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ON THE MULTIVARIATE ASYMPTOTIC DISTRIBUTION OF SEQUENTIAL
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The multivariate asymptotic distribution of sequential Chi-square test statistics is investi-
gated. It is shown that: (a) when sequential Chi-square statistics are calculated for nested models
on the same data, the statistics have an asymptotic intercorrelation which may be expressed in
closed form, and which is, in many cases, quite high; and (b) sequential Chi-square difference tests
are asymptotically independent. Some Monte Carlo evidence on the applicability of the theory is
provided.
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1. Introduction

In many situations in multivariate analysis one decides, using statistical information,
which of several nested structural models appears to be "best" for a population of interest.
Characteristically, a sample-based "discrepancy function" is evaluated for each nested
model, and some statistical (or perhaps quasi-statistical) rationale is applied to the dis-
crepancy function values. Ultimately, the procedures choose a model solely on the basis of
discrepancy function values.

Consider, for example, the case of common factor analysis, in which one attempts to
ascertain g*, the "best" value for the number of common factors ~’, to retain in fitting a
p x p covariance matrix. Perhaps the simplest and most popular approach to choosing ~*
is the sequential Chi-square test (SCT). In this procedure one chooses a starting value 
(often ~1 = 1) for ~. The Chi-square "goodness of fit" test is performed in order to test the
hypothesis that the factor model fits perfectly in the population for g = ~1. If the hypoth-
esis is rejected at an ~ significance level, the significance test is repeated for ~2 > ~ (often

~2 = E~ + 1) common factors. (Note that the common factor model with g~ common
factors is nested within the common factor model with g2, g2 > g’~, factors). The pro-
cedure terminates when, for some E* > ~1, the null hypothesis of perfect fit is not rejected.
The SCT method for choosing the "true" model has a number of flaws which have been
described (Cliff, 1983; Cudeck & Browne, 1983) clearly in a form accessible to non-
specialists.

An alternative approach is the sequential Chi-square difference test (SCDT). In this
procedure, two nested models are compared by treating the difference of their Chi-square
test statistics as a Chi-square statistic with degrees of freedom equal to the difference
between the degrees of freedom for the individual Chi-squares. Here, the basic idea is to
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interpret the difference Chi-square as an "improvement index." So long as the difference
Chi-square is significant, it indicates that a "significant improvement" in the fit of the
model has been produced by changing the number of free parameters. The SCDT may
also be repeated to compare more than two nested models.

A number of other rationales for utilizing the statistical information in a sequence of
sample discrepancy functions have been proposed (Akaike, 1973; Tucker & Lewis, 1973;
Schwartz, 1978; Steiger & Lind, 1980; Cudeck & Browne, 1983).

The methods described above use a sequence of discrepancy function values all calcu-
lated on the same observations. Hence one would not expect the test statistics to be
independent. Evaluation of model selection methods and prediction of their performance
might thus be enhanced if the multivariate distributional characteristics of the set of dis-
crepancy function values were understood. In this paper we derive some basic results on
the asymptotic multivariate distribution of sequential discrepancy function values (for
nested models) calculated on the same data. We develop an asymptotic distributional
characterization for the set of discrepancy function values which leads, in turn, to a simple
expression for their asymptotic intercorrelation. Somewhat surprisingly, we find that there
are numerous situations in which the correlation between SCT’s will be very high whereas
the SCDT’s are, in fact, asymptotically independent.

Hogg (1961) has pointed out that, for some linear models, sequential likelihood ratio
difference test statistics are independently distributed if all null hypotheses are true. Ex-
amples were given. Our results on sequential Chi-square difference tests differ from those
of Hogg in that we examine asymptotic independence in the context of moment struc-
tures, and consider a general class of models, general discrepancy functions, and the situ-
ation wher~ null hypotheses need not be true.

