
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

On the Multisearching Problem for Hypercubes On the Multisearching Problem for Hypercubes

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Andreas Fabri

Report Number:
93-029

Atallah, Mikhail J. and Fabri, Andreas, "On the Multisearching Problem for Hypercubes" (1993).
Department of Computer Science Technical Reports. Paper 1047.
https://docs.lib.purdue.edu/cstech/1047

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON THE MULTISEARCHING PROBLEM
FOR HYPERCUBES

Mikhail J. AtaIIah
Andreas Fabri

CSD·TR-93-029
May 1993

On the Multisearching Problem for Hypercubes'

Mikhail J. Atallaht Andreas Fabri j

Abstract

We build on the work of Dehne and Rau-Chaplin and give improved bounds
for the multisearch problem on a hypercube. This is a parallel search problem
where the elements in the structure S to be searched are totally ordered, but
where it is not possible to compare in constant time any two given queries q
and q'. This problem is fundamental in computational geometry, for example
it models planar point location in a slab. More precisely, we aTe given on a
n-processor hypercube a sorted n-element sequence S, and a set Q of n queries,
and we need to find for each query q E Q its location in the sorted S. Note
that one cannot solve this problem by sorting SUQ, because every comparison
based parallel sorting algorithm needs to compare a pair q, q' E Q in constant
time. We present an improved algorithm for the multisearch problem, one that
takes 0(1ogn(loglogn)3) time on a n-processor hypercube. This essentially
replaces a logarithmic fador in the time complexities of previous schemes by
a (log log n)3 fador. The hypercube model for which we claim our bounds is
the standard one, with 0(1) memory registers per processor, and with onc
port communication. Each register can store O(logn) bits, so that a processor
knows its ID.

1 Introduction

Consider the situation depicted in Figure 1: We have a horizontal slab partitioned by

a set S of n nonintersecting segments. For a set Q of n points, we need to determine

for each point which region of the slab it belongs to. Both the segments and the

points are initially stored in a n processor hypercube.

This problem would be trivial, if the partitioning segments were vertical, but the

fact that they are slanted makes it impossible to solve the problem by (e.g.) simply

mergesorting S U Q according to x-coordinates. The method we give for solving

.. This work was supported in part by the National Science Foundation under Grani CCR-9202807,
and by the ESPRIT Basic Research Action Nr. 7141 (ALCOM Il).

fDeparlment of Computer Science, Purdue University, West LafaYclte, iN 47906, USA. Email:
mja~cs.purdue.edu

IINRIA, BP 93, 06902 Sophia-Antipolis Cedcx, France. Email: fabrilDsophia.inria.fr

1

this multisearch problem works for more general versions of this -problem: The basic

assumption is that any pair X, y in a processor can be compared in constant time if

X E SU Q and y E S, but not so if both x and yare in Q. In [DRS9j Dehne and Rau

Chaplin gave an O(log2 n) time algorithm for this problem. Their algorithm is easy

to implement and thus of practical interest, and they later generalized it for doing

fractional cascading on a hypercube [DFR92]. A randomized O(1ogn) time scheme

for multisearching was given by Reif and Sen [RS91]. Since searching is related to

sorting and there is a deterministic O(log n log log n) time sorting algorithm [epgo],

the question was open, if there exists an algorithm for the multisearch problem that

runs faster than O(log2 n). This paper gives a step in the right direction, by presenting

an algorithm with time complexity O(logn(1oglogn)3) for a n processor hypercube.

Our result is more of theoretical than of practical interest, because it uses the sorting

algorithm of [epgo] as a subroutine. However, any practical improvement to sorting

would immediately make our algorithm more practical.

The paper is organized as follows. Tn Section 2 we review the definition of a hy

percube interconnection network and some basic algorithms for this parallel machine.

Then in Section 3 we sketch a very preliminary solution that is worse than the one

we claim, but that serves as a "warmup" for the later improved algorithms. Section 4

gives an algorithm that is almost as good as what we claim, except that it requires

each processor to have 0(log log n) memory registers (rather than 0(1) registers).

Section 5 gives the algorithm that achieves the bounds we claim. Section 6 concludes

by discussing some implementation issues and details.

2 The Model of Computation

This section is a brief review of the model, and in particular of some operations on

that model that we will make use of.

The hypercube model for which we claim our bounds is the standard one, with

0(1) memory registers per processor, and with one-port communication. Each regis

ter can store O(1og n) bits, so that a processor knows its ID. Recall that a hypercube

of dimension d consists of n = 2d processors which are uniquely labeled with bit

strings of length d. Two processors are connected along dimension i, iff their labels

differ in exactly the i th bit. In this paper we are interested in SIMD (Single Instruc-

2

tion Multiple Data) machines, that is, all processors execute the same instruction

simultaneously. An instruction is either an operation on data in the local memory,

or a communication step with a processor adjacent along a particular dimension. An

instruction takes time 0(1).

