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ON THE (n, d)th f-IDEALS

Jin Guo and Tongsuo Wu

Abstract. For a field K, a square-free monomial ideal I of K[x1, . . . , xn]
is called an f-ideal, if both its facet complex and Stanley-Reisner complex
have the same f -vector. Furthermore, for an f -ideal I, if all monomials in
the minimal generating set G(I) have the same degree d, then I is called
an (n, d)th f -ideal. In this paper, we prove the existence of (n, d)th f -ideal
for d ≥ 2 and n ≥ d + 2, and we also give some algorithms to construct
(n, d)th f -ideals.

1. Introduction

Throughout the paper, for a set A, we use Ad to denote the set of the
subsets of A with cardinality d. For a field K, let S = K[x1, . . . , xn], and let
I be a monomial ideal of S. Denote by sm(S) (sm(I), respectively) the set of
square-free monomials in S (in I, respectively). As we know, there is a natural
bijection between sm(S) and 2[n], denoted by

σ : xi1xi2 · · ·xik 7→ {i1, i2, . . . , ik},

where [n] = {1, 2, . . . , n} for a positive integer n. For other concepts and
notations, see references [3, 5, 7, 8, 10, 11].

Constructing free resolutions of a monomial ideal is one of the core problems
in combinatorial commutative algebra. A main approach to the problem is by
taking advantage of properties of a simplicial complex, so it is important to
have a research on properties of the complex corresponding to an ideals, see,
e.g., references [4, 6, 9, 12]. There is an important class of ideals called f -ideals,
whose facet complex δF (I) and Stanley-Reisner complex δN (I) have the same
f -vector, where δF (I) is generated by the set σ(G(I)), and δN (I) = {σ(g) | g ∈
sm(S) \ sm(I)}. Note that the f -vector of a complex δN (I), which is not easy
to compute in general, is essential in the computation of the Hilbert series of
S/I. Since the correspondence of the complex δF (I) and an ideal I is direct and
clear, it is more easier to calculate the f -vector of δF (I). So, it is convenient
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to calculate the Hilbert series and study other corresponding properties of S/I
while I is an f -ideal.

The formal definition of an f -ideal appeared first in [1], and it is then studied
in [2]. In [7], a monomial ideal I of K[x1, . . . , xn] is called an (n, d)th ideal if
the monomials in the minimal generating set G(I) have the same degree d,
and the (n, d)th f -ideals are characterized. General f -ideals are also studied
in [7]. In [7], a bijection is introduced between square-free monomial ideals of
degree 2 and simple graphs, and it is shown that V (n, 2) 6= ∅ holds for each
n ≥ 4, where V (n, d) is the set of (n, d)th f -ideals. The structure of V (n, 2) is
determined, and the characterization of the unmixed f -ideals is also studied in
[7]. Recall that an ideal I is called unmixed, if codim(P ) = codim(I) holds for
every prime ideal P minimal over I.

In this paper, we give another characterization of unmixed f -ideals in part
two. In Section 3, we generalize the aforementioned result of [7] by showing
that V (n, d) 6= ∅ for general d ≥ 2 and n ≥ d + 2. In Section 4, we introduce
some algorithms to construct (n, d)th f -ideals, and we show an upper bound of
the (n, d)th perfect number in Section 5. In Section 6, we show some examples
of nonhomogeneous f -ideals, the existence of which was still open in [7].

The following notations, definitions and propositions are needed in this pa-
per.

Let A be a set of square-free monomials in K[x1, . . . , xn]. The sets ⊔(A)
and ⊓(A) are defined respectively by

⊔(A) = {gxi | g ∈ A, xi ∤ g, 1 ≤ i ≤ n}

and

⊓(A) = {h | 1 6= h, h = g/xi for some g ∈ A and some xi with xi | g}.

