
ar
X

iv
:2

20
5.

09
20

0v
2 

 [
m

at
h.

O
C

] 
 1

3 
N

ov
 2

02
2

On the multi-stage shortest path problem under distributional

uncertainty

Sergey S. Ketkov†a

aLaboratory of Algorithms and Technologies for Networks Analysis, HSE University,

Rodionova st., 136, Nizhny Novgorod, 603093, Russia

Abstract

In this paper we consider an ambiguity-averse multi-stage network game between a user and

an attacker. The arc costs are assumed to be random variables that satisfy prescribed first-

order moment constraints for some subsets of arcs and individual probability constraints for

some particular arcs. The user aims at minimizing its cumulative expected loss by traversing

between two fixed nodes in the network, while the attacker’s objective is to maximize the user’s

expected loss by selecting a distribution of arc costs from the family of admissible distributions.

In contrast to most of the related studies, both the user and the attacker can dynamically

adjust their decisions at particular nodes of the user’s path. By observing the user’s decisions,

the attacker may reveal some additional distributional information associated with the arcs

emanated from the current user’s position. It is shown that the resulting multi-stage distri-

butionally robust shortest path problem (DRSPP) admits a linear mixed-integer programming

reformulation (MIP). In particular, we distinguish between acyclic and general graphs by intro-

ducing different forms of non-anticipativity constraints. Finally, we perform a numerical study,

where the quality of adaptive decisions and computational tractability of the proposed MIP

reformulation are explored with respect to several classes of synthetic network instances.

Keywords: shortest path problem; distributionally robust optimization; polyhedral

uncertainty; piecewise constant decision rules; mixed-integer programming

1. Introduction

Distributionally robust optimization (DRO) is a methodology for addressing uncertainty

in optimization problems, where the probability distribution of uncertain parameters is only

known to reside within an ambiguity set (or a family) of admissible distributions; see, e.g., the

studies in [5, 17, 18, 20, 41]. A standard one-stage DRO problem can be usually formulated

as a bi-level problem, where the expected value of the loss function (or some measure of risk,
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if the decision-maker is risk-averse) is minimized under the worst-case possible distribution of

uncertain parameters.

Typically, in one-stage DRO problems the decisions are implemented here-and-now, before

the realization of uncertainty. However, the distributionally robust optimization approach may

also address dynamic (or, equivalently, multi-stage) optimization problems, where decisions

adapt to the uncertain outcomes as they unfold in stages; see, e.g., [5, 20, 23, 26]. In other

words, in multi-stage DRO problems decision variables at the current stage can be thought as

some functions of the uncertain problem parameters observed up to this stage.

In this study we consider a multi-stage version of the distributionally robust shortest path

problem (DRSPP), where the vector of arc costs/travel times in a given network is subject to

uncertainty. From the game theoretical perspective, our problem can be viewed as a dynamic

zero-sum game between two decision-makers, which are referred to as a user and an attacker.

The user attempts to minimize its expected loss by traversing between two fixed nodes in a

given network. On the other hand, the attacker aims at maximizing the user’s expected loss

by selecting a distribution of arc costs within a given family of probability distributions. The

outlined game is dynamic in the sense that both the user and the attacker are able to adjust

their decisions at particular nodes of the user’s path.

In fact, our multi-stage formulation is motivated and built upon the related one-stage for-

mulation of DRSPP in [28]. Specifically, we preserve the same form of the ambiguity set and the

objective function but introduce some auxiliary distributional constraints that can be verified

by the user dynamically while traversing through the network.

1.1. Related literature

A rather large number of studies consider one-stage versions of DRSPP assuming different

forms of ambiguity sets and objective criteria; see, e.g., [13, 19, 40, 44]. Under some assumptions

on the geometry of ambiguity sets and functional properties of the objective function, one-stage

problems can be reduced to single-level linear or non-linear mixed-integer programming (MIP)

problems. In particular, these single-level reformulations typically rely on strong duality results

for moments problems due to Isii [25] and Shapiro [36]. We also refer to [29] for another version

of DRSPP, in which the uncertain problem parameters are related not to the arc costs/travel

times in a given network but to some resource constraints.

It can also be argued that in a number of practical applications the arc costs/travel times

in a given network can only be observed using a finite training data set; see, e.g., [11, 12,

40]. In this case one may attempt to construct an ambiguity set, which contains the nominal

distribution of the cost vector with a required confidence level. For example, some data-driven

approaches to constructing ambiguity sets are based on estimating the mean and the covariance

matrix of uncertain problem parameters [17] or using some distance metrics from the empirical

2



distribution of the data [2, 18].

In contrast to one-stage problems, multi-stage distributionally robust formulations of the

shortest path problem are considered by relatively few authors. The major limitation of this

problem setting is that recourse decisions, i.e., decisions affected by uncertainty, are discrete

and, therefore, the application of standard linear or piecewise linear decision rules [5, 20] is

rather limited. In the following, we discuss multi-stage problem formulations that may account

the shortest path problem as a special case.

First, we refer to the study by Hanasusanto et al. [23], where a two-stage DRO problem with

binary recourse decisions is approximated by using a restricted number of preselected second-

stage decisions. The authors prove that the proposed approximation is exact, if the number of

preselected decisions is sufficiently large. Despite the fact that the study in [23] may address

rather general types of ambiguity sets and objective criteria, it is not quite clear how to extend

these theoretical results to a multi-stage problem setting.

Another line of research is focused on exact dynamic programming based algorithms assum-

ing that the uncertain parameters are stage-wise independent. To the best of our knowledge,

Yu and Shen [43] are among the first, who consider multi-stage distributionally robust MIPs.

The authors investigate the concept of decision-dependent ambiguity sets, where parameters of

the first- and the second-order moment constraints at some stage t ∈ Z+ are linearly dependent

on the user’s decision at the previous stage, t−1. The authors reformulate the stage-wise prob-

lems as linear MIP or semidefinite programming problems. Then different versions of stochastic

dual dynamic integer programming (SDDiP) algorithm [45] are applied for solving the resulting

multi-stage problems exactly or deriving objective bounds. The latter algorithm is shown to

be finitely convergent and rather effective for moderate-sized problem instances.

In conclusion, we discuss a multi-stage shortest path interdiction model proposed by Se-

fair et al. [35] and a multi-stage robust MIP problem formulation of Bertsimas and Dunning [3].

Despite the fact that these models are deterministic, they provide some interesting insights for

the multi-stage DRSPP considered in the current study.

Sefair et al. [35] consider a zero-sum multi-stage network game between a user and an at-

tacker, where the attacker attempts to maximize the user’s loss by blocking a subset of arcs

(subject to some budgetary constraint) any time the user reaches a node in the network. Fur-

thermore, the user may dynamically alter its path by observing the arcs blocked by the attacker.

The authors in [35] demonstrate that the attacker’s problem can be solved in polynomial time

for acyclic graphs and admits an exact exponential-state dynamic-programming algorithm in

the general case.

On the other hand, Bertsimas and Dunning [3] consider a class of linear MIP problems,

where the uncertain problem parameters are only known to reside within a polyhedral uncer-

tainty set. The uncertainty set is partitioned into a number of disjoint polyhedrons and the
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recourse decisions are assumed to be piecewise constant functions on the generated subsets.

This modeling approach enables to obtain approximations of multi-stage robust MIP problems,

where the quality of approximation is adjusted by the choice of an appropriate partition scheme.

1.2. Our approach and contributions

In this study we design a multi-stage version of DRSPP, which is based on the related one-

stage model in [28] but allows to capture a successive revelation of distributional information to

the user. In this regard, we first discuss our construction of the ambiguity set and the objective

function for the one-stage problem. Next, we formulate some research questions that need to

be addressed when the problem unfolds in stages.

One-stage problem. We consider a weighted connected directed graph G := (N,A, c),

where N and A denote its sets of nodes and directed arcs, respectively, and c = {ca, a ∈ A} is

a nonnegative cost vector. We also denote by s ∈ N and f ∈ N the source and the destination

nodes in G, respectively. Then a standard risk-neutral one-stage DRSPP can be formulated as:

min
y∈Y

max
Q∈Q

EQ{ℓ(c,y)}, (1)

where Y ⊆ {0, 1}|A| is a set of all incidence vectors corresponding to feasible s− f paths in G,

y ∈ Y is an incidence vector of a path selected by the user and ℓ(c,y) is a given loss function.

Furthermore, for any fixed y ∈ Y the attacker attempts to maximize the user’s expected loss

by selecting a distribution Q of the cost vector c from some family of distributions Q.

In the related one-stage model in [28] we assume that the user has the following partial

information about the distribution Q. First, the costs of particular arcs a ∈ A are subject to

individual probability constraints of the form:

Q{ca ∈ [l(j)a , u(j)
a ]} ∈ [q(j)

a
, q(j)a ] ∀j ∈ Da, a ∈ A, (2)

where [l
(j)
a , u

(j)
a ] ⊆ [la, ua], j ∈ Da = {1, . . . , da}, is a finite set of subintervals; q(j)

a
and q(j)a

are contained in [0, 1] and bound the probability that the random cost ca belongs to the i-th

subinterval. In particular, we assume that for each a ∈ A and j = 1 the constraints

Q{ca ∈ [l(j)a , u(j)
a ]} ∈ [q(j)

a
, q(j)a ]

are support constraints with l
(j)
a = la, u

(j)
a = ua and q(j)

a
= q(j)a = 1 for some la, ua ∈ R>0 ∪ {0}.