In section 2 we present our notation, regularity conditions, and background infor-
mation. Section 3 contains the derivation of new results. Section 4 presents Monte Carlo
evidence on the applicability of the results to common factor analysis, while section 5
gives the summary and conclusions.

2. Background, Notation, and Regularity Conditions

Let ~ ~ Rm be a vector variable which, in our applications, will be a parameter vector
of some statistical population. For example, in the analysis of covariance structure models
~ will represent the nonduplicated elements of the p x p covariance matrix E, with
m = p(p + 1)/2. A structural model M for ~ is an m x 1 vector-valued function (mapping)
g(0) = (~/1(0) ..... gin(0))’, which relates the q x 1 parameter vector 0, from a specified 
rameter space f~, to ~. The functions gi, i = 1 ..... m are assumed to be continuously
differentiable, and t) _ q.

Consider two models, M1 and M2. We say that M2 is nested within M1, and denote
this by M1 > M2, if both models involve the same mapping g(0), but the parameter space

f~2 of M2 is a subset of the parameter space f~l of M1 defined by the imposition of
equality constraints. We consider a sequence M1 > M2 > ¯ ¯ ¯ > M, of nested models with
the mapping g(0) and the parameter spaces 1 .. ... ft, defined as follows, f~2 is a subset of

f~l given by imposing kl equality constraints, and f~3 is a subset of f~2 defined by adding
k2 equality constraints, that is,

f~2 = {O~f~ : ci(O) = O, i = 1 ..... (1)
f~a = {0eft2 : ci(0) = 0, i = kl + 1 ..... kl q- k2}, etc.

The constraint mapping c(0) = (c1(0) ck(O))’, k = k~ + k2 + "’" + k,_ corresponds to
the most constrained model Mr. The constraint functions ci(0) are assumed to be continu-
ously differentiable. In many practical applications they are simple linear functions as-
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signing specified values to elements of 0 (e.g., 01 = 0), or requiring equality of elements 
0 (e.g., Ot = 02).

For a given sample estimate in, based on a sample of size n, of the population value
of ~, one tries to fit the model

~ = g(0) (2)

by minimizing the discrepancy between in and ~, which is measured by means of a discrep-
ancy function F(., .). Here F(x, ~) is a real-valued function of two vector variables 
~ ~ Rm satisfying the following conditions (Browne, 1982, 1984; Shapiro, 1985):

(i) F(x,
(ii) F(x,

(iii) F is twice continuously differentiable in x and

Then a sample estimate 0~J),j = 1, ..., r, corresponding to the model M~ is chosen to
minimize F(in, g(" )) over flj, i.e.,

F(in, g(0~))) = min F(in, (3)

The corresponding minima will be denoted by ~,

~) = F(i,, g(0~’)), j = 1 r

In practical applications it is usually not reasonable to assume that a model is a
precise representation of reality. A more realistic view (Cudeck & Browne, 1983) is that 
model is an approximation. We therefore allow for the situation where some (0r even all)
of the models Mj do not hold exactly in the sense that there is no 0 from the parameter
space such that g(0) is equal to the population value of ~. In order to ensure the existence
of asymptotic distributions, we formulate a mathematical assumption which implies that
the systematic errors in ~- g(0) are not "too large" relative to the stochastic errors 
i, - ~. That is, following Stroud (1972), we consider sequence {~,} of population values
of ~ converging to a point ~o where all models hold, i.e., there exists 0o ~ fl, such that

~o = g(0o).
Of course 0o~fl~, i = 1 ..... r -- 1, as well.