Definition 1.1 ([7, Definition 2.1]). Let S = K[x1, . . . , xn], and let A ⊆
sm(S)d, where 1 < d < n. A is called an (n, d)th upper perfect set, if ⊔(A) =
sm(S)d+1 holds. Dually, A is called an (n, d)th lower perfect set, if ⊓(A) =
sm(S)d−1 holds. If A is both (n, d)th upper perfect and (n, d)th lower per-
fect, then A is called an (n, d)th perfect set, or alternatively, a perfect subset

of sm(S)d. For a given pair of numbers (n, d), the smallest number among
cardinalities of (n, d)th perfect sets is called the (n, d)th perfect number, and is
denoted by N(n,d).

Proposition 1.2 ([7, Theorem 2.3]). Let S = K[x1, . . . , xn], and let I be an

(n, d)th square-free monomial ideal of S with the minimal generating set G(I).
Then I is an f -ideal if and only if G(I) is (n, d)th perfect and |G(I)| = 1

2

(

n

d

)

holds true.

Proposition 1.3 ([7, Proposition 3.3]). V (n, 2) 6= ∅ if and only if n = 4k or

n = 4k + 1 for some positive integer k.
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Proposition 1.4 ([7, Proposition 5.3]). Let S = K[x1, . . . , xn]. If I is an

(n, d)th f -ideal, then I is unmixed if and only if sm(S)d \G(I) is lower perfect

in sm(S)d.

In [7], a method for finding an (n, 2)th perfect set with the smallest cardi-
nality is provided in the following: First, decompose the set [n] into a disjoint
union of two subsets B and B uniformly, i.e., such that ||B| − |B|| ≤ 1 holds
true. Second, for each such subset B, set

A = {xixj | either {i, j} ⊆ B, or {i, j} ⊆ B}.

Then, A is an (n, 2)th perfect set whose cardinality is equal to the (n, 2)th

perfect number N(n,2), where

(1.1) N(n,2) =

{

k2 − k, if n = 2k;

k2, if n = 2k + 1.

Note that for any such subset A, a set D with A ⊆ D ⊆ sm(S)2 is also an
(n, 2)th perfect set.

2. (n, d)th unmixed f-ideals

For a positive integer d greater than 2, an (n, d)th f -ideal may be not un-
mixed, see Example 5.1 of [7] for a counterexample. So, it is interesting to
characterize the unmixed f -ideals. In this section, we show a characterization
of unmixed f -ideals by the corresponding simplicial complex, by taking ad-
vantage of the bijection σ between square-free monomial ideals and simplicial
complexes.

A simplicial complex ∆ on [n] is called a d-flag complex if every minimal
nonface of ∆ consists of d elements of [n]. Note that a flag complex (see,
e.g., [8, page 155]) is a 2-flag complex, as is just defined. For a simplicial
complex ∆ on [n], the Alexander dual of ∆, denoted by ∆∨, is defined by
∆∨ = {[n] \ F |F /∈ ∆}, see [8] for details.

Proposition 2.1. Let S = K[x1, . . . , xn], and let I be an (n, d)th square-free

monomial ideal of S. Then I is an (n, d)th unmixed f -ideal if and only if the

following conditions hold:
(1) |G(I)| =

(

n

d

)

/2.
(2) dim δF(I)

∨ = n− d− 1.
(3) 〈σ(u) |u ∈ sm(S)d \G(I)〉 is a d-flag complex.

Proof. We claim that the following two results hold true: First, the condition
(2) holds if and only if G(I) is lower perfect. Second, the condition (3) holds
if and only if G(I) is upper perfect and sm(S)d \G(I) is lower perfect. If the
above two results hold true, then it is easy to see that the conclusion holds by
Propositions 1.2 and 1.4.

For the first claim, if G(I) is lower perfect, then for each minimal nonface
F of δF(I), |F | ≥ d holds. By the definition of the Alexander dual, H is a face
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of δF(I)
∨ if and only if [n] \H is a nonface of δF(I). So, for each facet L of

δF(I)
∨, |L| ≤ n− d holds true. Since |G(I)| 6=

(

n
d

)

, there exists some nonface
of δF (I) with cardinality d, or equivalently, there exists some facet of δF(I)

∨

with cardinality n− d. Thus dim(δF(I)
∨) = n− d− 1 holds.