Secondly, for a real-valued matrix B ∈ R|A|×k and a vector b ∈ Rk, k ∈ Z+, we introduce linear

expectation constraints of the form:

EQ{Bc} ≤ b. (3)
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Hence, the ambiguity set Q is formed by all distributions that satisfy the distributional con-

straints (2) and (3).

We argue that in contrast to the moment-based ambiguity sets [17] or ambiguity sets based

on a distance metric from the empirical distribution [2, 18], our distributional constraints allow

incomplete knowledge of the training data set. Formally, the individual probability constraints

(2) can be constructed by using interval-censored observations with respect to particular arcs;

see, e.g., [37]. From the application perspective, the interval uncertainty can be motivated by

measurement errors or sensors detection limits in environmental measurements; see, e.g., [30].

At the same time, the linear expectation constraints (3) can be constructed by leveraging linear

combinations of arc costs with respect to some subsets of arcs. For example, in our problem

setting the user may only have access to random observations of a total cost with respect to

some routes in the network; this type of feedback is also known as “bandit” feedback in online

learning problem settings [9]. We refer the reader to Section 2.2 in [28] and Section 2.3 in the

current study for further details on the construction of distributional constraints from data.

The key theoretical result of [28] indicates that the one-stage DRSPP of the form (1) with a

linear loss function ℓ(c,y) = c⊤y can be reformulated as a robust shortest path problem with

some polyhedral uncertainty set; see, e.g., [10] for a review of robust combinatorial optimization

problems. Furthermore, the resulting problem admits a linear mixed-integer programming

(MIP) reformulation and, thus, can be solved using off-the-shelf MIP solvers.

Multi-stage problem. In the one-stage formulation the user selects a path here-and-now

before the realization of uncertainty, i.e., some unknown distribution Q ∈ Q. In the multi-stage

formulation of DRSPP we, in turn, attempt to address the following research questions:

Q1. Is there a benefit for the user to alter the chosen path, if it observes some additional

distributional information while traversing through the network?

Q2. How much can the user gain by leveraging such adaptive decisions?

Q3. Can the resulting multi-stage formulation be solved at hand using off-the-shelf MIP solvers?

We address a dynamic revelation of distributional information to the user by introducing

some auxiliary distributional constraints (in addition to the constraints in Q that are known

to the user a priori) associated with the arcs emanated from some current user’s position. We

assume that the auxiliary constraints can be verified by the user while traversing through the

network. Simply speaking, the user forms a list of auxiliary constraints at the beginning of

the game. Then for each constraint in the list the attacker decides whether this constraint is

satisfied or not and reveals its response, i.e., “yes” or “no”, to the user as soon as the user

achieves the respective node in the network.
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From the practical perspective, the auxiliary distributional constraints can be motivated,

e.g., by some additional data observed by the user from Bluetooth sensors [22, 1] or GPS-

equipped floating vehicles [39]. In other words, if sensors are placed at particular nodes of the

given network, then the user may quantify the travel times between two successive detection

stations; see, e.g., [22]. This additional information can be collected dynamically while travers-

ing through the network and used to verify the auxiliary constraints; we refer to Example 2

and Section 2.3 for a more comprehensive discussion.

Following the one-stage formulation, we suppose that the user’s objective is to select a path

with the least possible expected cost. The attacker, in turn, attempts to maximize the user’s

objective function by selecting a distribution of arc costs from the ambiguity set Q. However,

in contrast to the one-stage problem, both decision-makers are able to adjust their decisions

at particular nodes of the user’s path. In other words, the user’s problem unfolds in stages,

where at each stage the attacker reveals (if necessary) some new distributional information to

the user and the user picks a subsequent node of its path.

To the best of our knowledge, the concept of using auxiliary distributional constraints

is not discussed in the context of multi-stage DRO problems. The idea of our approach is

to partition the initial ambiguity set into a number of disjoint subsets, where each subset

corresponds to some vector of attacker’s responses (recall that the attacker provides a binary

response to each auxiliary constraint). Then we show that the user’s decision can be viewed as a

piecewise constant function on the generated ambiguity sets subject to some non-anticipativity

constraints ; see, e.g., [3, 20].

In contrast to the study by Sefair et al. [35], we consider more general types of constraints

from the attacker’s perspective (instead of a unique budget constraint) and account some partial

distributional information available to the user. In contrast to the study by Yu and Shen [43],

our model exploits linear expectation constraints of the form (3), which make the uncertain pa-

rameters stage-wise dependent and thereby “destroy” dynamic programming based algorithms.

Finally, our solution approach is, in a sense, similar to the one developed by Bertsimas and Dun-

ning [3]. However, from the methodological point of view, the partitions in [3] are not motivated

by any practical applications and are used to provide a better approximation for the nominal

multi-stage problem. Meanwhile, the partition of the ambiguity set in our setting is motivated

by the auxiliary distributional constraints observed by the user in the considered game.

Our contributions for the multi-stage model can be summarized as follows:

• We formulate the multi-stage DRSPP and describe two classes of non-anticipativity con-

straints, for acyclic and general graphs, respectively (Sections 2.1 and 2.2).

• We show the auxiliary distributional constraints can be constructed and verified using

some data from Bluetooth sensors (Section 2.3).
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• Under some mild assumptions, the multi-stage problem is reformulated as a one poten-

tially large linear MIP problem (Section 3). These results address our research ques-

tion Q3.

• The obtained MIP reformulation is used in our numerical study, where its computational

tractability and the quality of adaptive decisions are explored numerically (Section 4).

Hence, we address the research questions Q1 and Q2.

2. Base model

Notation. All vectors and matrices are labeled by bold letters. For a networkG := (N,A, c)

we denote byN andA its sets of nodes and directed arcs, respectively, whereas c is a nonnegative

cost vector. Let s and f be the source and the destination nodes, respectively. For each node

i ∈ N we refer to RSi (FSi) as the set of arcs directed out of (and into) node i. The space of

all probability distributions on R|A| is denoted as Q0(R
|A|). Finally, for each a ∈ A we denote

by Qa ∈ Q0(R) the marginal distribution induced by some joint distribution Q ∈ Q0(R
|A|).

2.1. Modeling assumptions

As outlined in Section 1, we consider a directed weighted connected graph G := (N,A, c),

where the distribution Q of the cost vector c belongs to an ambiguity set Q given by:

Q :=
{
Q ∈ Q0(R

|A|) : Q satisfies the constraints (2) and (3)
}
. (4)

Furthermore, we note that the set Y of all feasible path-incidence vectors can be expressed as:

Y =
{
y ∈ {0, 1}|A| :

∑

a∈FSi

ya −
∑

a∈RSi

ya =





1, if i = s

−1 if i = f

0, otherwise

∀i ∈ N (5a)

∑

a∈FSi

ya ≤ 1 ∀i ∈ N
}
, (5b)

where the constraints (5a) are standard flow conservation constraints and the constraints (5b)

ensure that each node is visited at most once; see, e.g., [38]. We recall that negative cycles are

prohibited due to the support constraints, i.e., the probability constraints (2) for each a ∈ A

and j = 1.

Throughout the paper we make the following modeling assumptions:

A1. Each node i ∈ N is visited by the user at most once.

7



A2. Both the user and the attacker have complete information about the initial family of

distributions Q and the network G.

A3. In addition to the distributional constraints in Q, the user forms a list L of auxiliary

distributional constraints given by:

L :=
⋃

i∈N\{f}

{
Qa{ca ∈ [l̃(j)a , ũ(j)

a ]} ≤ q̃ (j)
a ∀j ∈ D̃a, ∀a ∈ FSi ; (6a)

EQ{
∑

a∈FSi

pjaca} ≤ pj0 ∀j ∈ K̃i

}
, (6b)

where, D̃a = {1, . . . , d̃a}, a ∈ A, and K̃i = {1, . . . , k̃i}, i ∈ N \ {f}, are potentially empty

sets of indexes.

Assumption A1 can be explained, e.g., by a nonstationarity in the attacker’s distribution

(a similar assumption is made by Xu and Mannor [42] with regard to distributionally robust

Markov decision processes). Put differently, if the user returns to a node multiple times, then

the attacker may simply modify the underlying distribution of arc costs. In this situation the

user cannot exploit the previously collected distributional information and, hence, it is not

favorable for the user to visit nodes multiple times.

In the first part of Assumption A2 we envision that the user has some initial information

about the distribution of arc costs. As briefly outlined in Section 1.2, this information can be

collected beforehand by leveraging some historical data. The second part of Assumption A2 is

rather standard in the robust and distributionally robust optimization literature. Nevertheless,

we refer to the studies in [7, 8, 27] for multi-stage shortest path interdiction models, in which the

attacker has incomplete knowledge about the structure of the underlying network and observes

the existence and precise costs of particular arcs by observing the user’s decisions.

