
On the nature and use of models in network neuroscience

Danielle S. Bassett1,2,3,4,7, Perry Zurn5, and Joshua I. Gold6

1Department of Bioengineering, School of Engineering and Applied Sciences, University of 
Pennsylvania, Philadelphia, PA, 19104

2Department of Physics & Astronomy, College of Arts and Sciences, University of Pennsylvania, 
Philadelphia, PA, 19104

3Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, 
University of Pennsylvania, Philadelphia, PA, 19104

4Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, 19104

5Department of Philosophy, American University, Washington, DC, 20016

6Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, 19104

Abstract

Network theory provides an intuitively appealing framework for studying relationships among 

interconnected brain mechanisms and their relevance to behavior. As the space of its applications 

grows, so does the diversity of meanings of the term “network model.” This diversity can cause 

confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary 

collaboration. Here we review the field of network neuroscience, focusing on organizing principles 

that can help overcome these challenges. First, we describe the fundamental goals in constructing 

network models. Second, we review the most common forms of network models, which can be 

described parsimoniously along three primary dimensions: from data representations to first-

principles theory, from biophysical realism to functional phenomenology, and from elementary 

descriptions to coarse-grained approximations. We identify areas of focus and neglect in this 

space. Third, we draw on biology, philosophy, and other disciplines to establish validation 

principles for these models. We close with a discussion of opportunities to bridge model types and 

point to exciting frontiers for future pursuits.

WHAT IS A NETWORK MODEL?

Over a century ago, Camillo Golgi used blocks of brain tissue soaked in a silver-nitrate 

solution to provide among the earliest and most detailed views of the intricate morphology 

of nerve cells. Santiago Ramon y Cajal then combined this technique with light microscopy 
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and an artist’s eye to draw stunning pictures that helped to establish that these nerve cells do 

not constitute a single reticulum. Instead, they are individual, anatomically defined units 

with complex interconnections. This idea, known as the Neuron Doctrine, soon came to 

encompass not just the structure but also the function of the nervous system and provides the 

foundation for modern neuroscience [1].

It is upon this foundation that modern network neuroscience thrives. This field uses tools 

developed in physics and other disciplines but has a natural relationship to the study of the 

brain. As in the Neuron Doctrine, network neuroscience seeks to understand systems defined 

by individual, functional units, often called nodes, and their relations, interactions, or 

connections, often referred to as edges. Together, the units and interactions, as well as any 

associated dynamics, form a network model that can be used to describe, explain, or predict 

the behavior of the real, physical network that it represents (Fig. 1). Many network models 

draw direct associations between these conceptual quantities and groups of anatomically 

defined, interconnected neurons in real brains [2–7]. These network models can then be 

analyzed using a host of quantitative techniques. For example, pairwise interactions can be 

described using an N × N adjacency matrix, where N is the number of nodes in the network, 

and each ijth element of the adjacency matrix gives the connection strength between node i 
and node j [8]. The architecture of the adjacency matrix can then be characterized using a set 

of mathematical approaches known collectively as graph theory, which was not developed 

explicitly to understand the brain but has a natural synergy with network neuroscience [9]. 

Many other approaches, including generalizations of graphs known as hypergraphs (an edge 

can link any number of vertices) and simplicial complexes (higher-order interaction terms 

become fundamental units) along with non-graph-based techniques, likewise can be used to 

analyze networks of neurons that constitute biological nervous systems [10–12].

These approaches can be applied to other network models of the brain, as well, not just those 

made up of interconnected neurons in vivo. For example, network models can be constructed 

across spatial scales that encompass pieces of chromatin, neuroprogenitor or neuronal cell 

cultures, cerebral organoids, cortical slices, and small volumes of human or non-human 

tissue [13–19]. Nodes can be chosen to reflect anatomical or functional units such as cell 

bodies at the microscale, cy-toarchitectonically or functionally distinct volumes at the 

macroscale, or more arbitary delineations like voxels [20–30]. Edges can be chosen to reflect 

anatomical connections based on identified synapses, white matter tracts, structural 

covariance, physical proximity, or functional relations such as statistical similarities in 

activity time series [31–36].

Even more sophisticated network models can be constructed to include heterogeneous and 

dynamic elements. For example, multilayer and multiplex network models can be 

constructed using multiple types of nodes and edges, such as those obtained from distinct 

neuroimaging modalities [37–39]. Annotated networks can be used to assign properties to 

nodes, such as cerebral glucose metabolism estimates from fluorodeoxyglucose (FDG)-

positron emission tomography (PET), blood- oxygen-level dependent (BOLD) contrast 

imaging, mag- netoencephalographic (MEG) or electroencephalographic (EEG) power, gray 

matter volume or cortical thickness, cytoarchitectonic properties, measurements of oxidative 

metabolism, or estimates of coding capability, and to understand their relationships to nodal 
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properties and internodal connectivity [40, 41]. Temporal dynamics can be applied to both 

nodes and edges, enabling studies of networks as reconfigurable dynamical systems that 

evolve over time [42–46].