We define the (population) badness offit for models M~,j = 1 .... , r, as

3~~ = min F(~, g(0)). (4)

Clearly 0_

We assume that n~/2(i~ - ~) has asymptotically a multivariate normal distribution
with a null mean vector and a certain covariance matrix F. The following regularity
conditions will be assumed in the derivation of our results:

(R1) The parameter space fl~ is compact.
(R2) The parameter vector 0 is identified as 0o in ~l, i.e., g(0*) = g(0o) and 

implies that 0* = 0o.
(R3) 0o is an interior point of ill.
(R4) The m x q Jacobian matrix,

Og 0=00

is of full column rank q.
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(R5) The Hessian matrix

~F
2V° -

of F at the point (Xo, ~o), Xo = ~o, is nonsingular and Vo = 
(R6) The k x q Jacobian matrix

~0=00

is of full rank k.
(R7) n6,°~,j = 1 ..... r, converges to a finite number 6j as n--~

Some additional remarks should clarify our regularity conditions and their impli-
cations. Identification of 8 in fll (Condition R2) also implies identification in the re-
stricted spaces ~Z2, ..., fl,. Conditions (R4) and (R5) imply that the Hessian matrix

cO2F

0000’ = 2A’ Vo A

of F(x, g(0)) at (Xo, 0o) is nonsingular. This, together with Conditions (R1) and 
implies that F(x, g(. )) has a unique minimizer for every x in a neighborhood of Xo 
(Shapiro, 1983, Theorem 4.1), i.e., 0 is conditionally identified given x = g, for sufficiently
large n.

Consequently, 0~~ is a consistent estimator of the corresponding (population) mini-
mizer of F(~,, g(. )) over f~j (Shapiro, 1984). Often Condition (R1) does not hold in 
cal applications, where the parameter space is typically unbounded and hence is not com-
pact. Fortunately this condition can be replaced by a certain condition of boundedness
(Shapiro, 1984).

Conditions (i)-(iii) alone imply that the Hessian matrix 2Vo is nonnegative definite
and, together with Condition (R5), that Vo is positive definite. Also (see Shapiro, 1985)

2Vo =  =txo,
Condition (R7) implies that I~- ~ol is O(n-1/2), i.e., ~ converges to ~o at a rate

n-1/2 (Stroud, 1972; Kendall & Stuart, 1979, p. 247; Shapiro, 1983, p. 61; Browne, 1984,
p. 66). Condition (RS) is sufficient to ensure that the minimum discrepancy function test
statistics have asymptotic Chi-square distributions (Browne, 1974, 1984; Shapiro, 1983).
Finally wc note that 0 < fil < 62 < ¯ "" < 6,.

3. Results

We prove our main results in this section. As a notational convenience, we prefix an
expression with "L" to indicate an asymptotic result. For example, "LCor" might be used
to denote an asymptotic correlation.

Theorem 1. Under regularity Conditions (R1)-(R7) and our stated assumptions:

(i) The test statistics n/?~1~,nr~’*t2~,.. ., nl¢~ have asymptotic noncentral Chi-square
distributions with vl = m - q, v2 = m - q + k1, ..., v, = m -- q + k~ + -" + k~-i degrees
of freedom, and noncentrality parameters di1, 62 ..... 6,, respectively.

(ii) The statisticsnr~a"~, n~2~ - n~~ ..... nF~~ -- nf~"-1~ are mutually asymp-
totically independent and have asymptotic noncentral Chi-square distributions with v~ =
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m -- q, v~ -- v2 = kx ..... v, -- Or_ 1 = k,_ 1 degrees of freedom and noncentrality parame-
ters 61, 62 - 61, ..., fir - fir- 1, respectively.

Proof It can be shown under conditions (R1) and (R2) that a minimizer 
F(x, g(. )) over f~j converges to 0o as x tends to Xo = ~o (Shapiro, 1984). We have 
t. _ ~. ~_e_~ 0, and, by (R7), ~,--. ~o. Consequently, ~.-~ ~o, and hence 0.°)~ 

Because of Conditions (R3) and (R6), there exists a continuously differentiable 
to-one mapping