AssumptionA3 indicates that the auxiliary distributional constraints (i) have a form similar

to the initial distributional constraints in Q and (ii) are associated only with the arcs emanated

from some node i ∈ N \ {f}. In the following, we demonstrate that the first property, (i), is

necessary for deriving a linear MIP reformulation of the proposed multi-stage optimization

problem. On the other hand, violation of the second property, (ii), is not favorable for the

attacker (as it may allow the user to observe more distributional information and, therefore,

effectively mitigate the impact of future attacker’s responses).

In conclusion, we note that the constraints (6a) and (6b) are necessary only if they refine

the initial distributional constraints in Q. A possible verification of this property is discussed in

more detail within Section 3.2. In the following example, we provide some intuition behind the

auxiliary distributional constraints (6), as well as the first and the second research questions,

Q1 and Q2, from Section 1.2.
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Figure 1: The network used in Example 1. The cost range is depicted inside each arc.

Example 1. We consider a network G depicted in Figure 1 with s = 1 and f = 8. The arc

costs are supposed to satisfy support constraints outlined inside each arc, i.e., ca ∈ [la, ua] with

probability 1. Furthermore, we introduce a unique linear expectation constraint given by:

EQ{
∑

a∈A′

ca} ≤ 1, (7)

where A′ := {(2, 4), (2, 5), (3, 6), (3, 7)}. Next, we consider three different cases with respect to

the additional distributional information observed by the user :

• Case 1 (no additional information). If the user picks a path before the realization of

Q ∈ Q, then the user’s path contains exactly one arc from A′ and the attacker may set

the expected of this arc equal to 1. Then the worst-case expected loss incurred by the

user is also equal to 1.

• Case 2 (full information). If the user picks a path after the realization of Q ∈ Q, then

the optimal attacker’s decision is to set expected costs of 0.25 for each arc in A′. Then

the worst-case expected loss of the user equals 0.25 (this value can be also viewed as some

lower bound on the user’s expected loss).

• Case 2 (successive revelation of information). Assume that, if the user stays at

node 2, then it may compare the expected costs of (2, 4) and (2, 5). In other words, the

attacker indicates whether the following linear expectation constraint holds or not:

EQ{c(2,4) − c(2,5)} ≤ 0.

In this case it is optimal for the user to traverse through (1, 2) and then to pick an arc
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with the smallest expected cost. In fact, the expected cost of the latter arc cannot exceed

0.5 due to the initial constraint (7), which results in the worst-case expected loss of 0.5.

Comparing the first and the third cases we conclude that the user may benefit from using

dynamic decisions. Furthermore, in view of Case 2, the user’s expected loss in our setting can

be bounded from below by an optimal objective function value of the max-min problem, i.e.,

the one-stage problem (1) where the order of “max” and “min” operators is reversed. �

2.2. Multi-stage formulation

Following our discussion in Section 1.1, we encode all feasible attacker’s responses to the

constraints in L with binary vectors rj ∈ {0, 1}|L| for j ∈ {1, . . . , 2|L|}. In particular, for any

fixed j we observe that rjm = 1, if the m-th constraint in L is satisfied and rjm = 0, otherwise.

For each vector of attacker’s responses rj, j ∈ {1, . . . , 2|L|}, we construct a new ambiguity

set Qj that combines the initial distributional constraints in Q with the auxiliary constraints

induced by rj. For ease of exposition we refer to “v ≥ w” as an opposite constraint to “v ≤ w”.

Formally, for each j ∈ {1, . . . , 2|L|} we have:

Qj := Q∩
{
Q ∈ Q0(R

|A|) s.t.





the m-th constraint in L, if rjm = 1

an opposite of the m-th constraint in L, if rjm = 0

}
.

Then, irrespective of the order of auxiliary distributional constraints in L, the multi-stage

DRSPP can be formulated as follows:

max
j∈{1,...,2|L|}

min
yj∈Y

max
Qj∈Qj

EQj
{c⊤yj}

s.t. non-anticipativity constraints with respect to yj, j ∈ {1, . . . , 2|L|},
(Fms)

where yj, j ∈ {1, . . . , 2|L|}, denotes a decision of the user under complete knowledge of the vector

of attacker’s responses rj or, equivalently, the associated ambiguity set Qj . Formally, in (Fms)

the user attempts to minimize its worst-case expected loss taking into account all possible

realizations of attacker’s responses and subject to some non-aniticipativity constraints. We

need to enforce non-anticipativity as long as the user learns the attacker’s responses associated

with some node i ∈ N \ {f} only when it reaches node i. In other words, for any fixed j, ℓ ∈

{1, . . . , 2|L|} the user’s paths Pj and Pℓ (induced by the incidence vectors yj and yℓ, respectively)

must coincide whenever the user is not able to distinguish between the ambiguity setsQj andQℓ.

First, we construct non-anticipativity constraints for acyclic graphs. In this regard, for any

fixed j, ℓ ∈ {1, . . . , 2|L|}, j 6= ℓ, we denote by Nj,ℓ ⊆ N a set of nodes at which the user may learn

the actual ambiguity set, either Qj or Qℓ, that is enforced by the attacker. More specifically,

for every node in Nj,ℓ there exists an associated distributional constraint in L such that the
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attacker’s responses to this constraint in rj and rℓ are different. As a remark, in Example 1 we

have |L| = 1 and N1,2 = {2}. The following result holds.

Proposition 1. Assume that j, ℓ ∈ {1, . . . , 2|L|}, j 6= ℓ, and let G be a directed acyclic graph.

Then for each node i ∈ N \Nj,ℓ the following constraints ensure non-anticipativity:

yj,a = yℓ,a ∀a ∈ FSi, if all nodes in Nj,ℓ are reachable from i, (8a)

|yj,a − yℓ,a| ≤
∑

n∈Ñj,ℓ

∑
a′∈FSn

yj,a′ ∀a ∈ FSi,

if a subset of nodes Ñj,ℓ ⊆ Nj,ℓ is not reachable from i.



 (8b)

Proof. We consider three particular situations:

(i) Assume that for some node i ∈ N \Nj,ℓ all nodes in Nj,ℓ are reachable from i. Then any

node in Nj,ℓ can be visited by the user only after i since the graph G is acyclic. Hence,

at node i we have a lack of information to distinguish between the ambiguity sets Qj and

Qℓ, which results in the constraints (8a).

(ii) Assume that for some node i ∈ N \ Nj,ℓ a subset of nodes Ñj,ℓ ⊆ Nj,ℓ is not reachable

from i. In view of the first part of non-anticipativity constraints (8a) and the definition

of Ñj,ℓ, it is rather straightforward to check that either both paths induced by yj and yℓ

contain some node in Ñj,ℓ or both not. In fact, non-anticipativity at node i is needed

only if the user’s path induced by yj, say Pj , does not contain any node in Ñj,ℓ, i.e.,

∑

n∈Ñj,ℓ

∑

a′∈FSn

yj,a′ = 0,

see constraints (8b). Otherwise, there exists some node n ∈ Pj ∩ Ñj,ℓ and we have either

i /∈ Pj or i ∈ Pj and i is visited after n; recall the definition of Ñj,ℓ. In both cases

the constraints (8a) and the flow conservation constraints (5a) are sufficient to guarantee

non-anticipativity and, thus, we make the constraints (8b) non-binding.

(iii) If the user stays at some node i ∈ Nj,ℓ, then it may distinguish between the ambiguity

sets Qj and Qℓ. Hence, we do not need to enforce non-anticipativity constraints.

These observations conclude the proof.

We note that reachability in the formulation of Proposition 1 can be checked efficiently for

each pair of nodes, e.g., by Floyd-Warshall algorithm; see [14]. Furthermore, the constraints

(8a) and (8b) are, in fact, linear constraints with respect to the decision variables.

Unfortunately, the non-anticipativity constraints become substantially more complicated

for general graphs containing directed cycles. For example, there may exist a cycle containing
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tj,1 = 0

tj,3 = 1

tj,2 = 2 tj,4 = 3

tj,6 = 4

1
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6
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Pj, Pℓ

Pj, Pℓ

Pj

Pj

Pℓ

Pℓ

Figure 2: A pair of user’s decisions satisfying the non-anticipativity requirement for some j, ℓ ∈ {1, . . . , 2|L|}.
The set Nj,ℓ is assumed to contain two nodes, 2 and 4, depicted in red. Some feasible values of tj are depicted
outside the nodes of Pj .

some node i ∈ N \Nj,ℓ and i′ ∈ Nj,ℓ for some fixed j, ℓ ∈ {1, . . . , 2|L|}. In this case we need to

enforce non-anticipativity at node i only if node i′ is visited by the user after i. For example, in

Figure 2 we consider a general graph, where the non-anticipativity requirement (8a) for acyclic

graphs is violated. Indeed, all nodes in Nj,ℓ = {2, 4} are reachable from node 5, but we do not

need to enforce non-anticipativity at this node, as node 2 is visited before.

