, are
obtained as follows. In the particular cases whiréhas zero or one indexX & 0, 1) and
where J;, has one indexi(= 1), we have

1

4 3
=—(R+3V)——( >T+ =20 — fP+—2<—>Q, (5.69)
C

2 1
(R +3V)——( )T R — 3 = (= Z)U —_fP ff(HQ + ( )Q“ (563)
20 1y ©
Ji=—= T+2 U +2[/90 (5.60)
C
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Then, in the generic case whekg and J;, have at least two indicesg & 2), we have

= SR 43V O o2, (579)
c2 Al+1 Al+DUI+2) ’
I+1 1 .
Jp=——=097, + —Dy, . 5.7
L Ic L+ ol L ( )
Secondly, the four tenso¥;, X;, Y;, Z; are generically obtained as
1 1 .
W, — o7, — g, 5.88)
L=y FT 220+ na+2 (5.80)
1
X, =—— Ay R 5.8
T2+ ni+2 (5.8)
3 2 ..
= T — 20, -3V, 5.8
cl+1 T+ ni+2 L Lo (5.8)
7= Loy, (5.80)
5 . :

The expressions of all these moments are obtained first by substituting into their definitions
(5.6)—(5.8) the inverse relations (5.2) and (5.4), and second by using the expressions (3.14)
and (4.5) of the functiong}"” andG}'.

We first investigate the lowest-order momeiitd; and J; defined by (5.6), which can,
respectively, be called the mass monopole (or total ADM mass), mass dipole and current
dipole of the source. As is readily checked using (5.5) (and the facttbhat= “PVU; = 0),
we have the conservation laws appropriate for gravitational monopoles and dipoles, i.e.

1=0, I, =0, J;=0. (5.9)

For simplicity we analyse only the case of the mass monopolee analysis of the dipoles
I; and J; is similar. The expression far deduced from (58) is

1 g 4 .0 1
2 3 ~ B —=00 —=ii =Y N
1% = FPB:O/d Y19l /_1dz {50(7 +T = 3BT+ 58T
+ Bly| 28y TV — cSoinTOi)}(y, u+zlyl/c), (5.10)

which can be transformed using (4.3) into the simpler form

1
I = FPB:o/d3y|@|Bf dz 80 {T%° — zlyl "y — Belyl 2y [TV} (. u + zlyl /o) .
-1

(5.11)

The latter expression looks unfamiliar for a conserved mass, but this is simply due to the
unusual spacelike hypersurface z|y|/c = u = constant on which one integrates (see the
discussion in [16]). The following technical identity is useful to transform (5.11):

d | _ —0i —=0i

@ =y T @ u+ Zyl/e} = —0llylE (v, u+ 2 lyl/o) (5.12)
Multiplying this identity by |g|Z, integrating overy, and overz’ from 0 to z, and then
multiplying by 8o and integrating over from —1 to 1, permits one to find the equivalent
of (5.11) when one uses the usual spacelike hypersurface = constant,

I¢? = FPp_o f Py 91° [7%° — Belyl 2y [T%] (y, ). (5.13)
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The fact that/ is constant is easily checked for this expression. Note that the second term
in (5.13) (whose time derivative is associated with the flux of radiation at infinity) involves
a factor B and therefore its value comes only from the poles of the integral at the upper
bound|y| — +oc.

We now deal with the ‘dynamic’ momenfs andJ, having/ > 2. In order to express
them, it is convenient to use the following notation for combinations of components of the
pseudo-tensot™:

o f00+?ii

=0, (5.1%)

S (5.1%)
C

;=17 (5.1%)

wheret’ = §,;77. (T, X, andX,; are of zeroth order in the post-Newtonian expansion.)
Then, by (5.7), (5.2) and (3.14), we find
421 + 1)

Ao a0 fi
20+ )2 +3) it

1
I (u) = FPB=o/d3y|illB/ dz {&ﬁf—
-1

N 22l + 1)
Al+DI+2(2+5)

8l+25’ijLEij}(y» u+zlyl/c), (5.15)

1
JL() = eap—y FPo / Py [71” / d: {a,ﬁmzb
1

21 +1
2 +2@+3)

These expressions have been derived in the nonlinear theory (to all orders in the post-
Newtonian expansion). As a check ff and J,, we can compare their expressions to the
corresponding expressions derived by Damour and lyer [16] in the case of the linearized
theory, where we can replace the pseudo-tengdrby the matter stress—energy tensor
T in flat spacetime (we hav&"’ = T inside the slowly-moving source), and then
remove the analytic continuation factors sif€e” is compact-supported. We find perfect
agreement with equations (5.33) and (5.35) in [16]. In the nonlinear theory but at the
2PN order, expressions (5.15), (5.16) were already derived in paper Il. To 1PN order these
expressions are equivalent to some different expressions derived earlier in [32, 33] (see
paper Il for the proof).