0 =
from a neighborhood of a point ~0 ~ Rq, h(7o) = 0o, to a neighborhood of 0o, such that
Yl = ci(h(~)), i = 1 ..... k. (Local Linearization Theorem, see, e.g., Klingenberg, 1978, 
rem 0.5.2, p. 6). Thus the equations e(0) = 0 can be reduced (locally) to the simple 

c(~) = (~1 ..... ~)’ = 0
by a suitable reparameterization 0 = h(-/). Since h(¥) is one-to-one, the minimizations 
respect to ~/will be equivalent. (Note that, since the estimators ~.~) converge in probability
to 0o, for large enough n it is sufficient to minimize f(x., g(. )) in a given neighborhood
of 0o.) Therefore, in what follows, we can suppose without loss of generality that the
nested model Mj,j = 2 ..... r, is defined by (0’x ..... 0~_ 1) = 0, where 0’ = (0] ..... 0’,_ 1, 0tr),

where 0~ is ki × 1, i = 1 .... , r - 1 and 0r is (q - k) × 1. Then Mj may be considered as an
unrestricted model with respect to the parameter vector (0~ ..... fir). The corresponding
Jacobian matrix is (A j, ..., A,), where

is m × k~,i = 1 ..... r- 1 and Aris m × (q- k).
Under regularity Conditions (R1)-(R5), it can be shown (Shapiro, 1985) 

n:O~) a= [nl/2(~n _ ~o)],H j~nl/2(:~n ~o)], (5)

where

H./= %(~ V~-1 0~)- 1{I)~. (6)

In (5) "~" stands for "is asymptotically equal to" and means that the difference be-
tween the left and right sides approaches zero in probability as n tends to infinity.

In (6) ~ is an orthogonal complement of the Jacobian matrix [A~ ..... A,], i.e., ~ 
an m x (m -- q + kx + "" + k~_~) matrix of full column rank such that ~[A~ ..... A,] =
0. Recalling (RS) we have

H~ = *~(~ r~)- 1~. (7)

From (5) and (7) it follows 

n:~) ~ z~z~, (8)
where

z~ = (% F~)-1/~I)~ [nl/2(~. - ~o)]. (9)

It can be seen that z~ has an asymptotic multivariate normal distribution with the
identity covariance matrix and mean vector p~ given by

It./= (% r{}~)- 1/~{}’~Enl/2(~. - ~o)3-
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Therefore hie, ~) has an asymptotic noncentral Chi-square distribution with vj = m
- q + kI + ... + kj_ 1 degrees of freedom, and noncentrality parameter

I~)1~ = n(~. - ~o)’H#(~. - (10)

it can be shown that 2H# is the Hessian matrix of the min-funetion

U)Vmi. (x) = min F(x, g(0))
o~nj

at the point xo = ~o (Shapiro, 1985). Note that F~.(Xo) = 0 and that the first order 
tial derivatives of Fed, at Xo vanish. Therefore, by Taylor’s theorem, we have

nFOm],(~,) = n(~, - ~o)H~ (~, - ~o), (11)

where the symmetric matrix H~ tends to Hj as n--, oo. From (10) and (11) we obtain 
as n increases the noncentrality parameter becomes

lim ~) lim n6°~))nFmi.(~n ) = =

This completes the proof of (i).

Now recall expressions (5)-(8). Let Ot be a given mx(rn - q) orthogonal complement
of A = [AI, ..., A,]. We construct an orthogonal complement O2 corresponding to M2 as
follows. Let W be an m x kl orthogonal complement of the rn x (rn - kl) matrix [FO1,
A2 ..... A,]. Clearly ~P’[A~ ..... IX,] = 0 and, since O1 is an orthogonal complement of IX,
O’t [A2,..., A,] = 0. Therefore, ̄2, defined as

O2 = [~, O1]

is an orthogonal complement corresponding to M2. Moreover, by the definition of q~, we
have that

W’FO1 = 0. (12)

It follows from (12) that

and hence (see (8))

where

(13)

Z2 ~--" (W’, i),

W = (tI/’rtI/)-ll2~l~’[?lll2(in -- ~0)]"