In order to resolve the outlined issue, we introduce new variables tj ∈ R|N |, j ∈ {1, . . . , 2|L|},

related to a sequence at which nodes are visited by the user under scenario j; see constraints

(9a)-(9c) used in the formulation of Proposition 2 below. For instance, in Figure 2 some feasible

values of tj associated with the user’s path Pj are depicted. As a remark, similar variables and

constraints are used in the Miller–Tucker–Zemlin (MTZ) formulation of the travelling salesmen

problem [31]. We formulate the following result for general graphs.

Proposition 2. Assume that j, ℓ ∈ {1, . . . , 2|L|}, j 6= ℓ, and the graph G is general. Then for

each node i ∈ N \Nj,ℓ the following constraints ensure non-anticipativity:

tj,s = 0 (9a)

0 ≤ tj,i ≤ |N | − 1 ∀i ∈ N (9b)

tj,a1 − tj,a2 ≤ −1 + |N |(1− yj,a) ∀a ∈ A (9c)

|yj,a − yℓ,a| ≤
∑

n∈Nj,ℓ
min

{
max{tj,i − tj,n; 0}+ 2−

∑
a′∈FSn

yj,a′−

−
∑

a′∈FSi
yj,a′;

∑
a′∈FSn

yj,a′
}



 ∀a ∈ FSi. (9d)

Proof. Henceforth, we fix j, ℓ ∈ {1, . . . , 2|L|}, j 6= ℓ. First, we note that the decision vector
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yj ∈ Y induces some simple s− f path

Pj = {n1 → n2 → . . . → nT+1},

where n1 = s, nT+1 = f and any intermediate node is visited at most once. In fact, the

constraints (9a)−(9c) assign labels tj to each node i ∈ N so that the label at s is equal to 0

and the labels at each subsequent node in Pj are incremented at least by one compared to the

predecessor node. Each label is also bounded from above by |N | − 1, which is the maximal

possible length of a simple s− f path in G.

Next, we note that the user’s paths Pj and Pℓ (induced by the incidence vectors yj and yℓ,

respectively) must coincide until some node n ∈ Nj,ℓ is reached. This observation implies that

non-anticipativity constraints are necessary only for the nodes of Pj and Pℓ that are visited

before n. We consider two particular cases:

(i) Assume that the user stays at some node i ∈ N \ Nj,ℓ. Then non-anticipativity at i is

needed only if all nodes in Nj,ℓ are either not contained in Pj or are visited after node

i assuming that i ∈ Pj . Hence, for each node n ∈ Nj,ℓ we verify whether this node is

contained in Pj and whether it is visited before or after node i.

Formally, we calculate the following indicators:

wj,i,n = min
{
max{tj,i − tj,n; 0}+ 2−

∑

a′∈FSn

yj,a′ −
∑

a′∈FSi

yj,a′;
∑

a′∈FSn

yj,a′
}
.

We observe that, if n is not contained in Pj , then
∑

a′∈FSn
yj,a′ = 0 and, hence, wj,i,n = 0;

recall that yj must satisfy (5b). Otherwise, if n is contained in Pj , then

wj,i,n = min
{
max{tj,i − tj,n; 0}+ 1−

∑

a′∈FSi

yj,a′; 1
}
.

In this case, wj,i,n = 0 only if i ∈ Pj, i.e.,
∑

a′∈FSi
yj,a′ = 1, and n is visited after i, i.e.,

tj,i ≤ tj,n − 1. Otherwise, if n is visited before i or i /∈ Pj , then wj,i,n = 1. As a result, we

conclude that non-anticipativity is guaranteed by the constraints (9d).

(ii) If the user stays at some node i ∈ Nj,ℓ, then it may distinguish between the ambiguity

sets Qj and Qℓ. Hence, we do not need to enforce non-anticipativity constraints.

These observations conclude the proof.

Similar to Proposition 1 the non-anticipativity constraints (9a)−(9d) can be reformulated

as linear constraints but after applying some standard linearization techniques. We discuss this

point as well as a linear MIP reformulation of (Fms) in Section 3. In the remainder of this
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section we explore how the auxiliary distributional constraints given by (6) can be constructed

from real data observations.

2.3. Construction of the auxiliary constraints from data

The results of this section are motivated and similar to the related results of Section 2.2

in [28], where the initial distributional constraints in Q are constructed from data. In the

following, we assume that the attacker fixes some nominal distribution Q∗ ∈ Q and has access

to a data set given by n̂ ∈ Z>0 independent observations obtained from this distribution, i.e.,

Ĉ :=
{
(ĉ

(k)
1 , . . . , ĉ

(k)
|A|)

⊤, k ∈ {1, . . . , n̂}
}

(10)

We also note that an optimal solution of (Fms) provides a user’s decision for every possible

sequence of attacker’s responses.

A natural question arising is how the user can identify the actual sequence of attacker’s

responses. In this regard, after solving the multi-stage formulation (Fms) we exploit the data

set (10) to verify the auxiliary constraints (6) dynamically at the respective nodes of the user’s

path. This procedure is referred to as a constraint verification procedure.

Verification of probability constraints. Suppose that the user stays at some node

i ∈ N \ {f}, and needs to verify a probability constraint of the form

q∗a := Q∗
a{ca ∈ [l̃a, ũa]} ≤ q̃a (11)

for some a ∈ FSi. From Hoeffding inequality [24] we observe that for any ε > 0

Pr
{
|q∗a −

1

n̂

n̂∑

k=1

χa,k| ≥ ε
}
≤ 2 exp(−2n̂ε2), (12)

where 1
n̂

∑n̂
k=1 χa,k refers to an empirical probability that ca ∈ [l̃a, ũa], i.e.,

χa,k =




1, if ĉ

(k)
a ∈ [l̃a, ũa]

0, otherwise,

for each k ∈ {1, . . . , n̂}. Hence, with any prescribed confidence level γ ∈ (0, 1) we may guarantee

that

q∗a ∈ [
1

n̂

n̂∑

k=1

χa,k − ε,
1

n̂

n̂∑

k=1

χa,k + ε],

where the parameter ε is defined by setting the right-hand side of (12) equal to 1 − γ. As a

remark, using the same arguments one may construct the initial probability constraints (2).
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Furthermore, if the number of samples, n̂, is sufficiently large (and, therefore, ε is sufficiently

small), then we may distinguish between the following two alternatives:

1

n̂

n̂∑

k=1

χa,k + ε ≤ q̃a or
1

n̂

n̂∑

k=1

χa,k − ε > q̃a.

In the former case the constraint (11) holds with probability of at least γ; in the latter case it is

violated with probability of at least γ. Importantly, in order to verify a constraint of the form

(11), it suffices to know only the number of random samples that belong to the interval [l̃a, ũa].

Also, if the constraint cannot be verified with n̂ samples, then one may generate the attacker’s

response at random or assume the worst-case scenario for the user. We exploit some variation

of this idea within our numerical study in Section 4.

Verification of linear expectation constraints. In a similar way, one may verify a

linear expectation constraint of the form:

EQ∗{
∑

a∈FSi

paca} ≤ p0 (13)

for some pa ∈ R, a ∈ FSi, and p0 ∈ R. That is, by Hoeffding inequality we observe that:

Pr
{
|EQ∗{

∑

a∈FSi

paca} −
1

n̂

n̂∑

k=1

∑

a∈FSi

paĉ
(k)
a | ≥ ε

}
≤ 2 exp

(
− 2n̂

( ε

Si − Si

)2)
, (14)

where Si =
∑

a∈FSi
maxca∈[la,ua] paca, Si =

∑
a∈FSi

minca∈[la,ua] paca and i ∈ N \ {f}. Then for

any confidence level γ ∈ (0, 1) we may guarantee that:

EQ∗{
∑

a∈FSi

paca} ∈ [
1

n̂

n̂∑

k=1

∑

a∈FSi

paĉ
(k)
a − ε,

1

n̂

n̂∑

k=1

∑

a∈FSi

paĉ
(k)
a + ε],

where ε is defined by setting the right-hand side of (14) equal to 1−γ. As in the previous case,

the above procedure can be slightly modified to construct the initial expectation constraints (3).

We note that the constraint (13) can be verified following the same arguments as for the

probability constraint (11). However, in contrast to (12), the inequality in (14) exploits linear

combinations of arc costs with respect to the arcs a ∈ FSi. In the following example we

demonstrate how the auxiliary constraints (6a) and (6b) can be constructed and verified by

using information from Bluetooth sensors.

Example 2. We envision a network, where the arc costs/travel times are measured using

Bluetooth sensors; see, e.g., [1, 22]. The sensors are placed at particular nodes of the network

and one may quantify travel times between two successive sensors; see Figure 3. For example,
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O

F K

cOF cOK

(a) The user observes individual arc
costs cOF and cOK

O

E

F K

cOF cOK

cEO

(b) The user observes the difference
cOF − cOK

O

F K

cOK

cOF

cOF

(c) The user observes the sum
cOF + cOK

Figure 3: In each figure we consider different allocations of Bluetooth sensors, i.e., the sensors are placed at
nodes highlighted in blue. The arc travel times cOF and cFO are assumed to be the same.

in Figure 3a the sensors are placed at nodes O, F and K, which yields that the user may receive

random observations of individual arc travel times cOF and cOK . On the other hand, in Figures

3b and 3c the user may only observe some linear combinations of individual arc travel times

(we additionally assume that cOF = cFO in Figure 3c).