Finally we write down the other four moment, , ..., Z;. They are easily obtained
as

1 21+1 —
Wi (u) = FPao | o / e S S >3
() = FPp_ 0/ ylyl® {(l+l)(21+3) 1+1)iL

l+lj}L—l>ac§bc}(ys u—+ Z|y|/0) . (516)

B 2+1
2c2(1+ 1)+ 2)(2+5)

51+25’ijL§ij}(y»u + zlyl/o), (5.17)

l
X1 (u) = FPg_o | &Py |§|® 241 81429512 ¢ (Y, u + zlyl/c),
20+ DI+ 22 +5) JE
(5.18)
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320 +1) =

1
YMZFP: d3 ~B/d{—5A§ii+—5 Ai Ei
() B=0 y |yl B Z 1YL (+D@+3) 1+1YiL

B 221+ 1)
Al+DH(I+2)(2+5)

51+25’ijL§ij}(yv u+zlyl/o), (5.19)

ld {_ 2+1 .
‘I (+2@+3

x (y,u+zlyl/c) . (5.20)

Z1(u) = FPso | d®y|yl® /

ab<i; 81+1yL—1>b<' Zac }
-1

To Newtonian order these expressions are in agreement with equations (4.17) in [37].

6. Discussion

Of what use are the expressions of the STF multipole momgntd; and W, X;, Y;,

Z; obtained in the previous equations (5.15)-(5.20)? From (4.11)-(4.13) these moments
parametrize the linearized metii¢, ., which is the ‘seed’ of the infinite nonlinear algorithm

of paper I. Thus for a specific application the expressions (5.15)—(5.20) have to be computed
in a post-Newtonian expansion up to a given order and for a specific matter model (i.e. a
specific choice off*¥), and then inserted into the so-called ‘particular’ algorithm of paper |
for the computation of the field nonlinearities (essentially this is what has been done for
compact binary systems in [36—38]). Actually the main moments to be computef] are
and J; because the other momeniig, , ..., Z; parametrize a gauge transformation and
thus have no physical implications at the linearized order. In terms of a post-Newtonian
expansion it was shown in [30, 37] that up to the 2PN order it is sufficient to conipute

and J;, and that the other momentg,, ..., Z; start contributing at the 2.5PN order.

Now it was proved in paper | that the full nonlinear metric outside an isolated system
can always be parametrized (modulo a coordinate transformation) bytwalgets of STF
multipole moments, say/; andS, (different from/, andJ,). These moments parametrize
the so-called ‘canonical’ algorithm of paper |, defined by the same formulae as for the
‘particular’ algorithm but starting with the canonical linearized metei¢,; given by (4.12)

(but wherel,, J, are replaced by, §;). By theorems 4.2 and 4.5 in paper I, the
canonical and particular algorithms differ from each other by a coordinate transformation.
Therefore the multipole momenfd, and S, are necessarily given as some functionals of
the other momentg;, J, andW;, ..., Z;, i.e.

My =M.[I,J, W, X, Y, Z], (6.18)

Sp =S, J, W, X, Y, Z]. (6.1b)

These functionals are quite complicated in general but can be explicitly constructed up
to any post-Minkowskian order by implementing the coordinate transformation between
the two harmonic coordinate systems in which the ‘particular’ and ‘canonical’ metrics are
defined (see section 4.3 in paper |). Since at the linearized level the canonical and particular
metrics differ by a mere gauge transformation (see (4.11)), we have agreement at this level
betweenM;, S; andI;, J;:

My = I, +0O(G), (6.23)

S, =J. +0(G), (623)
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where QG) symbolizes some nonlinear (quadratic at least) products of the source moments.
Furthermore, the result of [37] is that in a post-Newtonian re-expansien+oo we have
M, =1; + %SIL +0 (%) , (6.3)
C C
whereé$; is given in detail by equation (4.24) of [37].