Conversely, assume dim(δF (I)
∨) = n − d − 1. By a similar argument, one

can see that the smallest cardinality of nonfaces of δF(I) is d, hence G(I) is
lower perfect.

For the second claim, if sm(S)d \G(I) is lower perfect, then for the complex
∆ = 〈σ(u) |u ∈ sm(S)d \G(I)〉, the cardinality of a nonface is not less than d.
Since G(I) is upper perfect, for each nonface F of ∆, there exists v ∈ G(I) such
that σ(v) ⊆ F . Note that σ(v) is a nonface of ∆, so all the minimal nonfaces
of ∆ have cardinality d. Hence ∆ is a d-flag complex.

Conversely, assume that ∆ = 〈σ(u) |u ∈ sm(S)d \G(I)〉 is a d-flag complex.
In a similar way, one can see that G(I) is upper perfect and sm(S)d \G(I) is
lower perfect. �

3. Existence of (n, d)th f-ideals

Let x[n] = x1x2 · · ·xn. For a subset M of sm(S)d, denote M
′ = {x[n]/u |u ∈

M}. The following lemma is essential in the proof of our main result in this
section.

Lemma 3.1. M is a lower (an upper, respectively) perfect subset of sm(S)d if

and only if M ′ is an upper (a lower, respectively) perfect subset of sm(S)n−d.

Proof. For the necessary part, if M is a lower perfect subset of sm(S)d, then
it follows from definition that M ′ is a subset of sm(S)n−d. In order to check
that M ′ is upper perfect, we will show for each monomial u ∈ sm(S)n−d+1

that u ∈ ⊔(M ′) holds. This is equivalent to showing that there exists some
v ∈ M ′, such that v |u holds. In fact, sinceM is lower perfect, for the monomial
u′ = x[n]/u ∈ sm(S)d−1, there exists some w ∈ M such that u′ |w holds. Let
v = x[n]/w. It is easy to see that v |u. Note that v ∈ M ′, this shows that M ′

is upper perfect. In a similar way, one can prove that M ′ is lower perfect when
M is upper perfect. The sufficient part follows from the easy observation that
M ′′ = M . �

Corollary 3.2. If I is an (n, d)th square-free monomial ideal of S, then I is an

f -ideal if and only if |G(I)| =
(

n
d

)

/2 and G(I)′ is a perfect subset of sm(S)n−d.

Denote sm(S{ǩ})d = {u ∈ sm(S)d | xk ∤ u}, and sm(S{k})d = {u ∈
sm(S)d | xk|u}. For a subset X = {i1, . . . , ij} of [n], denote

sm(S{X̌})d = {u ∈ sm(S)d | xk ∤ u for every k ∈ X},

and let sm(S{X})d = {u ∈ sm(S)d | xk | u for every k ∈ X}.

Definition 3.3. For a subset M of sm(S{ǩ})d, if sm(S{ǩ})d+1 ⊆ ⊔(M) holds,
then M is called upper perfect without k. Dually, a subset M of sm(S{ǩ})d is
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called lower perfect without k, if sm(S{ǩ})d−1 ⊆ ⊓(M) holds. A subset M of
sm(S{k})d is called upper perfect containing k, if sm(S{k})d+1 ⊆ ⊔(M) holds;
a subsetM of sm(S{k})d is called lower perfect containing k, if sm(S{k})d−1 ⊆
⊓(M) holds. If M is not only upper but also lower perfect without k, then M
is called perfect without k. Similarly, if M is both upper and lower perfect
containing k, then M is called perfect containing k.

For a subset X of [n], we can define the upper perfect (lower perfect, perfect,
respectively) set without X (containingX) similarly. For a subset A of sm(S)d,
let A{X̌} = A ∩ sm(S{X̌})d, and let A{X} = A ∩ sm(S{X})d.

Proposition 3.4. Let A be a subset of sm(S)d, and let X = {i1, . . . , ij} be a

subset of [n]. Then the following statements hold:
(1) A{X̌} = A{ǐ1}{ǐ2} · · · {ǐj}, and A{X} = A{i1}{i2} · · · {ij};
(2) If A is upper perfect, then A{X̌} is upper perfect without X ;
(3) If A is lower perfect, then A{X} is lower perfect containing X ;
(4) If A is upper (lower, respectively) perfect without X, then A′ is lower

(upper, respectively) perfect containing X. Furthermore, the converse also holds

true.