Once constructed, these network models can be used to obtain deeper insights into how 

patterns of relationships between units support emergent function and behavior. For 

example, clustered connections can be used to identify locally efficient subgraphs or larger 

scale modules that can subserve specialized functions [47]. The conspicuous absence of 

connections can indicate holes or cavities in the architecture that could be conducive to 

information segregation [48, 49]. Topological shortcuts may support unusually long-distance 

interactions and generally efficient large-scale information transmission [50, 51]. At a more 

local level, nodes in a network that are more connected than the average are called hubs, 

which can be either localized or connected globally with one another to form a rich-club or 

network core [52, 53]. Important questions then follow regarding how the specific pattern of 

edges between nodes supports or hinders critical neu-rophysiological processes related to 

synchrony, communication, coding, and information transmission [54–57].

However, despite these clear benefits of using the evergrowing suite of network-based 

approaches to better understand the brain, the rapid growth of this field also brings major 

challenges. The sheer number of different kinds of network models used continues to grow, 

and their relationship to the kinds of relatively simple networks of interconnected neurons 

seen under Cajal’s microscope becomes increasingly distant. Consequently, different 

investigators use the term “network model” with different sets of assumptions about what 

the term means, which systems are most amenable to these kinds of analyses, and what sorts 

of conclusions can be drawn from the results (Box 1). These different assumptions can 

hamper communication, collaboration, and discovery. We therefore aim here to synthesize a 

set of organizing principles that govern how to define, validate, and interpret the different 

kinds of models encompassed by modern network neuroscience.

WHAT KINDS OF MODELS ARE USED IN NETWORK NEUROSCIENCE?

We begin by reviewing efforts to understand mechanisms of brain structure, function, 

development, and evolution in network neuroscience. We organize these efforts in terms of 

three key dimensions of model types that define the state-of-the-art in the field (Fig. 2). The 

first dimension is a continuum that extends from data representation to pure (or “first-

principles”) theory. The second dimension is a continuum that extends from biophysical 

realism to phenomenological estimates of functional capacity (“functional 

phenomenology”). The third dimension is a continuum that extends from elementary 

descriptions to coarse-grained approximations. For each dimension, we discuss the rationale 

for its construction, several common forms, and major contributions. We then use this 

classification scheme to provide a vision for how future work might bridge network model 

types and provide integrative explanations for the diverse parts, processes, and principles of 

neural systems.
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From data representation to first-principles theory

Perhaps the first and most fundamental question that one can ask about a network model is 

whether it is a simple representation of data or a theory of how the system behind the data 

might work [58]. A straightforward way to operationalize the difference between these types 

is that a pure data representation cannot make a prediction about how the system came to be 

or what the system will become, whereas a first-principles theory explicitly sets out to do so. 

Mathematically, a data representation can be stored as a simple, temporal, multilayer, or 

annotated graph. In contrast, a theory-based model must combine a graph with a difference 

or differential equation specifying dynamics, evolution, or function of the nodes, edges, or 

both. This distinction is important because data-driven network models may have more 

biological realism but are less amenable to claims regarding mechanism or dynamics than 

theory-based models.

Data-based network models were first built using the detailed descriptions of brain structure 

by Cajal and his successors. For example, a synthesis of extensive prior work in the macaque 

suggested that the pattern of 305 structural connections among 32 visual and visual-

association areas is consistent with a distributed hierarchy of information processing [59]. 

Complementary work in the mammalian cortex, especially the cat, distinguished between 

central and peripheral brain areas, in concert with their role in sensory processing [60–62]. 

As tools from the mathematical study of graphs became more commonly used to formalize 

the study of connectivity patterns in neural systems, efforts expanded across species from C. 
elegans to human, from macroscopic to microscopic scales, and from structural to functional 

data [16, 63–70]. These data-based network models were initially simple graphs that lacked 

any formal specification of dynamics. Later work extended these efforts to include other 

sorts of temporal, multilayer, multiplex, and annotated graphs. These models continue to 

provide new insights into how structural and functional connectivity are conserved and 

varies across species, depend on the spatial scale of measurement, and relate to cognition 

and disease [43, 71–77].