On the other hand, it is known (see, e.g., [12]) that the transverse and tracefree (TT)
part of the spatial metric at leading ordefRLin the distance can be parametrized by yet
another double set of STF multipole moments, ayand V.. These moments are called
the radiative moments of the source, as they are the moments which would be measured at
infinity. The radiative moments differ from the source moments because of the nonlinear
termsu#’ andv*’ in (4.14). Since the exterior field is entirely determined by the moments
M;, S;, the radiative momenté#/;, V, are necessarily given as some (fully nonlinear)
functionals of them:

U, = UM, §], (6.4a)
Vi = Vi[M, S]. (6.4b)

U, andV, are conveniently chosen in such a way that at the linearized order they reduce
to thelth time derivatives of the momentd;, S;:

dm
U, = —2=+0(G), (6.5)
du!
ds
V, = —= 4+ 0(G), (6.50)
du!

where QG) denotes the nonlinear terms. It was shown in [27] that the functionals (6.4)
can be constructed to all orders in the post-Minkowskian expansion by implementing the
coordinate transformation between the harmonic coordinates and some suitable ‘radiative’
coordinates in which the metric admits an expansion in powerg Bf(ithout logarithms

of R). Furthermore, once obtained in a post-Minkowskian expansion, the functionals (6.4)
can be re-expanded when— +4oo. In this limit the dominant correction is of ordey &

(or, rather,G/c®) and due to the so-called tails of waves [34]. For instance, we have, in
the quadrupole case,

d’M;; 2GM [ u—v 117 d*M;; 1
U,-j(u) = duzJ (u) + 3 /;OO dv |:|n (7) + 1—2:| du4j (v) + O (E) y (66)

where M is the ADM mass of the sourcé = I), and whereb is a constant time scale
entering the relation between harmonic and radiative coordinates. The complete correction
of order G involves other terms and can be found in [34, 35].

We now understand that the explicit expressions (5.15)—(5.20) of the ‘source’ multipole
moments/y, Jp and Wy, ..., Z, are to be inserted into the chain of functionals (6.1) and
(6.4) giving the radiative moments,, V. detected far away from the source. Since, in the
present investigation, the source moments have been related to the stress—energy tensor of
the source up to any (post-Newtonian) order, and since the functionals (6.1) and (6.4) can
be ‘algorithmically’ computed up to any nonlinear order [26, 27] (and then be re-expanded
whenc — o00), we conclude that the radiative momerifs, V; can be computed up to
any post-Newtonian order (in principle), in terms of the source parameters. Of course the
resulting formalism becomes extremely complicated when going to high post-Newtonian
orders, especially when computing the source multipole moments (5.15), (5.16). For the
moment it has been investigated in the case of compact binary systems up to the 3PN level
only [36-38].
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Appendix A. Alternative proof of the result

In this appendix we present an alternative derivation of the main result of the paper, which
is the multipole decomposition (3.11),(3.12) or equivalently (3.13),(3.14). Though less
elaborate than the proof presented in section 3, this alternative derivation (which generalizes
the approach followed in paper Il) permits a better understanding of why the multipole
moments are given by (3.12).

We denote byA the difference between the fieldz, solution of the field equations
(2.14)—(2.16), and the finite part of the retarded integraMofA) as given by the first term
in (3.11):

A =h —FPg_o O [FEM(A)]. (A1)
Sinceh is given by (2.18), this difference reads
l6n G
A=—3 Okt t — FPg—o O [FEM(A)]. (A.2)

In the second term the finite part 8t = O is necessary because the multipole expansion
M(A) is singular at the origin = 0. On the other handz in the first term of (A.2) is
regular all overR?*, and therefore one can conveniently add into this term the finite part at
B = 0 without changing its numerical value (for convergent integrals the finite part simply
gives back the value of the integral). Thascan be equivalently rewritten in the more
useful form

A = FPg_o O3} [FB (16;Gt - M(A))} . (A.3)

In this form A appears to be the (finite part of a) retarded integral of a source with spatially
compactsupport. This readily follows from our assumption that M(7) whenr > R
(indeed, applyd on (2.21)), and the fact thatM(A) = 167G /c*M(t) becausel has
compact support. Therefore the multipole expansioraoin the regionr > R can be
obtained directly from the standard formula valid for sources with compact support. This
yields immediately

4G X (- (1
M(A):—F; T 8L{;HL(I—}’/C)} , (A4)
where the multipole moments are given by
4
_ 3, 1= B ¢
He = FPB:O/d Y1yl ye (r 16WGM(A)) . (A.5)

Now in the case of a slowly-moving source, the zone of validity of the post-Newtonian
expansion (or near-zone) covers the compact support of the sodree’R <« A in the
notation of section 2. Therefore both and M(A) in (A.5) can be replaced by their
post-Newtonian expansions, i.e.