We shall use as subroutines certain operations on sequences of size n, with time

complexity O(1og n). These operations include segmented parallel prefix and mono

tonic routing which together allow a monotonic read. Thus the read is monotonic, iff

for any pair of processors Pi and Pi, with i < j, which want to read data on processors

Ph and pk, we have h ::; k. We refer to [Lei92, NS81] for a detained discussion of these

operations. Another operation we use is sorting n numbers, which can be done in

time O(lognloglogn) [epgO].

We shall occasionally need to solve problems on subcubes of a hypercube. We can

obtain subcubes of dimension d .::s d by selecting all 2d nodes matching a COlistant

bitpattern on d-d bits. Two patterns which occur frequently are the following. Fixing

the first d/2 bits yields ...;n consecutive subcubes, fixing the last d/2 bits yields ...;n
interlaced subcubes. Using the interlaced subcubes we can easily copy the contents of

one of the consecutive subcubes to the other consecutive subcubes in O(log n) time.

3 A Preliminary o(log2 n) Time Solution

The 0(log2 n) time complexity of the algorithm in [DR89] results from the fact that

the queries in Q perform a binary search; that is, each query performs log n com

parisons with elements of S and, in order to read the element of S for their next

comparison, the queries perform a monotonic read. One thought that comes to mind

in trying to improve on this algorithm is to try to perform a rootish search, e.g., a

.Jii,-ary search (recursively), to bring the lleight of the search tree down to loglogn.

In such a scheme the outdegree of a node v of the search tree would be n(4l k
, wbere

k is the level of v in the search tree, 1 ::; k ::; log log n. However, in such a scheme, a

typical search tree node (say) v would have too many children: To decide which child

of v to go to, the queries "currently at v" could recursively solve a similar problem

restricted to the children of v. Using this idea, the following (flawed) algorithm might

come to mind:

3

1. Partition Q into vn chunks of size vn each, and solve each chunk recursively

with respect to that chunk's own private copy of § where § is a .jn-sample of

S. That is, § consists of vn evenly spaced elements of S: The vnth, 2vnth,

... , nth elements of S.

2. Let Sl' S21"" Sn be the partition of S induced by the elements of ,5'. Let Qi

denote the subset of Q which belongs in Sj. Partitioning Q into Q1,"" Q..;n is

easily done by sorting the queries of Q based on which Si they belong to.

3. Since Q; could be much larger than vn, we do not want to recurse on Qf itself,

so we partition it into m; = rQ;f.J7il pieces, call them Qi,;, 1 :0:; j :s mi·

Recursively solve in parallel each Qj,; with respect to that Q./s own private

copy of Sj (making mj copies of Si, etc). There are no more than 2vn such

recursive calls: At most ..;n full recursive calls for which IQi,;] = vn, and

another Vii non-full recursive calls for which IQi,mi! < Vii.

The alert reader has undoubtedly observed many flaws in the above:

Difficulty 1: Carrying out Step 1 requires O(log log n) registers in each processor.

This is because the total space S(n) satisfies the recurrence S(n) = ViiS(y'n) +
C1n, S(l) = C2, where C1,C2 are constants. This implies S(n) = 8(n log logn),

which contradicts our assumption that each processor has O(1) registers.

Difficulty 2: Step 3 requires n log n processors, because of the excessive duplication

of the 81's. More specifically, the number of processors P(n) satisfies the recur

rence P(n) 2: 2.jTiP(.jTi), which implies that P(n) = l1(nlogn). The factor

of 2 in the P(n) recurrence comes about because we are solving the non-full

subproblems in parallel with the full subproblems. If we try to avoid this factor

of 2 by doing one additional parallel recursive call for the non-full subproblems

(i.e., after the call for the full ones return), then we damage the time complex

ity: There would then be three consecutive recursive calls, and an unwelcome

factor of (logn)1.59 shows up in the time complexity (because it would satisfy

the recurrence T(n) = 3Tht'n) + clognloglogn).

Treating Difficulty 1 is postponed until Section 5. The way we get around Diffi

culty 2 is by treating the full subproblems in a different way from the non-full ones.

This will be the subject of the next section.

4

4 Improving the Time Complexity

In this section we temporarily assume that each of the n processors available has

O(loglogn) memory registers. This is needed not only because of Difficulty 1, hut

also because the way we get around Difficulty 2 will itself require a factor of log log n

extra space. In the next section we show how to get rid of this assumption. Subject

to this assumption, we now show how to achieve O(log n(log log n)3) time.