Proof. (1) and (2) are easy to see by the corresponding definitions.
In order to prove (3), it is sufficient to show that A{k} is a lower perfect

set containing k for each k ∈ [n]. In fact, since A is lower perfect, for each
monomial u ∈ sm(S{k})d−1, there exists a monomial v in A such that u | v.
Note that xk |u holds, so xk | v also holds, which implies that v ∈ sm(S{k})d
holds. Hence A{k} is a lower perfect set containing k.

For (4), we only show that A′ is lower perfect containing k when A is upper
perfect without k, and the remaining implications are similar to prove. In
fact, for each monomial u ∈ sm(S{k})n−d−1 ⊆ sm(S)n−d−1, u

′ = x[n]/u ∈

sm(S)d+1. Note that xk |u implies xk ∤ u′ holds true, hence u′ ∈ sm(S{ǩ})d+1

also hold. Since A is upper perfect without k, there exists a monomial v ∈ A
such that v |u′ holds, hence u | v′ holds, where v′ = x[n]/v ∈ A′. This completes
the proof. �

Remark 3.5. For a perfect subset A of sm(S)d, A{X̌} needs not to be a lower
perfect set without X , and A{X} needs not to be an upper perfect set con-
taining X , see the following for counterexamples:

Example 3.6. Let S = K[x1, . . . , x6], let

A = {x1x2x3, x1x2x4, x1x2x5, x3x4x5, x1x2x6, x1x3x6, x2x3x6, x4x5x6},

and let B = A \ {x1x2x6}. It is easy to see

A{6̌} = B{6̌} = {x1x2x3, x1x2x4, x1x2x5, x3x4x5},

A{6} = {x1x2x6, x1x3x6, x2x3x6, x4x5x6}, and

B{6} = {x1x3x6, x2x3x6, x4x5x6}.
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Also, it is direct to check that both A and B are perfect sets, and that both
A{6̌} and B{6̌} are perfect sets without 6. Note that A{6} is a perfect set
containing 6, but B{6} is not upper perfect.

By Proposition 3.4, we have the following example by mapping A, B to A′,
B′ respectively.

Example 3.7. Let S = K[x1, . . . , x6], and let

A′ = {x1x2x3, x1x4x5, x2x4x5, x3x4x5, x1x2x6, x3x4x6, x3x5x6, x4x5x6},

and B′ = A′ \ {x3x4x5}. It is easy to see that

A′{6̌}={x1x2x3, x1x4x5, x2x4x5, x3x4x5}, B
′{6̌}={x1x2x3, x1x4x5, x2x4x5},

and A′{6} = B′{6} = {x1x2x6, x3x4x6, x3x5x6, x4x5x6}. It is direct to check
that both A′ and B′ are perfect sets, and that both A′{6} and A′{6} are perfect
sets containing 6. Note that A′{6̌} is a perfect set without 6, but B′{6̌} is not
lower perfect.

In order to obtain the main result of this section, we need a further fact.

Lemma 3.8. Let S = K[x1, . . . , xn], and let A be a subset of sm(S)d. If

A{ǩ} is a perfect subset of sm(S{ǩ})d without k, and A{k} is a perfect subset

of sm(S{k})d containing k for some k ∈ [n], then A is a perfect subset of

sm(S)d.

Proof. In order to show A is an upper perfect subset of sm(S)d, it suffice
to show that sm(S)d+1 ⊆ ⊔(A). Note that sm(S)d+1 = sm(S{ǩ})d+1 +
sm(S{k})d+1, it suffice to show sm(S{ǩ})d+1 ⊆ ⊔(A) and sm(S{k})d+1 ⊆
⊔(A). Since A{ǩ} is a perfect subset of sm(S{ǩ})d without k, we have

sm(S{ǩ})d+1 ⊆ ⊔(A{ǩ}) ⊆ ⊔(A).