c4

16n G

Hy = FPs_o / Py g8y (? — M(A)) : (A.6)
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Finally, thanks to the structure of the post-Newtonian (or near-zone) expandian as

given by the right-hand side of (2.23), we see that after integration over the angles the second
term in (A.6) is a sum of terms of the type FRB fo+°° diy| 7|8 |y/?+(n|g|)? multiplied

by a function of time. All the latter radial integrals are zero by analytic continuatiaB in

(see the discussion after (3.5)), thus we conclude that the second term in (A.6) vanishes
identically, and we recover the same result as obtained in (3.12):

Hy = FPB:o/d3y 191%y.7. (A7)

Appendix B. The harmonicity algorithm

The role of the tensop”’ defined by (4.7) is to cancel out the divergence of the tensor
u™’ given by (4.1), i.ed, @"’ + v**) = 0, while at the same time being a solution of the
source-free wave equation, il@v*’ = 0. We first show the agreement between (4.7) and
the expression (2.12) in [35] which is itself a slight modification of the earlier definition
(4.13) in paper I. The divergen@deu™’ is given by (4.6) in terms of the momer$ which

are themselves decomposed in (5.3) into STF ten®prs™ Q; 1, @0, and @ Q;_;.
Setting

_ 46 1

L="3 TPL’ (B.1a)
B = i—f (_l—!l)ll:L—llUQL, (B.1b)
CL= A;—f (—l_'l)l I:—l(+)QL + m(_)QL} ) (B.1c)

L= 4—? (_—!1)l(°>QL, (B.1d)

c l

we can rewrite (4.6) as

1
h® =30, <—AL) ’ (B.2a)
r

>0

. 1 1 1
u'’ = Z dir <;BL) + Z {3L1 (;C5L1> + €iabOar—1 (;DbL1>} . (B.2b)

>0 =21

On the other hand, the tensot’ given by (4.7) is easily transformed into

v = —;fA-i-aa (% [—c[As+*[[C, —3Ba]> : (B.3a)

1 3. 1 1
0i = — | — 7 —B — 1 - D - — _A — B
v , |: CfCl + c 1} ngabaa (}"f b) E aL 1 <}’ iL 1) ) ( 3b)

122
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y 1 1 1
v = —5;~B + > {25,»,-3Ll <;BL1) — 63,2 (;Bj)”)

122

171. 3.
+ 0.2 - Ajjp—2+ C_ZBijL72 —CijL—2

C

1
— 20412 (;‘%b(z‘ Dj)bLZ) } , (B.30)
whose spatial trace is simply monopolar:
. 3
v''=—-B. (B.3d)

r

We thus have agreement with the definition proposed in equations (2.11), (2.12) in [35].
Next we compara*’ with the earlier definition proposed in paper I, that we denote
here byg*’. Using the same notation as for (B.3), we have

P =—Sfat, (} [—cfAs+ ffca]) , (B.40)

. c 1 1
g% = —;[Ci — C&iapda (;be) - Z dr-1 (;AiL—l) ) (B.4b)

1>2

. 1 1 1 1
e R L EO N LT G R

122

NP 1 7 D C
L-2 rle ijL—2 6'2 ijL—2 ijL—2

1
— 20,12 (;Eab(i Dj)bL2> } , (B.4c)
with spatial trace
- 1 1
q” =-3 |:_B + aa (“Ba>j| . (B4d)
r r
Subtracting (B.4) from (B.3), we obtain
00 00 1
v —q = _38a (‘Ba) s (BSa)
r
. . 3.
W —¢% = =B, (B.5b)
rc
. . 1 1
v — qll = 38118(1 (_Ba) — 680 (—B])> , (BSC)
r r

which can be re-expressed in the form of the gauge transformation

VR — g = gle¥ + Vel — )’]lwa)\é‘)\ , (B.6)
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associated with the vector
80 = o’ (B.?a.)

3
e =—"B;. (B.7b)
r

Thus, had we used in (4.8) the tengd? instead of the tensar*’, i.e. had we considered

instead ofGhy,,, the different linearized metric

th;‘;tl = th;rtl + oM + 0% — ", (B.8)

we would have obtained a dipole mométitdiffering from the dipoleY; as given by (5.19)
(or (5.&)) with I = 1 by the formula

, 3c* 30
Yi:Yi_EBi:Yi_j Qi, (B.9)

with no other modifications whatsoever. Thus the expression of the dipole matheould
not be ‘uniform’ with the expressions of the other mometitsfor arbitrary! > 2. In this
paper we have opted for the definitioi* instead ofg*¥ for this reason, and also because
the spatial trace'’ is simpler than the correspondigd/ (compare (B.8) and (B.4)).
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