Then, by leveraging the observed linear combinations of arc travel times and the constraint

verification procedure, the user may verify linear expectation constraints of the form (6b). Anal-

ogously, if random observations of individual arc travel times are subject to interval uncertainty,

then one may verify probability constraints of the form (6a). �

We conclude that the auxiliary distributional constraints (6a) and (6b) can be motivated in

a rather straightforward way by the outlined sensor-related application context. Some further

intuition behind the choice of the auxiliary distributional constraints (6a) and (6b) is implied

by our solution procedure for the multi-stage problem (Fms) and is discussed within Section 3.

3. Solution approach

This section is organized as follows. First, in Section 3.1 we briefly describe the key theo-

retical results for the one-stage model in [28]. Then in Section 3.2 we use the aforementioned

results as well as Propositions 1 and 2 to reformulate the multi-stage DRSPP (Fms) as a linear

MIP problem.

3.1. MIP reformulation of the one-stage problem

We recall that the one-stage DRSPP in [28] can be expressed as:

z∗static := min
y∈Y

max
Q∈Q

EQ{c
⊤y}, (Fos)
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where the ambiguity set Q and the set of feasible decisions Y are given by (4) and (5), respec-

tively. The optimization problem (Fos) is also referred to as a static problem and its optimal

objective function value is denoted as z∗static.

It turns out that (Fos) can be recast as a robust shortest path problem with some polyhedral

uncertainty set. More specifically, the following result holds.

Theorem 1. (Theorem 2 in [28]) Assume that

S0 := {c ∈ R|A| : L ≤ c ≤ U; Bc ≤ b},

where for each a ∈ A

La := min
Qa∈Q̃a

EQa
{ca}, (15a)

Ua := max
Qa∈Q̃a

EQa
{ca}, (15b)

and

Q̃a :=
{
Qa ∈ Q0(R): Qa{ca ∈ [l(i)a , u(i)

a ]} ∈ [q(i)
a
, q(i)a ] ∀i ∈ Da

}
.

Then the DRSPP of the form (1) is equivalent to the following robust shortest path problem

with polyhedral uncertainty:

min
y∈Y

max
c∈S0

c⊤y. (16)

The intuition behind Theorem 1 can be explained as follows. Since the objective function

in (Fos) is linear, it can be seen as a function of expected costs, c := EQ{c}, i.e.,

EQ{c
⊤y} = (EQ{c})

⊤y = c⊤y.

One may also show that the individual probability constraints (2) for each a ∈ A can be

expressed in terms of box constraints

La ≤ ca ≤ Ua

with respect to the expected costs ca, which yields the desired result.

In order to resolve the moment problems (15a) and (15b), we make the following additional

assumptions:

A4. For each a ∈ A there exists a marginal distribution Qa ∈ Q0(R) such that

Qa{l
(i)
a ≤ ca ≤ u(i)

a } ∈ (q(i)
a
, q(i)a ),
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whenever q(i)
a

< q(i)a , i ∈ Da.

A5. For each a ∈ A and any pair of subintervals in (2), namely, [l
(i1)
a , u

(i1)
a ] and [l

(i2)
a , u

(i2)
a ],

i1, i2 ∈ Da, we have l
(i1)
a 6= u

(i2)
a and l

(i2)
a 6= u

(i1)
a .

Simply speaking, Assumptions A4 and A5 guarantee that strong duality for the moment

problems (15a) and (15b) holds. This prerequisite allows us to obtain finite linear programming

reformulations of (15a) and (15b); we refer to Lemma 2 in [28] for further details.

Summarizing the discussion above the one-stage formulation in [28] can be tackled by solving

2|A| linear programming problems and a single robust shortest path problem (16). Importantly,

the latter problem can be recast as a linear MIP problem by dualizing the second-level linear

programming problem. Formally, the following result holds.

Proposition 3 (Theorem 3 in [28]). Let

S0 :=
{
c ∈ R|A| : L ≤ c ≤ U; Bc ≤ b

}
=

{
c ∈ R|A| : B0c ≤ b0

}
. (17)

Then the one-stage DRSPP (Fos) admits the following mixed-integer programming reformula-

tion:

z∗static = min
y,λ

{
b⊤
0 λ : λ ≥ 0, −y +B⊤

0 λ = 0, y ∈ Y
}
. (18)

3.2. MIP reformulation of the multi-stage problem

The key observation that we use next is that each family of distributions Qj , j ∈ {1, . . . , 2|L|}

(corresponding to a vector of attacker’s responses rj ∈ {0, 1}|L|), contains the same types of

distributional constraints as those inQ; recall AssumptionA3. Therefore, in view of Theorem 1,

each ambiguity set Qj , j ∈ {1, . . . , 2L}, can be seen as some polyhedral uncertainty set

Sj :=
{
c ∈ R|A| : Bjc ≤ bj

}
⊆ S0 (19)

in terms of expected costs. Next, we provide a linear MIP reformulation of the multi-stage

problem (Fms).

Theorem 2. Let G be a general graph and assume that each ambiguity set Qj, j ∈ {1, . . . , 2|L|},

is described by the polyhedral uncertainty set Sj given by (19). Also, set M1 = |N | − 1. Then

the multi-stage DRSPP (Fms) can be reformulated as the following linear MIP problem:

z∗dynamic = min
y,t,v,w,z

z (20a)

s.t.

tj,s = 0

0 ≤ tj,i ≤ |N | − 1 ∀i ∈ N

tj,a1 − tj,a2 ≤ −1 + |N |(1− yj,a) ∀a ∈ A





∀j ∈ {1, . . . , 2|L|} (20b)
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vj,i,n ≥ 0

vj,i,n ≥ tj,i − tj,n

vj,i,n ≤ M1ṽj,i,n

vj,i,n ≤ tj,i − tj,n +M1(1− ṽj,i,n)

wj,i,n ≤ vj,i,n + 2−
∑

a′∈FSn
yj,a′ −

∑
a′∈FSi

yj,a′

wj,i,n ≤
∑

a′∈FSn
yj,a′

−
∑

ñ∈Nj,ℓ
wj,i,ñ ≤ yj,a − yℓ,a ≤

∑
ñ∈Nj,ℓ

wj,i,ñ ∀a ∈ FSi

ṽj,i,n ∈ {0, 1}





∀j, ℓ ∈ {1, . . . , 2|L|},

∀n ∈ Nj,ℓ,

∀i ∈ N \Nj,ℓ,

j 6= ℓ

(20c)

z ≥ b⊤
j λj

−yj +B⊤
j λj = 0

λj ≥ 0

yj ∈ Y





∀j ∈ {1, . . . , 2|L|}. (20d)

Proof. First, we provide an epigraph reformulation of (Fms) by using an auxiliary variable

z ∈ R, that is,

min z (21a)

s.t. non-anticipativity constraints (9), (21b)

z ≥ min
yj∈Y

max
Qj∈Qj

EQj
{c⊤yj} ∀j ∈ {1, . . . , 2|L|}. (21c)

Next, the minimum in the right-hand side of (21c) indicates that for each j ∈ {1, . . . , 2|L|} there

exists some ỹj ∈ Y such that

z ≥ max
Qj∈Qj

EQj
{c⊤ỹj}.

Hence, the path flow constraints yj ∈ Y can be shifted to the first-level problem constraints

by omitting the minimum in the right-hand side of (21c). In other words, the optimization

problem (21) admits the following equivalent reformulation:

min
z,y

z (22a)

s.t. non-anticipativity constraints (9), (22b)

z ≥ max
Qj∈Qj

EQj
{c⊤yj} ∀j ∈ {1, . . . , 2|L|} (22c)

yj ∈ Y ∀j ∈ {1, . . . , 2|L|}. (22d)

Then, in view of Theorem 1, the constraints (22c) for each j ∈ {1, . . . , 2|L|} can be reformu-
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lated as polyhedral constraints with respect to expected costs cj = EQj
{c}, i.e.,

z ≥ max
cj∈Sj

c⊤j yj . (23)

Note that the maximization problem in the right-hand side of (23) is a linear program. There-

fore, by strong duality we have:

max
cj∈Sj

c⊤j yj = min
yj ,λj

{
b⊤
j λj : λj ≥ 0, −yj +B⊤

j λj = 0
}
.