Similarly, sm(S{k})d+1 ⊆ ⊔(A{k}) ⊆ ⊔(A). This shows A is upper perfect.
By a similar way, one can check that A is lower perfect. �

Theorem 3.9. For any integer d ≥ 2 and any integer n ≥ d + 2, there exists

an (n, d)th perfect set with cardinality less than or equal to
(

n

d

)

/2.

Proof. We prove the result by induction on d.
If d = 2, the conclusion holds true for any integer n ≥ 4 by Proposition 1.3.

In the following, assume d > 2.
Assume that the conclusion holds true for any integer less than d. For d, we

claim that the conclusion holds true for any integer n ≥ d + 2. We will show
the result by induction on n.

If n = d + 2, then
(

n
d

)

=
(

n
2

)

. Note that for any integer n ≥ 4, there exists

an (n, 2)th perfect set M , such that |M | ≤
(

n
2

)

/2. By Lemma 3.1, M ′ is an

(n, d)th perfect set. It is clear that |M ′| = |M | ≤
(

n
2

)

/2 =
(

n
d

)

/2.
Now assume that the conclusion holds true for any integer less than n.

Then by Lemma 3.8, it will suffice to show that there is a perfect subset A
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of sm(S{ň})d without n and a perfect subset B of sm(S{n})d containing n,
such that |A| ≤ |sm(S{ň})d|/2 =

(

n−1
d

)

/2 and |B| ≤ |sm(S{n})d|/2 =
(

n−1
d−1

)

/2
hold.

Let L = K[x1, . . . , xn−1]. Then clearly, sm(S{ň})d = sm(L)d holds. By
induction on n, there exists an (n − 1, d)th perfect subset A of sm(L)d, such
that |A| ≤

(

n−1
d

)

/2. It is easy to see that A is a perfect subset of sm(S{ň})d
without n. By induction on d, there exists an (n − 1, d − 1)th perfect subset
B1 of sm(L)d−1, such that |B1| ≤

(

n−1
d−1

)

/2 holds. Let B = {uxn |u ∈ B1}.
It is easy to see that B is a perfect subset of sm(S{n})d containing n, and

|B| = |B1| ≤
(

n−1
d−1

)

/2.

Let D = A ∪B. Note that A = D{ň} and B = D{n}, by Lemma 3.8, D is
a perfect subset of sm(S)d, and |D| = |A|+ |B| ≤

(

n−1
d

)

/2 +
(

n−1
d−1

)

/2 =
(

n

d

)

/2.
This completes the proof. �

By Proposition 1.2 and Theorem 3.9, the following corollary is clear.

Corollary 3.10. For any integer d ≥ 2 and any integer n ≥ d+2, V (n, d) 6= ∅
if and only if 2 |

(

n

d

)

.

4. Algorithms for constructing examples of (n, d)th f-ideals

In this section, we will show some algorithms to construct (n, d)th f -ideals
when 2 |

(

n

d

)

. We discuss the following cases:

Case 1: d = 2. An (n, 2)th f -ideal is easy to construct by [7]. For reader’s
convenience, we repeat it as the following: Decompose the set [n] into a disjoint
union of two subsets B and B uniformly, namely, ||B| − |B|| ≤ 1. Then set
A = {xixj | i, j ∈ B, or i, j ∈ B} to obtain an (n, 2)th perfect set. Note that
|A| = N(n,2) ≤

(

n
2

)

/2, choose a subset D of sm(S)2 \ A randomly, such that

|D| =
(

n
2

)

/2 − N(n,2) holds. It is easy to see that A ∪ D is still a perfect set,

and |A ∪D| =
(

n

2

)

/2. By Proposition 1.2, the ideal generated by A ∪D is an

(n, 2)th f -ideal. Note that each (n, 2)th f -ideal can be obtained in this way
except C5 by [7].

Case 2: d > 2 and n = d+ 2.

