
1240 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 8, AUGUST 2003

On the Multivariate Nakagami-m Distribution With Exponential Correlation
George K. Karagiannidis, Member, IEEE, Dimitris A. Zogas, Student Member, IEEE, and Stavros A. Kotsopoulos

Abstract—In this letter, capitalizing on the proof of a theorem
presented by Blumenson and Miller many years ago, a useful
closed formula for the exponentially correlated -variate Nak-
agami- probability density function is proposed. Moreover,
an infinite series approach for the corresponding cumulative
distribution function is presented. Bounds on the error resulting
from the truncation of the infinite series are also derived. Finally,
in order to check the accuracy of the proposed formulation,
numerical results are presented.

Index Terms—Correlated fading, diversity, exponential correla-
tion model, Nakagami- fading channels, Rayleigh fading chan-
nels.

I. INTRODUCTION

T HE effect of correlated fading on the performance of wire-
less communications systems has received a great deal of

research interest recently, due to the possible use of space diver-
sity receivers in handheld phones or compact base stations [1],
[2]. Several spatial correlation models have been proposed and
used for the performance analysis of various wireless systems,
corresponding to specific modulation, detection, and diversity
schemes. One of them, frequently used in multichannel recep-
tion, is the exponential correlation model, which was treated in
[3] by Aalo, who studied the performance of maximal-ratio di-
versity in correlated Nakagami- fading. The correlation ma-
trix of this model is described by and corre-
sponds to the scenario of multichannel reception from equis-
paced diversity antennas, since the correlation between the pairs
of combined signals decays as the spacing between the antennas
increases [1]. The exponential model was used later by sev-
eral researchers, who dealt with the performance analysis of
space diversity techniques [4]–[6]. This model was also pro-
posed to model the single Rayleigh fading process [7]. How-
ever, care should be taken in the use of this model as a temporal
fading correlation model, since it gives zero average fade dura-
tion for the Rayleigh fading envelope, which is not consistent
with real-world measured data [8]. From the literature review,
multivariate Rayleigh densities have been reported in many pa-
pers. A summary of these works can be found in [9]. Simon and
Alouini in [10] presented an approach to the bivariate Rayleigh
cumulative distribution function (cdf) in the form of a single in-
tegral with finite limits and an integrand composed of elemen-
tary functions. As far as Nakagami-multivariate analysis is

Paper approved by M.-S. Alouini, the Editor for Modulation and Diversity
of the IEEE Communications Society. Manuscript received February 13, 2002;
revised September 19, 2002; November 1, 2002; and January 28, 2003.

G. K. Karagiannidis is with the Institute for Space Applications and Re-
mote Sensing, National Observatory of Athens, 15236 Athens, Greece (e-mail:
gkarag@space.noa.gr).

D. A. Zogas and S. A. Kotsopoulos are with the Electrical and Computer
Engineering Department, University of Patras, 26110 Patras, Greece (e-mail:
zogas@space.noa.gr; kotsop@ee.upatras.gr).

Digital Object Identifier 10.1109/TCOMM.2003.815071

concerned, Nakagami in [11] defined the bivariate Nakagami-
probability density function (pdf) and Tan and Beaulieu in [12]
presented an infinite series representation for the bivariate Nak-
agami- cdf.

The main contribution of this letter is the derivation of useful,
closed-form expressions for the multivariate, exponentially cor-
related Nakagami- pdf and cdf, which can be used as a general
theoretical tool in the performance analysis of wireless commu-
nications systems with multichannel reception or in the Markov
modeling of the Nakagami- fading channel. More specifi-
cally, in this letter, capitalizing on the proof for a theorem pre-
sented many years ago by Blumenson and Miller in [13], a
useful closed formula for the-variate exponentially correlated
Nakagami- pdf is proposed. Moreover, an infinite series ap-
proach for the corresponding cdf is presented and bounds on the
error resulting from the truncation of these series are derived.
This approach is an extension to the-variate case of the for-
mulation proposed by Tan and Beaulieu in [12] for the bivariate
Nakagami- cdf.

II. THE EXPONENTIALLY CORRELATED

NAKAGAMI - DISTRIBUTION

The Nakagami- model describes multipath scattering with
relatively large delay-time spreads, with different clusters of re-
flected waves [11]. It includes, as a special case, the Rayleigh
model, the one-sided Gaussian model, and it can also approx-
imate the classical Rician fading distribution. However, while
this approximation may be true for the main body of the pdf, it
becomes highly inaccurate for the tails. As bit errors or outage
mainly occur during deep fades, the tail of the pdf mainly deter-
mines these performance measures [14].

If is a Nakagami- variable, then its corresponding pdf is
described by1

(1)

whereas is the Gamma function, , with being
the average signal power and representing the inverse nor-
malized variance , which must satisfy , describing
the fading severity. Moreover, it is well known thatcan be
considered as the square root of the sum of squares ofin-
dependent Rayleigh or independent Gaussian variates [2],
[11]. Let be -dimensional column vectors,
which are independent and normally distributed with mean zero
and exponential correlation matrix , ,
with

(2)

1Equation (1) is another representation of the classical formula for the single
Nakagami-m pdf [11] using
 = r =m.
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If are dimensional column vectors,
with composed of the th components of the and

, where means the
norm of , then are Nakagami- variates and
their joint pdf is given by

(3)

with
for
for and

is the first kind and th-order modified Bessel function.
Equation (3) is derived using [13, (2.1)] with the appropriate
substitution of the parameters.