It can be shown in a way very similar to the method used in the proof of part (i) that
w’w has an asymptotic noneentral Chi-square distribution with v2 - vl = k~ degrees of
freedom and noncentrality parameter 62- 61. Moreover, w and zx are asymptotically
uncorrelated, since their asymptotic covariance matrix is

LCov (w, zt) = (W’F~)-~/~W’FO~(O’tFO1)-1/2 

and thus they are asymptotically independent. This implies that z]zl and w’w are asymp-
totically independent. Noting that

.p~.2) _ nP~." = z~ z~ - z~zl = w’w
we obtain that n~,2~ - n~,1) has an asymptotic noncentral Chi-square distribution with
v2 - vl degrees of freedom and noncentrality parameter 62 - 61, and that n/~.2) and nP~,2)
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-- n/~1~ are asymptotically independent. The proof may be completed for the other differ-
ence statistics in a similar manner. []

Theorem 1 leads to the following closed form expression for the asymptotic corre-
lation matrix of Chi-square statistics.

Theorem 2. Let M1 > M2 > "’" > M, be a sequence of nested models and nff~x~,

nff~2) ..... nff~) be the corresponding test statistics. Then the asymptotic correlation be-
tween nff~° and nffO~,j > i, is

[v, + 26,]1/2
~j + 26~]

(14)

Proof.

Now

LCov {nff~i’, nff~’} = LCov {nff~°, (n/~’- nff~°) + nff~°},

= LCov {nJ#~°, nff~’-- nff~°} + LCov {n/~°, n/~°},

= 0 + L Vat {n/~°}.

rCov
LCor {n~O, nff. ~)} =

[LVar {n~.°}LVar

[LVar
- L Var

The variance of a noncentral Chi-square variable with v degrees of freedom and
noncentrality parameter 6 is 2v + 46 (Johnson & Kotz, 1970, p. 134). Substituting this
expression in (15), we obtain (14).

It is of interest to note that this asymptotic correlation matrix has Guttman’s (1954)
perfect simplex structure.

4. Some Monte Carlo Results

The results presented in section 3 are based on asymptotic distribution theory which
may yield a poor approximation if n is not large. Our derivations also relied on an as-
sumption that population values converge at the rate of n-1/2 to a point where both
models are correct. In practice, this indicates that the noncentral Chi-square approxi-
mation will be reasonably effective so long as the noncentrality parameter is not "too
large."

The present results, however, are especially convenient because of their simplicity.
Ultimately, what must be determined are (a) whether adequate convergence to the asymp-
totic result occurs at realistic sample sizes, and (b) whether the results of section 3 provide
an adequate approximation for realistically large values of the noncentrality parameters
n6~.

To answer these questions in the broad context of possible applications of our results
is probably not feasible, and authoritative answers, even in the context of a simple appli-
cation (such as common factor analysis) would require an extensive (and very expensive)
Monte Carlo study. Such an investigation is planned, but here we present some rather
limited results using the factor analysis model. The factor patterns used were chosen de-
liberately to minimize problems with Heywood cases and non-convergence, to avoid con-
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TABLE 1

Monte Carlo Conditions

General Form of the Population Factor

a 0 0
b 0 0
c 0 0
0 d 0
0 e 0
0 f 0
0 0 8
O 0 h
0 0 i

Pattern

Condition n a b c d e f g h i

1 100 .447 .548 .633 .447 .548 .633 .447 .548 .633
2 200 .447 .548 ,633 .447 .548 .633 .447 .548 ,633
3 300 .447 ,548 ,633 .447 .548 ,633 ,447 ,548 ,633
4 400 .447 .548 .633 .447 .548 .633 .447 .548 .633
5 500 .447 ,548 ,633 .447 .548 ,633 ,447 .548 ,633
6 600 .447 .548 .633 .447 .548 .633 .447 .548 .633
7 700 .447 ,548 ,633 .447 ,548 .633 ,447 ,548 ,633
8 800 .447 ,548 ,633 ,447 ,548 .633 ,447 .548 ,633
9 900 .447 .548 .633 .447 .548 .633 .447 .548 .633