We have already argued that Steps 1 and 2 pose no problem so long as we have

O(log log n) memory registers in each of the n processors. The main issue is how

to avoid one of the three recursive calls mentioned in the previous section, when

discussing Difficulty 2. We create ..;n subproblems of size ..;n each, where each

subproblem can be of two types: Either a full subproblem in the same sense as in

Section 3, or a subproblem derived from the non-full subproblems of Section 3 in the

following way.

Recall that the non-full subproblems of Step 3 are described by the queries Qi,m;

and the elements Si. For a non-full problem, let Z. ;::: IQi,m;l; note that Ii < vn
since the subproblem is assumed to be non-full. Let Q' be the concatenation of

Q1,m1' ... ' Q..;n,m.,jii.. Partition Q' into £ contiguous chunks of size vn each, call them

Q~, ... , Q~, and observe that the number of full subproblems is ..;n - £.

We create for each Qj a corresponding set of elements Sj C S, in the following

way. Each Qi,m; that has a nonempty intersection with Qj contributes to Sj a subset

S:'3 C S; defined as follows. Let 1;,; = [Qi,m; n Qjl > o. Note that for a particular),

at most two indices i have [i,; < h (for all the other i's such that [i,; > 0, we have

Ii,; ;::: I;). Then S:,3 consists of I;,; evenly spaced elements of Si. It is not hard to see

that computing all the Qj's and Sj's can be done in O(1og n) time by using monotonic

routing operations.

The £ derived subproblems (Qj,S;), 1 ::;) ::; £, are solved recursively in parallel

with the full subproblems of Section 3. Hence the second parallel recursive call consists

of a total of vn subproblems of size vn each: The Vii - £ full ones, and the £ derived

ones.

Our main problem now is in using the outcome of this second parallel recursive

call in order to obtain the overall solution. Clearly this is not an issue for the full

subproblems. But for the derived subproblems (Qj,Sj), 1::;)::; £, it is not clear. We

5

explain how this is done for a typical Qj, 5j. It suffices to show how tItis is done for

the elements in Qi,1I1j n Qj, with h,i > o. The recursive call for (Qj, Sj) tells us the

positions of the elements of Qi,1I1; n Qj with respect to SLj' Letting Ilk be the number

of queries in Qi,1I1; n Qj that end up in the k-th position within Sf,;, 1 :::; k ::; h,;,

we further locate these Ilk queries in their correct positions in Si in logarithmic time

and O(llk..jiilh,j) processors. This is done by creating all the query-element pairs

needed (there are Ilk queries and ISil/lSLI = ..jiilh,i elements). That there are

enough processors to do this is seen by the following analysis. For each Qi,1I1; n Qj

with 0 < li)j < ..jii, the number of processors needed is

L: I'k rvnl l,.;1= vn + Ii,; < 2vn,
l<k</· ,__ ',1

where we used the fact that I:t<k</- jlk = li,j. Since there are at most 2..jii such__ '.1

sets Qi,1I1i n Qj that have 0 < li,j < vn, the total number of processors is less than

(2vn)(2vn) = 4n. We do not have to worry about the factor 4 coming in, as this

"conquer" step is not recursive in nature.

Since there are two recursive calls and the conquer step involves a constant number

of monotonic routing steps and a single sorting step, the time complexity satisfies the

recurrence T(n) = 2T(vn) + ctlognloglogn, T(l) = C2, where c"c2 are constants.

This implies that T(n) = O{logn(loglogn)').

The processor complexity is linear, since it satisfies the recurrence P(n) = maxiCtn,

.jnP(vn)}, P(l) = C2, where CI, C2 are constants.

The scheme uses a factor of log log n too much space, because of the duplication of

the subsets of S needed by the various recursive calls, and because it needs, in addition

to the space taken by the recursive calls, to store S for completing the solution when

the recursive calls return. Unlike Section 3, this requirement La set aside storage for

(possibly all of) S, before recursing on many copies of only portions of S, occurs at

two different places in the algorithm.

So far we have established the following.

Lemma 1 Given a multisearch problem (Q,S) with IQI = lSI = n, we can solve it

in time O(log n(log log n)2) on a n-processor hypercube, each processor of which has

O(1og log n) registers.

The next section deals with the space issue.