The pdf in (3) is well defined for due to the following
result [15, (9.6.7)]:2

(4)

Moreover, for the bivariate Nakagami- pdf, defined
in [8], is derived. Although the parameter in (3) seems to
be restricted to a positive half integer or integer, it can be any
positive number not less than 0.5, since the same argument for

is given in [11, p. 31].
The -variate Nakagami- cdf is by definition

(5)

or

(6)

2When�! 1, it is easily verified that��� is not a positive definite matrix (all
eigenvalues are not greater than zero). In such a case, the multivariate normal
pdf used in [13, (2.3)] cannot be defined [16] and consequently (3) does not
hold.

for
for

and is the incomplete Gamma function [15, (6.5.2)]. For
the derivation of (6), see Appendix A.

The error , resulting after the truncation of the nested
infinite series in (6), is given by

(7)

whereas

and is the number of terms required to be summed
in (6), in order to meet a desired accuracy. An upper bound for
the error can be found by replacing the incomplete gamma
functions in with their confluent hypergeometric function
representation [15, (6.5.12)] and following a procedure similar
to the one described in [12]. However, due to the space limita-
tion of this letter, the formula for the-variate case could not be
cited. As an example, the trivariate case is approached and fol-
lowing the same mathematical analysis, the error bound for the

-variate case can be derived. The upper bound of the error for
the trivariate case can be evaluated as (see Appendix B)

(8)

with , given on the next page.

is the generalized
hypergeometric function [17, (9.14/1)] with the
Pochammer symbols.

III. N UMERICAL RESULTS AND DISCUSSION

Equation (3) can be used in the performance analysis of linear
antenna arrays with correlated branches. Assuming that
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TABLE I
COMPARISON OFINFINITE SERIES APPROACH FORTRIVARIATE

AND QUATRIVARIATE NAKAGAMI -m CDF WITH ADAPTIVE NUMERICAL

INTEGRATION TECHNIQUE

the correlation between the branches follows the exponential
model, then the -variate Nakagami- pdf and cdf can be de-
rived directly from (3) and (6), correspondingly.

In order to check the accuracy of the proposed mathematical
analysis, the results obtained by setting (trivariate) and

(quatrivariate) in (6) are compared in Table I with those
from the adaptive integration technique [18], with regard to the
accuracy and speed of calculations. This numerical integration
technique is used to evaluate the triple and the quatrifold inte-
gral of (5). The numbers in brackets in the second column of
Table I are the required terms to be summed in order to ob-
tain accuracy at the seventh significant digit. To simplify the
computations, it is assumed—without loss of generality—that

. As Table I indicates, an increase to the correla-
tion also leads to an increase of the required terms that need to
be summed in order to obtain a given accuracy. Furthermore, the
number of the required terms depends strongly on the signals
envelopes. An increase of the signals envelopesincreases
the area under which the function is integrated, and correspond-
ingly, the number of terms required in the summation of the se-
ries. Taking into consideration the accuracy of the computation,
the adaptive numerical technique gives results that differ slightly

from the infinite series approach . Furthermore, it was
observed that the infinite series representation is evaluated much
faster ( 1 s) compared to the numerical integration technique.
Especially for the trivariate case, the CPU time for the adaptive
method was approximately 2–4 s for all cases, and increased
proportionally with the correlation. For the quatrivariate case,
the observed calculation time was about 1 s for the infinite series
and about 15 s for the adaptive method. The above calculations
were performed on an Athlon 1,2 Ghz PC

IV. CONCLUSIONS

In this letter, capitalizing on the proof of a theorem presented
many years ago by Blumenson and Miller and extending the
Tan and Beaulieu approach for the bivariate Nakagami-cdf,
useful formulae for the joint -variate Nakagami- pdf and
cdf with exponential correlation are derived. The proposed for-
mulation can be efficiently used in the performance analysis of
space-diversity techniques. Moreover, it can be used, with care,
to find transition probabilities in the Markov chain modeling of
the Nakagami- process.3

3Very recently, another useful work on the multivariate Rayleigh distribution
was published [19].
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APPENDIX A

DERIVATION OF THE MULTIVARIATE NAKAGAMI -
CDF WITH EXPONENTIAL CORRELATION

Substituting the Bessel function in (3) with its infinite series
representation [17, (8.445)] results in

(9)

Substituting (9) into (5), the cdf can be written as shown in
(10) at the bottom of the page. Making the transformations

and using the definition of the incomplete gamma function
[15, (6.52)], the -variate Nakagami- cdf is finally derived
as shown in (6).

APPENDIX B

DERIVATION OF THE ERRORBOUND

The error in truncating the nested infinite series for the
trivariate Nakagami- cdf is produced setting in (7) as

(11)

(10)
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where

Using [15, (6.5.12)], (11) can be written as

(12)
with given at the bottom of the previous page and

being the well-known confluent hypegeometric
function. Since can be shown to be mono-
tonically decreasing for all the positive values ofand ,
can be upper bounded as

(13)

where , are given at the bottom of the previous page. After
algebraic manipulations, (8) is derived.
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