10 1000 .447 ,548 .633 .447 ,548 .633 ,447 ,548 .633
II 500 .900 .800 .700 .900 .800 .700 .900 .800 .700
12 500 .300 .400 .500 .300 .400 .500 .300 .400 .500
13 500 .900 .900 .?00 .700 .700 .700 .500 .500 .500
14 500 .900 .700 .500 .900 .700 .500 .900 .700 .500

founding questions of algorithmic performance with questions about the applicability of
our statistical results.

There were 14 experimental conditions. In each, the population correlation matrix
conformed exactly to the common factor model with 9 variables and 3 uncorrelated
common factors. The factor pattern which generated the population correlation matrix
was always of the same general form (having good "simple structure"), as shown in Table
1. To assess convergence properties, Conditions 1 through 10 examined the identical
factor pattern under differing sample sizes which varied from 100 to 1000 in increments of
100. The remaining conditions examined several different factor patterns, all at a sample
size of 500. Simulated sampling of correlation matrices for the multivariate normal distri-
bution was accomplished by means of the Bartlett decomposition (e.g., Browne, 1968a). 
implementing this method, normal random numbers were generated by the method of
Kinderman and Ramage (1976), and Chi-square random variables by the method of Fish-
man (1976). Both algorithms are described in detail by Kennedy and Gentle (1980). There
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TABLE 2

Coaparison of Obtained and Predicted Test Statistic Intercorrelatione

Test Statistic Difference Statistic
Condition Intercorrelations Intercorrelations

P21 P31 P32 Pl-2,2 Pl-2,3 P2-3,3 Pl-2,2-3

1
2
3
4
5

7
8
?

10
11
12
13
14

75
74 (.73
71 (.72
72 (.72
70 (.72
71 (.71
70 (.71
74 (.71
70 (.71
70 (.71

¯ 71 (.71
.75 (.73
,47 (,47
¯ 71 (.71

.40

.23

.18
13
17
17
14
11
11
.11
.33
.14
.14

(.32) .53 (.43) .10 .06 .12 .09
(.24) .36 (.33) .08 .03 .07 .08
(.20) .28 (.27) -.05 .04 .02 -.07
(.17) .20 (.24) -.00 .05 -,03 -.02
(,15) ,18 (.22) -,02 -,00 -,03 -.01
(.14) .20 (.20) -.04 .03 .01 -.05
(.13) .20 (.18) -.06 .03 .03 -.06
(.12) .17 (.17) .01 .01 .01 .00
(.12) .14 (.16) -.02 .02 -.02 -.02
(.12) .18 (.16) .01 -.04 .03 .02
(.07) .09 (,10) -.02 ,06 -,01 -.03
(.27) .41 (.36) .09 .06 .06 .07
(.12) ,27 (,25) ,02 ,02 .03 .02
(,09) ,13 (,13) -.03 ,06 -.00 -,04

were 1000 Monte Carlo repetitions in each condition. Each generated sample correlation
matrix was factor analysed three times (assuming 1, 2, and 3 common factors) by the
method of maximum likelihood, using a Gauss-Seidel algorithm (Browne, 1968b). The
Chi-square statistics were calculated using the Bartlett correction factor as n’F, where
n*= n- 29/6- 2~/3, ~" is the fitted number of common factors, and F the maximum
likelihood discrepancy function. Results are summarized in Tables 2 and 3.

Table 2 compares the obtained and predicted test statistic intercorrelations for the 14
experimental conditions. Predicted correlations are given in parentheses. The left side of
Table 2 gives the obtained and predicted correlations between the Chi-square goodness-
of-fit statistics for 1, 2, and 3 common factor models. For example, P21 refers to the
correlation between the Chi-square goodness of fit statistics for 1-factor and 2-factor
common factor models. The right side of the table gives correlations for Chi-square differ-
ence statistics. For example, p1-2, 2 refers to the correlation between "1-2" (the difference
between the Chi-square statistics for 1 and 2 common factors), and "2" (the Chi-square
statistic for 2 common factors). The theory developed in this paper predicts that all of
these correlations are zero.