Algorithm 4.1. In order to build an f -ideal I ∈ V (d + 2, d), we obey the
following steps:

Step 1: Calculate
(

d+2
d

)

/2. Note that
(

d+2
d

)

/2 =
(

d+2
2

)

/2.
Step 2: As in the case 1, find a perfect subset B of sm(S)2 such that

|B| ≤
(

d+2
2

)

/2, where S = K[x1, . . . , xd+2].
Step 3: Let A = B′. Then A is a perfect subset of sm(S)d by Lemma 3.1,

and |A| = |B| ≤
(

d+2
2

)

/2 =
(

d+2
d

)

/2.

Step 4: Choose a subsetD of sm(S)d\A randomly, such that |D| =
(

d+2
d

)

/2−
|A| holds. It is easy to see that M = A∪D is still a perfect set, and |A∪D| =
(

d+2
d

)

/2.
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Step 5: Let I be the ideal generated by A ∪D. By Proposition 1.2 again, I
is a (d+ 2, d)th f -ideal.

Note that in this way, we construct almost all (d+ 2, d)th f -ideals.

Example 4.2. Show an f -ideal I ∈ V (8, 6).
Note that 8 = 6 + 2, we obey the Algorithm 4.1.
Note that

(

8
6

)

/2 = 14. Find a perfect subset B of sm(S)2 such that |B| ≤
(

8
2

)

/2 = 14, where S = K[x1, . . . , x8]. It is easy to see that

B = {x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x5x6, x5x7, x5x8, x6x7, x6x8, x7x8}

is a perfect subset of sm(S)2, with |B| = 12. Let

A = B′ = { x3x4x5x6x7x8, x2x4x5x6x7x8, x2x3x5x6x7x8, x1x4x5x6x7x8,

x1x3x5x6x7x8, x1x2x5x6x7x8, x1x2x3x4x7x8, x1x2x3x4x6x8,

x1x2x3x4x6x7, x1x2x3x4x5x8, x1x2x3x4x5x7, x1x2x3x4x5x6}.

A is a perfect subset of sm(S)6. Choose D = {x1x2x3x5x6x7, x1x2x4x5x6x8},
then the ideal I generated by A ∪D is an (8, 6)th f -ideal.

Case 3: d > 2 and n > d+ 2. Let S[k] = K[x1, . . . , xk], and let S = S[n] =
K[x1, . . . , xn].

Algorithm 4.3. For an integer n > d+ 2, we construct an (n, d)th f -ideal by
using the following steps:

Step 1: Let t = n, l = d and E = ∅. Set B = {B(t, l, E)}.
Step 2: Assign C = B, and denote i = |C|.
Step 3: Choose each B(t, l, E) ∈ C one by one, deal with each one obeying

the following rules:
If l = 2 or t = l + 2, don’t change anything.
If l 6= 2 and t > l + 2, then cancel B(t, l, E) from B, and add B(t− 1, l, E)

and B(t− 1, l− 1, E ∪ {t}) into B.
After i times, i.e., when B(t, l, E) goes through all the element of C, make a

judgement:
If l = 2 or t = l+ 2 for each B(t, l, E) ∈ B, then go to Step 4, else return to

Step 2.
Step 4: Choose B(t, l, E) ∈ B one by one, deal with each one obeying the

following rules:
If l = 2, assign B(t, l, E) a perfect subset of sm(S[t])l as Case 1.
If l 6= 2 and t = l + 2, assign B(t, l, E) a perfect subset of sm(S[t])l as Case

2.
Step 5: For each B(t, l, E) ∈ B, denote B∗(t, l, E) = {uxE |u ∈ B(t, l, E)},

where xE =
∏

j∈E xj . Denote B∗ = ∪B(t,l,E)∈BB
∗(t, l, E). It is direct to check

that B∗ is a perfect subset of sm(S)d, and |B∗| ≤
(

n
d

)

/2. Choose a subset D of

sm(S)d \ B
∗ randomly, such that |D| =

(

n
d

)

/2− |B∗| holds.
Step 6: Let I be the ideal generated by B∗ ∪D. By Proposition 1.2 again,

I is an (n, d)th f -ideal.
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Example 4.4. Show a (6, 3)th f -ideal.
Let S = K[x1, . . . , x6]. By the above algorithm, we will choose a perfect

subset B(5, 3, ∅) of sm(S[5])3 and a perfect subset B(5, 2, {6}) of sm(S[5])2.
Set

B(5, 3, ∅) = {x3x4x5, x2x4x5, x1x4x5, x1x2x3} and

B(5, 2, {6}) = {x1x2, x1x3, x2x3, x4x5}.