This observation and eliminating the minimum in the dual problem yields the following refor-

mulation of (Fms):

min
y,z

z (24a)

s.t. non-anticipativity constraints (9), (24b)

z ≥ b⊤
j λj

−yj +B⊤
j λj = 0

λj ≥ 0

yj ∈ Y





∀j ∈ {1, . . . , 2|L|}. (24c)

Finally, we linearize the non-anticipativity constraints (9) defined in Proposition 2. In this

regard, for any fixed j, ℓ ∈ {1, . . . , 2|L|}, n ∈ Nj,ℓ and i ∈ N \Nj,ℓ we introduce new variables

vj,i,n and wj,i,n such that:

vj,i,n = max{0; tj,i − tj,n} (25a)

wj,i,n = min{vj,i,n + 2−
∑

a′∈FSn

yj,a′ −
∑

a′∈FSi

yj,a′;
∑

a′∈FSn

yj,a′}. (25b)

The maximum in (25a) can be linearized by introducing new binary variables ṽi,j,n ∈ {0, 1} and

the following linear constraints [32]:

vj,i,n ≥ 0

vj,i,n ≥ tj,i − tj,n

vj,i,n ≤ M1ṽi,j,n

vj,i,n ≤ tj,i − tj,n +M1(1− ṽj,i,n).

Specifically, as long as |tj,i − tj,n| ≤ |N | − 1, we set M1 = |N | − 1.

Next, the constraint (9d) implies that the sum of wj,i,n over n ∈ Nj,ℓ is bounded from below.
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Hence, in order to linearize the minimum in (25b) it is sufficient to enforce that

wj,i,n ≤ vj,i,n + 2−
∑

a′∈FSn

yj,a′ −
∑

a′∈FSi

yj,a′

wj,i,n ≤
∑

a′∈FSn

yj,a′.

As a result, the multi-stage DRSPP (Fms) can be expressed as a linear MIP problem (20).

Theorem 2 addresses the research question Q3 formulated in Section 1.2. Thus, the multi-

stage DRSPP (Fms) can be solved at hand by using off-the-shelf MIP solvers even for graphs

that contain cycles. In particular, a linear MIP reformulation for acyclic graphs can be derived

from (20) by using the non-anticipativity constraints (8) instead of the constraints (20b) and

(20c). We point out that, if the number of auxiliary constraints, |L|, is fixed, then the number

of variables and constraints in (20) is polynomial in the size of the network.

In addition, we observe that the auxiliary constraints (6) refine the initial distributional

constraints in Q only if the resulting polyhedral uncertainty sets (19) are non-empty. This

property can be readily checked by solving the related linear feasibility problems for each

polyhedron. Meanwhile, Theorem 2 remains valid even if some polyhedral uncertainty sets are

empty. More precisely, if a set Sj is empty for some j ∈ {1, . . . , 2|L|}, then

min
yj ,λj

{
b⊤
j λj : λj ≥ 0, −yj +B⊤

j λj = 0
}
= −∞

by strong duality and, therefore, the associated constraints (20d) are non-binding.

Finally, Theorem 2 is also applicable to some other user’s objective criteria, for which the

constraints (22c) admit a linear programming dual reformulation. In view of our results for the

one-stage model in [28], the user may potentially optimize the conditional value at risk [34] or

some other optimized certainty equivalent risk measures [23, 41]. We leave these extensions as

a possible direction of future research.

4. Computational experiments

In this section we attempt to answer the research questions Q1 and Q2, i.e., we explore

whether it is favorable for the user to employ dynamic decisions and how much profit the

user can gain by leveraging such decisions in place of static decisions provided by the one-

stage formulation (Fos). In this regard, we analyze the role of the auxiliary distributional

constraints (6) in relation to both the quality of dynamic decisions and tractability of the MIP

reformulation (20).

The remainder of this section is organized as follows. In Section 4.1 we introduce some
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performance metrics to assess the quality of dynamic decisions. Section 4.2 describes our con-

struction of test instances including the structure of the network and distributional constraints.

Finally, in Section 4.3 we provide our numerical results and the related discussion. All experi-

ments are performed on a PC with CPU i5-7200U and RAM 8 GB. MIP problems are solved

in Java with CPLEX 20.1.

4.1. Performance metrics

In view of our discussion in Section 2.3, we propose the following two-step procedure for

validation of our approach. In the first step, we construct the initial ambiguity set Q and solve

the MIP reformulation (20) to obtain an optimal user’s decision for every possible vector of

attacker’s responses. In the second step (which is referred to as a constraint verification pro-

cedure), we attempt to identify an actual sequence of attacker’s responses by verifying the

auxiliary distributional constraints (6) dynamically at the respective nodes of the user’s path.

The quality of dynamic decisions in the first step is estimated using a relative gap of the

form:

ρ1 := 100×
z∗static − z∗dynamic

z∗static − zlower

, (G1)

where zlower provides some lower bound on the optimal objective function value of the multi-

stage problem (Fms). Following Example 1, we select zlower as an optimal objective function

value of related the max-min problem, i.e.,

z∗dynamic ≥ zlower := max
Q∈Q

min
y∈Y

EQ{c
⊤y}. (26)

Using the proof of Theorem 1 it is quite easy to show that the max-min problem in (26) admits

a linear programming reformulation (the details are omitted for brevity).

The relative gap ρ1 ∈ [0, 100] quantifies the user’s profit (in percentages) obtained from

using dynamic decisions, in relation to the static problem formulation (Fos). For instance, in

Example 1 we have z∗static = 1 and zlower = 0.25. At the same time, it is rather straightforward

to verify that z∗dynamic ≥ 0.5 irrespective of the auxiliary distributional constraints observed by

the user. Hence, in this example ρ1 ≤ 50% and the value of 100% is not always achievable.

On other hand, the quality of the constraint verification procedure can be defined as:

ρ2 := 100×
z∗dynamic − z̃dynamic

z∗static − zlower

, (G2)

where z̃dynamic is our estimate of the worst-case expected loss after the constraint verification

procedure. More precisely, z̃dynamic can be computed by solving the following linear program-

ming problem:

z̃dynamic := max
Q∈Q̃

EQ{c
⊤ỹ} = max

c∈S̃
EQ{c

⊤ỹ},
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Figure 4: Acyclic (4a) and general (4b) layered graphs with h = 2 intermediate layers and r = 2 nodes at each
layer. The source and the destination nodes are given by s = 1 and f = 6, respectively.

where S̃ is a polyhedral uncertainty set corresponding to the ambiguity set Q̃ ∈ {Q1, . . . ,Q2|L|}

identified by the user while traversing through the network; recall Theorem 1.

We observe that the sum ρ1+ ρ2 characterizes the total value (in percentages) by which the

difference z∗static − zlower can be reduced by leveraging our two-step validation approach. As a

potential drawback, it may be the case that z̃dynamic < zlower and, thus, the actual upper bound

for ρ2 is not well-defined.

4.2. Test instances

Classes of graphs. We consider two classes of fully connected layered graphs that are

either acyclic or contain directed cycles. An acyclic layered graph is assumed to contain h ∈ Z+

intermediate layers and r ∈ Z+ nodes at each layer. The first and the last layer consist of

unique nodes, which are the source and the destination nodes, respectively. General graphs

are, in turn, obtained from acyclic graphs assuming that the arcs not adjacent to s and f can

be traversed in both directions; see, e.g., Figure 4.

Nominal distribution and initial ambiguity set. With respect to the nominal marginal

distributions Q∗
a, a ∈ A, we assume that the arc costs ca are governed by a standard beta

distribution with parameters αa, βa ∈ R+ and a support given by [0, 1]. The parameters αa and

βa for each a ∈ A can be defined using the mean, ma, and the standard deviation, σa, of ca, i.e.,

αa =
m2

a(1−ma)

σ2
a

−ma, βa = αa(
1

ma

− 1), (27)

see, e.g., [21]. In particular, for each a = (i, j) ∈ A, i < j, we set σa = 0.125, and select ma

uniformly at random from the interval

(1
2
(1−

√
1− 4σ2

a),
1

2
(1 +

√
1− 4σ2

a)
)
.

The latter condition guarantees that a beta distribution defined by (27) exists, i.e., αa, βa > 0.

In addition, we assume that the nominal marginal distributions Q∗
(i,j) and Q∗

(j,i) are the same for
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Parameter Definition

h ∈ Z>0 a number of intermediate layers in the graph

r ∈ Z>0 a number of nodes at each layer

κ ∈ (0, 1) a probability that a sensor is placed at each node

ñ ∈ Z>0 a number of samples in the data set C̃

n̂ ∈ Z>0 a number of samples in the data set Ĉ

ηi = 1− 1−η
|N | , i ∈ N confidence levels for the linear expectation constraints

η ∈ (0, 1) a confidence level for the initial ambiguity set (28)

γ ∈ (0, 1) a confidence level for each auxiliary constraint

Table 1: Summary of the notation used in the construction of test instances.

any (i, j) ∈ A. Finally, the joint distribution Q∗ is defined as a product of marginal distributions

Q∗
a, a ∈ A.

Next, the initial ambiguity set Q is constructed as follows:

Q =
{
Q ∈ Q0(R

|A|) : EQ

{ ∑

a∈FSi∪RSi

ca −
∑

{(i,j): (i,j)∈FSi, (j,i)∈RSi}

c(i,j)

}
≤ Γi ∀i ∈ N,

EQ{c(i,j) − c(j,i)} = 0 ∀(i, j) ∈ A, Qa{ca ∈ [0, 1]} = 1 ∀a ∈ A
}
.