The data in Table 2 indicate that, in general, differences between obtained and predic-
ted test statistic intercorrelations are trivial for sample sizes above 400.

Table 3 compares the obtained and predicted means and variances of the chi-square
statistics in the 14 experimental conditions. (For compactness, results for the noncentral
case are given in scientific notation, with mantissa for the predicted values shown in
parentheses. In the central 3-factor case, the predicted value of the mean was always 12,
and the predicted value of the variance was always 24.) Here, the general trends in the
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TABLE 3

Comparison of Obtained and Predicted Test Statistic Neans and Variances

Condition Neans Variances

1 2 3 1 2 3

1 6,60E1(7,27) 3.43E1(4.20) 11.1 2.39E2(2,37)
2 1,12E2(1,21) 5.79E1(6,59) 11,6 4.82E2(4.28)
3 1.61E2(1.68) 8.26E1(8.98 11.6 6.63E2(6.19)
4 2.09E2(2.16) 1.07E2(1.14) 11.8 8.90E2(8.10)
5 2.59£2(2.64) 1.32E2(1,38) 11,8 1.14E3(1.00)
6 3,08E2(3.11) 1.57E2(1.61) 12.0 1.24E3(1.19)
7 3.53E2(3.59) 1.82E2(1.85) 11.8 1.44E3(1.38)
8 4.05E2(4.07) 2.08E2(2.09) 12.2 1.85E3(1.57)
9 4.52E2(4.55) 2.31£2(2.33) 12.1 1.92E3(1.76)

10 5.01E2( 5.02 2.56E2(2.57) 11.9 2.21E3(1.96)
11 1.29E3(1.29) 6.54E2(6.53) 12.3 4.82E3(5.12)
12 8.96E1(9.86) 4.58E1(5.49) 11.2 3.16E2(3.41)
13 4.40E2(4.40) 1.03E2(1.03) 11.9 1.94E3(1.71)
14 7.63E2(7.62 3.88E2(3.87) 12.2 2.82E3(2.99)

1.13E2(1.30)
2.28E2(2.26)
3.67E2(3.21)
4.70E2 4.33)
5.78E2 5.12)
6.69E2 6.07)
7.93E2,7.03)
1,01E3,0,80)
9.86E2. 8.94)
1.06E3,0.99)
2.54E3,2.57)
1.50£2,1.82)
3.93E2,3.75)
1.51E311.51)

20.3

20,1
24,4
24,6
24,7
23,7

23.3
25,8
24,4
24.6
28.3

19.2
22.7
28.1

data seem to be (a) that convergence is faster in the central case than in the non-central
case. Convergence to predicted values seems reasonably good for n = 500 or higher, al-
though this seems to vary with different population factor patterns.

Overall, the Monte Carlo evidence seems to support the notion that Theorems 1 and
2 yield accurate predictions of the moment structure of the SCT and the SCDT, provided
that the sample size is reasonably large.

5. Summary and Conclusions

Theorems 1 and 2 establish results on the joint asymptotic distributions of Chi-
square difference tests, on a sequence of nested models. It should be emphasized that these
results are quite general--they are not restricted to maximum likelihood and generalized
least squares descrepancy functions, but hold for any discrepancy function satisfying con-
ditions (i), (ii), (iii), and regularity condition 

The Monte Carlo evidence suggests that the predictions of the theory are essentially
correct in the case of maximum likelihood common factor analysis. Future Monte Carlo
investigations should examine (a) the effectiveness of the theory for other models and
discrepancy functions, and (b) robustness of its predictions to violations of assumptions
and regularity conditions.
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