Correspondingly,

B∗(5, 3, ∅) = B(5, 3, ∅) and

B∗(5, 2, {6}) = {x1x2x6, x1x3x6, x2x3x6, x4x5x6}.

Hence

B∗ = {x3x4x5, x2x4x5, x1x4x5, x1x2x3, x1x2x6, x1x3x6, x2x3x6, x4x5x6}

is a perfect subset of sm(S)3. Note that
(

6
3

)

/2 = 10, and |B∗| = 8. Set

D = {x1x2x4, x1x2x5}. The ideal I generated by B∗ ∪D is a (6, 3)th f -ideal.

Note that the (6, 3)th f -ideal given in the above example is not unmixed. In
fact, consider the simplicial complex σ(sm(S)3 \G(I)), and note that {1, 2} is
a nonface of σ(sm(S)3 \ G(I)), which implies that σ(sm(S)3 \ G(I)) is not a
3-flag complex. So, I is not unmixed by Proposition 2.1.

5. An upper bound of the perfect number N(n,d)

For a positive integer k and a pair of positive integers i ≤ j, denote by
Qk

[i,j] the set of square-free monomials of degree k in the polynomial ring

K[xi, xi+1, . . . , xj ]. Note that Q
k
[i,j] = ∅ holds for i > j. For a pair of monomial

subsets A and B, denote by A•B = {uv |u ∈ A, v ∈ B}. If B = ∅, then assume
A •B = A. The following theorem gives an upper bound of the (n, d)th perfect
number for n > d+ 2.

Theorem 5.1. Given a integer d > 2, and a integer n ≥ d+ 2. The following

statements about the perfect number N(n,d) hold:
(1) If n = d+ 2, then

(5.1) N(n,d) = N(n,2) =

{

k2 − k, if n = 2k;

k2, if n = 2k + 1.

(2) If n > d+ 2, then

(5.2) N(n,d) ≤
n−d+2
∑

i=5

N(i,2)

(

n− i− 1

d− 3

)

+

d
∑

j=3

N(j+2,2)

(

n− j − 3

d− j

)

,

where
(

0
0

)

= 1.
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Proof. By Lemma 3.1 and the equation (1.1) in Section 1, (1) is clear.
In order to prove (2), it will suffice to show that there exists a perfect set

with cardinality t =
∑n−d+2

i=5 N(i,2)

(

n−i−1
d−3

)

+
∑d

j=3 N(j+2,2)

(

n−j−3
d−j

)

.

Let P(i,2) be an (i, 2)th perfect set with cardinalityN(i,2) for 5 ≤ i ≤ n−d+2,

and let P(j+2,j) be a (j + 2, j)th perfect set with cardinality N(j+2,j) for 3 ≤
j ≤ d. We claim that the set

M = (∪n−d+2
i=5 P(i,2) • xi+1 •Q

d−3
[i+2,n]) ∪ (∪d

j=3P(j+2,j) •Q
d−j

[j+4,n])

is an (n, d)th perfect set, with cardinality t. It is easy to check that the cardi-
nality of M is t. It is only necessary to prove that M is perfect.

For each w ∈ sm(S)d+1, denote by nk(w) the cardinality of the set {xi | i ≤ k
and xi | w}. If n5(w) ≥ 4, then choose the smallest k such that nk+3(w) =
nk+2(w) = k + 1. Clearly, 3 ≤ k ≤ d. It is direct to check that w is divided by

some monomial in P(k+2,k) • Q
d−k
[k+4,n]. If n5(w) ≤ 3, then choose the smallest

k such that nk(w) = 3 and nk+1(w) = 4. Clearly, 5 ≤ k ≤ n− d+ 2. It is not

hard to check that w is divided by some monomial in P(k,2) • xk+1 • Q
d−3
[k+2,n].