(28)

Specifically, the linear expectation constraints with respect to a ∈ FSi ∪ RSi can be thought

as some budget constraints from the attacker’s perspective (if the graph is general, then we

account each arc a ∈ FSi ∪ RSi only once). The second linear expectation constraints in (28)

indicate that the expected costs of (i, j) ∈ A and (j, i) ∈ A are the same; these constraints stem

from the definition of Q∗ and are assumed to be satisfied by construction. The last constraints

in (28) are the support constraints.

For every i ∈ N we calculate the parameters Γi in (28) by leveraging a data set

C̃ =
{
(c̃

(k)
1 , . . . , c̃

(k)
|A|)

⊤, k ∈ {1, . . . , ñ}
}

obtained from the nominal distribution Q∗ and Hoeffding inequality (14) with some prescribed

confidence level ηi ∈ (0, 1). Specifically, in view of Bonferroni’s inequality [6], we set ηi = 1− 1−η

|N |
,

i ∈ N , where η ∈ (0, 1) is a required confidence level for the ambiguity set Q. For convenience,

we report the notations used in our test instances in Table 1.

Summarizing the discussion above, our construction of Q is somewhat stylized and not

without limitations. However, in Section 4.3 it is verified numerically that z∗static 6= zlower

in all generated test instances (otherwise, there is no need to apply our multi-stage problem

formulation). Furthermore, we do not consider some more involved initial ambiguity sets as

our focus is on the role of the auxiliary distributional constraints (6).

Auxiliary constraints. For simplicity, we suppose that the auxiliary constraints are re-
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Figure 5: An example of random sensors allocation for a layered graph with h = r = 2. The sensors are
highlighted in blue.

stricted by the linear expectation constraints of the form (6b); some additional results for the

auxiliary constraints (6a) are relegated to Appendix A. We recall that by Theorem 1 the prob-

ability constraints (6a) can also be seen as some interval constraints with respect to expected

costs. However, the difference between (6a) and (6b) lies in the form of resulting expectation

constraints and the data used to verify these constraints; we refer to our discussion in Section 2.3

and Appendix A.

We assume that each node i ∈ N is equipped with a sensor with some fixed probability

κ ∈ (0, 1); see, e.g., Figure 5. Furthermore, following Example 2, we suggest three types of

auxiliary expectation constraints associated with arcs in the forward direction from s to f :

• individual constraints corresponding to the adjacent sensors, e.g., constraints for the ex-

pected cost of (1, 2), (2, 4) and (2, 5) in Figure 5.

• difference constraints, e.g., constraints with respect to the difference of expected costs of

(3, 4) and (3, 5) in Figure 5.

• sum constraints, e.g., constraints with respect to the sum of expected costs of (3, 4) and

(3, 5) in Figure 5 (we use these constraints, if at least one of the arcs can be traversed in

both directions).

Formally, a constraint of the form (6b) related to some node i ∈ N \ {f} can be defined as:

EQ

{ ∑

a∈FSi

paca

}
=

∑

a∈FSi

paca ≤ p0, (29)

where ca = EQa
{ca}, the coefficients pa ∈ {−1, 0, 1} depend on the type of this constraint and

the threshold p0 ∈ R is, e.g., defined as some average value of the sum
∑

a∈FSi
paca over the
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Number of constraints
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

|L| = 1 2.0 (3.5) 1.5 (2.8) 0.04 (0.02)

|L| = 2 4.8 (7.2) 5.8 (9.1) 0.07 (0.02)

|L| = 3 6.3 (8.9) 8.3 (11.7) 0.17 (0.07)

|L| = 4 8.3 (10.0) 11.3 (14.1) 0.67 (0.33)

|L| = 5 10.2 (11.6) 12.2 (15.2) 3.8 (2.85)

Table 2: Let h = r = 3, n̂ = ñ = 60 and assume that the graph is acyclic. We report the average relative gaps
(G1) and (G2) and the average running times in seconds with mean absolute deviations (in brackets) over 50
random test instances.

initial polyhedron S0:

p0 :=
1

2

(
min
c∈S0

∑

a∈FSi

paca +max
c∈S0

∑

a∈FSi

paca

)
.

We collect a required number of the auxiliary constraints by selecting a random node and a

random constraint associated with this node. If the above procedure does not allow to construct

the required number of constraints, then the sensors allocation is updated.

For convenience, we generate a new data set

Ĉ :=
{
(ĉ

(k)
1 , . . . , ĉ

(k)
|A|)

⊤, k ∈ {1, . . . , n̂}
}

for the constraint verification procedure; recall that we used another data set C̃ to construct

the initial ambiguity set Q. This splitting of data is rather technical and reflects the fact that

the data for the constraint verification procedure can be collected in an online manner and,

thus, it is not necessarily available at the beginning of the game.

The auxiliary constraints are verified via Hoeffding inequality (14) with some fixed confi-

dence level γ ∈ (0, 1) (which is assumed to be the same for all auxiliary constraints). As outlined

before, in order to verify a constraint of the form (29) related to some node i ∈ N \ {f},

we use only random samples (or their linear combinations) associated with the arcs a ∈ FSi. If

the user fails to verify some auxiliary constraint using n̂ samples, then this constraint is verified

by force as follows:

• if the constraint is an individual or a sum constraint, then it is assumed to be violated

(it models the worst-case scenario for the user);

• if the constraint is a difference constraint, then it is assumed to be satisfied with proba-

bility 0.5.

Summarizing the discussion above, we expect that for some fixed confidence level γ the quality

of the constraint verification procedure, (G2), increases with the increase of n̂.

26



Number of constraints
General graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

|L| = 1 1.8 (3.2) 3.3 (5.9) 0.08 (0.05)

|L| = 2 3.6 (6.0) 4.4 (7.3) 0.28 (0.10)

|L| = 3 4.9 (7.1) 9.1 (13.1) 10.1 (6.71)

|L| = 4 - - > 600

|L| = 5 - - > 600

Table 3: Let h = r = 3, n̂ = ñ = 60 and assume that the graph is general. We report the average relative gaps
(G1) and (G2) and the average running times in seconds with mean absolute deviations (in brackets) for 50
random test instances.

4.3. Results for different network types

In the numerical experiments we explore how the quality of adaptive decisions scales in

the number of auxiliary constraints, the size of the network and the sample sizes, n̂ and ñ;

recall Table 1. In particular, for different parameter settings we compute the average relative

gaps (G1) and (G2) and the average running time with mean absolute deviations for 50 test

instances. Also, in all experiments we set η = 0.95, γ = 0.95 and κ = 0.5.

Dependence on the number of auxiliary constraints. Let h = r = 3 and n̂ = ñ = 60.

For each test instance we increase the number of auxiliary constraints, |L|, from 1 to 5. The

results for acyclic and general graphs are reported, respectively, in Tables 2 and 3.

The observations from our computational results can be summarized as follows:

• Augmenting the set of auxiliary constraints provides more information for the user and,

thus, improves the quality of both adaptive decisions and the constraint verification pro-

cedure. For example, for |L| = 5 and acyclic graphs the total profit ρ1 + ρ2 obtained by

the user is about 22% on average.

• The multi-stage problem (Fms) becomes more computationally complex for general graphs

and with the increase of |L|. This fact is rather intuitive as the number of variables and

constraints in (Fms) is exponential in |L| and increases for general graphs.

Dependence on the sample size. In this experiment we consider acyclic graphs and

explore the value of parameters n̂ and ñ. For each test instance and different values of n̂ and

ñ we preserve the same nominal distribution Q∗ and fix a particular placement of sensors. The

results for h = r = 3 and |L| = 5 are reported in Table 4.

We make the following observations:

• (G1) and (G2) tend to increase and decrease, respectively, as functions of ñ. It can be

argued that for sufficiently small ñ we have z∗static ≈ zlower. Our hypothesis is that in this

case dynamic decisions cannot significantly improve the value of z∗static, but the constraint

verification procedure allows to reimburse these losses.
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# samples in C̃ # samples in Ĉ
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec

ñ = 20

n̂ = 60

2.0 (3.6) 22.7 (29.1) 2.49 (1.80)

ñ = 40 7.9 (9.7) 16.3 (18.5) 3.43 (2.46)

ñ = 60 10.2 (11.6) 12.2 (15.2) 3.8 (2.85)

ñ = 80 11.6 (11.8) 9.5 (11.9) 5.45 (5.11)

ñ = 100 12.2 (11.6) 12.2 (13.2) 3.89 (2.95)

ñ = 60

n̂ = 20

10.2 (11.6)

9.9 (12.8)

3.8 (2.85)

n̂ = 40 11.4 (14.9)

n̂ = 60 12.2 (15.2)

n̂ = 80 13.1 (15.6)

n̂ = 100 13.2 (16.3)

Table 4: Let h = r = 3, |L| = 5 and assume that the graph is acyclic. We report the average relative gaps (G1)
and (G2) and the average running times in seconds with mean absolute deviations (in brackets) for 50 random
test instances.

• (G2) increases as a function of n̂; see the second part of Table 4. This fact is quite

intuitive, since with the increase of n̂ the user may verify more constraints correctly.