6

5 Improving the Space Complexity

We first observe that instead of having n processors with D(log log n) registers each,

we can transform the algorithm of the previous section, so that it runs on a n log log n

processor hypercube with 0(1) registers on each processor without any sacrifice in the

time complexity. To see this, recall how the n-processor, log log n-space-per-processor

algorithm of the previous section used the log log n extra registers at each processor:

If we think of these registers as belonging to layers numbered 1, ... ,log log n, then

the information at layer j was needed only when the recursive call associated with

layer j + 1 returned (in the "conquer" step of the parallel divide and conquer). We

can thus use an extra factor of log log n in the processor complexity to simulate these

log log n layers: A cluster of log log n of the 0(1)-space processors can mimic a single

log log n-space processor by (i) using a designated leader of the cluster to do all the

calculations, and (ii) using all the other non-leader processors of the cluster only for

storage. Of course, reading from this storage by the leader now Lakes O(log log n) Lime

instead of constant time, but this is acceptable since there is only one such "read"

for each layer j (in fact we could even afford to spend O(log n log log n) time for that

"read" of layer j, since this is the time bottleneck we face anyway in other portions

of the computation that follows that "read"). We summarize these observations in

the following.

Lemma 2 Given a multisearch problem (Q, S) with IQ1= 1SI = n I we can solve it in

time O(log n(log log n)2) on a n log log n-process01' hype1'cubc) each processor of which

has 0(1) registers.

We now use the above lemma to solve the multisearch problem using only n

processors with 0(1) registers each, by solving smaller problems one after the other.

More exactly, solving log log n problems with only nl log log n queries each, we can

use the result from the previous section and Lemma 2, as we have enough processors,

The algorithm that uses only n processors is as follows:

1. Partition Q into t = loglogn chunks of size nit each, call these Qt, ... , Qt-

2. Partition S into s = nit chunks of size t each, call these Sl"'" Sa' Call S the

set of s elements that are at the boundaries of adjacent chunks.

7

3. For i = 1, ... , t in turn, do the following:

(aJ Process Qj against S. By using Lemma 2, this takes O{logn{loglogn)2)

time using the n available processors. Let Qi,j denote the subset of Q,- that goes

into Sj, 1 ::; j ::; s.

(bJ In parallel for all j, locate the queries of Oi,j in 5j. This can be done in

logarithmic time by creating all query-element pairs (q, e), with q E Qi,j, e E Sj,

and 1 ::; j ::; s. The number of processors needed is
, .
~ (IQ;,il·ISiJ) ~ (~IQ;,iJ)· t = IQ;I· t = n.
;=1 j=l

Each iteration of Step 3 takes O{log n{log log n)"2) time, and t of them are done one

after the other, for a total of O(logn(loglogn)3) time. We thus obtain the following

result.

Theorem 3 Given a multisearch problem (Q, S) with lor = lSI = n J we can solve it

in time G{log n{log log n)3) on a n-proceSSOT hypercube, each proceSS01' of which has

0(1) registers.

6 Implementation Notes

Note that we tacitly assumed that n was a perfect square, and thus the size of the
,

problem on each level k of the recursion, namely n21i", was a power of two. The

following observation is useful. If n is a power of two, then either vn or -/n/2 is

a power of two. If we are in the latter case we solve two problems of size n/2 on

the two interlaced hypercubes (with the last bit of the processor label fixed), with

two interlaced subsequences of S. The final result can then easily be obtained by a

comparison with the neighboUT element in S.

Another detail that we did not dwell on is how to solve, in logarithmic time, a

problem consisting of nl queries and n2 elements by using G(nrnz) processors. This,

however, is straightforward to do using standard hypercube operations (it is "brute

force", since it uses so many processors).

References

[B68] K.E. Batcher. Sorting networks and their applications. Proc. AFIPS Spring Joint
Computer Conference, pp. 307-314, 1968.

8

[CP90) R. Cypher, C.G. Plaxton. Deterministic Sorting in Nem'ly Logarithmic Time on
the Hypercube and Related Computers. ACM Proceedings of the 22th Annual ACM
Symposium on Theory of Computing, pp. 193-203, 1990.

[DR89] F. Dehne, A. Ran-Chaplin. Implementing Data Structures on a Hypercube Mul.
tiprocessor, and Applications in Parallel Computational Geometn}, Internal Report
SCS-TR-152, Carlton University, 1989,

[DFR92] F. Dehne, A. Ferreira, A. Rau-Chaplin. Parallel fractional cascading on hype7'cube
multiprocessors. Computational Geometry: Theory and Applications 2, pp. 141-167,
1992.

[Lei92] F. T. Leighton. Introduction to Parallel Algorithms and Architectu1'es: A17'ays,
Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[NS81] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers. IEEE Transactions
on Computers, C-30(2):101-107, February 1981.

[RS91] J.H. Reif, S. Sen. Randomized Algorithms for Sinan} Search and Load Balancing
on Fixed Connection Networks with Geometric Applications. Proceedings of the 2nd
Annual Symposium on Parallel Algorithms and Archltectures, 1990.

9

lZ\\SI:;//r

Figure 1: Point locatiYlJ- in a subdivided slab.

	On the Multisearching Problem for Hypercubes
	Report Number:
	

	tmp.1307986960.pdf.tTInA