Hence M is upper perfect.
For each w ∈ sm(S)d−1, if n5(w) ≥ 2, then choose the smallest k such that

nk+3(w) = nk+2(w) = k − 1. Clearly, 3 ≤ k ≤ d. It is direct to check that

w divides some monomial in P(k+2,k) • Qd−k
[k+4,n]. If n5(w) ≤ 1, then choose

the smallest k such that nk(w) = 1 and nk+1(w) = 2. Clearly, 5 ≤ k ≤
n − d + 2 holds. It is not hard to check that w divides some monomial in
P(k,2) • xk+1 •Q

d−3
[k+2,n]. Hence M is lower perfect. �

Figure 1 may help to interpret the above theorem intuitively. In this figure,
there is a boundary consisting of the line l = 2 and the line t = l+2. From the
point (d, n) to a point of the boundary, every directed chain C denotes a set of
monomials M(C) by the following rules:

(1) Every arrow of C is from (l, t) to either (l, t− 1) or (l − 1, t− 1).
(2) If the arrow is from (l, t) to (l, t−1), then each monomial in M(C) is not

divided by xt. Correspondingly, if it is from (l, t) to (l − 1, t − 1), then each
monomial in M(C) is divided by xt.

(3) Each point (l, t) of the boundary is a (t, l)th perfect set.
Actually, the figure shows us a class of (n, d)th perfect sets. If we choose each

point (l, t) of the boundary to be a (t, l)th perfect set with cardinality N(t,l),

then the cardinality of the (n, d)th perfect set corresponding to the figure is

exactly
∑n−d+2

i=5 N(i,2)

(

n−i−1
d−3

)

+
∑d

j=3 N(j+2,2)

(

n−j−3
d−j

)

.

Example 5.2. Calculation of the (6, 3)th perfect number.

Let A be a (6, 3)th perfect set. By Proposition 3.4(3), A{6} is a lower
perfect set containing 6. Note that for the monomials of {x1, x2, x3, x4, x5},
each monomial in A{6} is divided by at most two of them. So, |A{6}| ≥ 3. By
Proposition 3.4(2), A{6̌} is an upper perfect set without 6. As the discussion
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Figure 1. Upper bound.

above, |A{6̌}| ≥ 3. Hence |A| ≥ |A{6̌}| + |A{6}| ≥ 6. Actually, it is direct to
check that the following set

B = {x1x2x3, x1x2x4, x3x4x5, x1x5x6, x2x5x6, x3x4x6}

is a (6, 3)th perfect set with cardinality 6. Thus N(6,3) = 6. Note that the
upper bound given by Proposition 5.1(2) is 8, and is not bad for the perfect
number in the case.

6. Nonhomogeneous f-ideal

In [7], a characterization of f -ideals in general case is shown, but it is still
not easy to show an example of nonhomogeneous f -ideal, i.e., the f -ideal I
with the property that monomials in G(I) do not have a same degree. In fact,
the interference from monomials of different degree makes the computation
complicated. Anyway, we finally worked out the following example:

Example 6.1. Let S = K[x1, x2, x3, x4, x5], and let

I = 〈x1x2, x3x4, x1x3x5, x2x4x5〉.
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It is direct to check that

δF(I) = 〈{1, 2}, {3, 4}, {1, 3, 5}, {2, 4, 5}〉

and
δN (I) = 〈{1, 3}, {2, 4}, {1, 4, 5}, {2, 3, 5}〉.

It is easy to see they have the same f -vector, and hence I is an f -ideal, which
is clearly nonhomogeneous.

After this nontrivial example, clearly there are a lot of nonhomogeneous
f -ideals. We will show another example to end this paper.

Example 6.2. Let S = K[x1, x2, x3, x4, x5, x6], and let

I = 〈x1x2, x2x3, x1x3, x4x5, x1x4x6, x1x5x6, x2x4x6〉.

Note that

δN (I) = 〈{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6}〉.

It is direct to check that I is also a nonhomogeneous f -ideal.
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