• The solution times for the MIP formulation (20) do not depend on n̂ by construction and

slightly depend on ñ; see the last column of Table 4.

Dependence on the size of the network. In our last numerical experiment we examine

the value of the network’s size. Let n̂ = ñ = 60 and assume that |L| = 5 and |L| = 3 for

acyclic and general graphs, respectively. For each class of graphs we test different values of

h ∈ {2, 3, 4} and r ∈ {2, 3, 4} and report the results in Tables 5 and 6.

We make the following observations:

• The solution times increase in both h and r, while the average relative gaps (G1) and (G2)

tend to decrease. Indeed, the size of the MIP reformulation (20) increases as a function

of h and r, while the role of each particular constraint in L becomes less pronounced for

networks of a larger size.

• The average relative gap (G1) tends to zero faster with the increase of r rather than h.

In this regard, we note that the larger r, the less constraints are potentially met by the

user while traversing through the network.

Summary. It turns out that the user may often gain some profit by leveraging dynamic

decisions instead of static ones. However, the magnitude of this profit depends on the size

of the graph, the form of initial ambiguity set as well as the parameters of the constraint

verification procedure. Admittedly, the primary application of our approach is to the networks

of a relatively small size, in which solutions with a sufficiently high quality can be derived within
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# layers # nodes at each layer
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec

h = 2

r = 3

22.0 (19.8) 19.5 (24.3) 0.42 (0.21)

h = 3 10.2 (11.6) 12.2 (15.2) 3.8 (2.85)

h = 4 7.6 (9.3) 8.6 (11.5) 34.46 (30.34)

h = 3

r = 2 19.8 (16.3) 34.1 (26.2) 0.19 (0.05)

r = 3 10.2 (11.6) 12.2 (15.2) 3.8 (2.85)

r = 4 3.3 (5.7) 11.6 (15.9) 44.13 (47,27)

Table 5: Let |L| = 5, n̂ = ñ = 60 and assume that the graph is acyclic. We report the average relative gaps
(G1) and (G2) and the average running times in seconds with mean absolute deviations (in brackets) for 50
random test instances.

# layers # nodes at each layer
General graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec

h = 2

r = 3

16.6 (18.2) 10.4 (15.6) 0.72 (0.27)

h = 3 4.9 (7.1) 9.1 (13.1) 10.1 (6.71)

h = 4 2.5 (4.2) 0.9 (1.7) 99.62 (88.53)

h = 3

r = 2 16.0 (16.9) 9.9 (13.7) 0.47 (0.12)

r = 3 4.9 (7.1) 9.1 (13.1) 10.1 (6.71)

r = 4 1.1 (2.1) 1.7 (3.1) 64.54 (43.12)

Table 6: Let |L| = 3, n̂ = ñ = 60 and assume that the graph is general. We report the average relative gaps
(G1) and (G2) and the average running times in seconds with mean absolute deviations (in brackets) for 50
random test instances.

a reasonable time. It can be also argued that most of existing solution approaches to multi-

stage problems with binary recourse decisions can only be applied to instances of a moderate

size; see, e.g., the studies in [3, 4, 33] and the references therein.

5. Conclusion

In this paper we consider a dynamic version of the shortest path problem, where the cost vec-

tor is subject to distributional uncertainty. We formulate the problem in terms of an ambiguity-

averse multi-stage network game between a user and an attacker. The user aims at minimizing

its cumulative expected loss by traversing between two fixed nodes in the network, while the

attacker maximizes the user’s objective function by selecting a distribution of arc costs from

an ambiguity set of candidate distributions. In contrast to the one-stage formulation, both the

user and the attacker are able to adjust their decisions at particular nodes of the user’s path.

Following the related one-stage formulation, we suppose that the family of probability distri-

butions is formed by individual probability constraints for particular arcs and linear expectation

constraints for prescribed subsets of arcs. Also, while traversing through the network, the user

may verify some auxiliary distributional constraints associated with the arcs emanated from
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the current user’s position. Specifically, we assume that the user forms a list of auxiliary distri-

butional constraints at the beginning of the game, whereas the attacker forms a list of responses

that are consistently revealed to the user.

We design two classes of non-anticipativity constraints (for acyclic and general graphs,

repsectively) enforcing that the user’s decision at some particular node cannot depend on future

attacker’s responses. Furthermore, by using some properties of the related one-stage formulation

and linear programming duality the multi-stage problem is reformulated as a one potentially

large linear mixed-integer programming problem.

From the application perspective, we illustrate that the auxiliary distributional constraints

can be constructed and verified by using some information from Bluetooth sensors. Finally, we

conduct a numerical study where the one- and multi-stage problem formulations are compared

with respect to several classes of synthetic network instances. It turns out that using adaptive

decisions is practically relevant only for networks of a relatively small size, in which high quality

adaptive decisions can be obtained within a reasonable time.

With respect to future research directions, it would be interesting to explore some other

types of objective criteria and ambiguity sets; see, e.g., [23], in the context of our multi-stage

shortest path problem. At the same time, it can be argued that another types of ambiguity sets

imply the need for more advanced solution techniques as our partitions of the initial ambiguity

set are based on some linearity properties of the auxiliary distributional constraints. As another

possible option one may consider randomized decisions from the user’s perspective; see, e.g.,

the related studies in [15, 16].
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Appendix A. Supplementary material

In this appendix we consider the ambiguity set (28) with the auxiliary probability constraints

of the form:

Qa{ca ∈ [0.5, 1]} ≤ q̃a (A.1)

with q̃a = q̃ for each a ∈ A; recall Section 2.3. As before, we assume that each node i ∈ N

is equipped with a sensor with probability κ = 0.5 and the constraints (A.1) correspond to

the arcs a ∈ A with the adjacent sensors. In all experiments we set h = r = 3, n̂ = ñ = 60,

α = γ = 0.95 and assume that the graph is acyclic; recall Table 1.

For the first experiment we set q̃ = 0.5 and consider the relative gaps (G1) and (G2), as well

as the running time for solving the MIP reformulation (20) as a function of |L|. The results

are reported in Table A.7. For the second experiment we set |L| = 5 and explore how the

quality of adaptive decisions scales in the parameter q̃ of the auxiliary constraint (A.1). For

each test instance and different values of q̃ we preserve the same data set (10) and the same

initial ambiguity set (28). The results are reported in Table A.8.

We make the following observations:

• Comparing the obtained results in Tables 2 and A.7 we observe that the quality of adaptive

solutions decreases whenever the probability constraints (6a) are used instead of the

expectation constraints (6b). In fact, if the constraint (A.1) is satisfied, then

EQa
{ca} ≤ 0.5× (1− q̃) + 1× q̃ = 0.5 q̃ + 0.5. (A.2)

Otherwise, we have

EQa
{ca} ≥ 0× (1− q̃) + 0.5× q̃ = 0.5 q̃. (A.3)

This observation implies that the user receives less information in terms of expected costs

by using (A.1) instead of an individual linear expectation constraint.
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Number of constraints
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

|L| = 1 1.1 (2.1) 1.8 (3.1) 0.03 (0.01)

|L| = 2 1.7 (2.9) 6.3 (8.8) 0.06 (0.02)

|L| = 3 2.0 (3.4) 10.2 (10.7) 0.18 (0.07)

|L| = 4 2.4 (3.9) 12.0 (11.7) 0.69 (0.38)

|L| = 5 2.9 (4.4) 13.6 (12.9) 4.03 (3.05)

Table A.7: Let h = r = 3, n̂ = ñ = 60, q = 0.5 and assume that the graph is acyclic. We report the
average relative gaps (G1) and (G2) and the average running times in seconds with mean absolute deviations
(in brackets) for 50 random test instances.

Parameter q̃
Acyclic graphs

ρ1 (MAD) in % ρ2 (MAD) in % average time (MAD) in sec.

q̃ = 0.1 0.5 (0.9) 0.2 (0.3) 3.06 (1.98)

q̃ = 0.3 1.6 (2.6) 15.8 (16.1) 4.62 (3.89)

q̃ = 0.5 2.9 (4.4) 13.6 (12.9) 4.03 (3.05)

q̃ = 0.7 3.4 (4.4) 8.3 (8.0) 4.78 (4.16)

q̃ = 0.9 1.5 (1.8) 2.7 (3.4) 4.84 (3.85)

Table A.8: Let h = r = 3, n̂ = ñ = 60, |L| = 5 and assume that the graph is acyclic. We report the
average relative gaps (G1) and (G2) and the average running times in seconds with mean absolute deviations
(in brackets) for 50 random test instances.

• Both relative gaps (G1) and (G2) tend to decrease whenever q̃ approaches to its lower or

upper bounds. Indeed, if q̃ close to its bounds, then verification of some constraints of

the form (A.1) may not improve the user’s objective function value.

• The constraints (A.1) may handle interval-censored observations, which is not the case

for the auxiliary expectation constraints (29).

In conclusion, we point out that the results of this section are rather consistent with the re-

sults of Section 4.3. That is, the quality of adaptive decisions and the computational complexity

of the MIP formulation (20) increase in the number of auxiliary distributional constraints.
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