Theory-based models combine a network architecture with a model of dynamics that occurs 

at each node, at each edge, or across both nodes and edges. The most common forms of such 

models are those that define dynamics for each node. At the microscale, relevant dynamics 

include Hodgkin-Huxley, Izhikevich, and Rulkov map neuronal dynamics [78–81]. For 

neuronal ensembles, phenomenological models span FitzHugh-Nagumo, Hindmarsh-Rose, 

and Kuramoto oscillators [82–84]. For larger volumes of tissue, neural mass models have 

been used, for example in combination with coupling patterns derived from white-matter 

tractography to provide insights into neural underpinnings of synchronization, plasticity, and 

neurological disease [46, 85–89]. Another type of theory-driven model predicts how 

exogenous input to a neural system impacts its dynamics in a network- dependent manner, a 

form of network control [90–92]. Less common, but potentially useful, theory-based models 

define edge dynamics, for example as generative network models [93]. These models could 

be profitably extended by recently developed dynamic extensions of the classic random 

graph, including the configuration model, the stochastic block model, and the block-point 

process model [94, 95].
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Network models at the two extremes of this dimension have both advantages and 

disadvantages. Data representations have the benefit of tracking closely with experimental 

findings but cannot alone be used to make formal, model-based predictions about a neural 

system’s growth, evolution, or dynamics. In contrast, theory-based models are explicitly 

built to make such predictions but typically must abstract away many neurophysiological 

and neuroanatomical details to ensure that the mathematics is manageable and the results are 

interpretable [96]. Intermediate models along this dimension try to combine the advantage of 

the extremes, often by defining theories whose parameters or functions are specified by data. 

For example, an intermediate model could specify first-principles dynamics on units that are 

linked by data-based estimates of large-scale patterns of connectivity. In general, models 

distributed along this dimension are synergistic, because data representations inform 

theories, and theories produce predictions that can be tested in new data representations [97].

From biophysical realism to functional phenomenology

A second dimension that is useful for differentiating network models spans structural to 

functional realism. Network models on the extreme end of structural, biophysical realism 

include physically true elements, such as neurons, represented as nodes; physically true 

axonal projection patterns, represented as edges; and, should dynamics be included, 

biophysically accurate descriptions of, for example, developmental, regenerative, or 

experience-dependent changes in neuronal morphology and projections [98]. In contrast, 

network models on the extreme end of functional phenomenology include nodes and edges 

that do not necessarily have exact physical counterparts, such as noise correlations in 

cellular neuroscience or functional connectivity in human neuroimaging, and, if dynamics 

are included, laws of network evolution that capture an observed phenomenon in a more 

abstract or conceptual sense. In the context of network neuroscience, this distinction is 

important because it often determines whether a particular model can be used to infer the 

functional capacities of realistic, physical structures or the structural demands of certain 

functions.

Perhaps the quintessential biophysical network model of a neural system is the C. elegans 
structural con-nectome, a data representation in which nodes represent neurons and edges 

represent chemical or electrical synapses [2, 33, 99]. Such models have recently been 

extended to first-principles theories of network control using a simplified noise-free, linear, 

discrete time, timeinvariant model of dynamics [92, 100–102]. At larger spatial scales, the 

structural connectomes of the mouse, macaque, and human brain are also biophysical 

network models providing a data representation of the white matter tracts (edges) linking 

volumes of tissue (nodes) [3, 64, 70]. Network models with biophysically realistic 

components can also be constructed according to theoretical principles. For example, simple 

theories of network control have been studied using network models composed of 

biophysically realistic white-matter tracts [103]. Likewise, complex theories of long-distance 

coordination have been studied using theory-driven oscillatory cortical-circuit models that 

use biophysically realistic components including synaptically couple excitatory and 

inhibitory neurons [45, 104]. Other efforts to include more biophysical realism in network 

models have focused on morphological diversity, arborization patterns, chemical gradients 
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and physical barriers, cell-type specific connectivity rules, synaptic plasticity, and 

cytoarchitecture [5, 105–109].

Conversely, network models of functional phenomenology have edges that are defined by 

measures of functional connectivity or statistical similarities in node time series [36]. 

Functional edges have informational rather than physical meanings, including 

synchronization, phase locking, coherence, and correlation [110, 111]. Such edges also 

provide information about the properties of one time series that can be inferred or predicted 

from another [112]. Commonly, these kinds of functional edges are combined with nodes 

corresponding to exact physical volumes and locations to produce functional network 

models at the level of cells or large-scale brain regions [16, 67]. It is also possible to 

construct network models where the nodes are defined by non-physical rules. For example, 

at the cellular level, a node can be defined as an entity that produces a time series of spiking 

that is statistically different than other entities; e.g., by a principal components analysis 

[113]. At a larger scale, a node can be defined by the output of a sensor that is sensitive to 

brain activity from a distributed area with ill-defined physical boundaries because of artifacts 

of volume conduction through tissue and bone with complex morphologies, as in EEG, 

MEG, or electrocor- ticography (ECoG) [18, 114–116]. There also exist network models of 

functional phenomenology that incorporate explicit formulations of dynamics, such as: (i) 

the packet-switching model of information transmission in the structural connectome, which 

draws inspiration from queuing theory applied to the Internet [117]; and (ii) the pairwise 

maximum-entropy model of collective behavior across neurons or large-scale brain areas, 

which draws inspiration from statistical mechanics [118–121]. Studies of this type are often 

more focused on understanding the brain as an information-processing system than on 

understanding its specific physical instantiation.

Network models at the extremes of this dimension have both advantages and disadvantages. 

Biophysically realistic models incorporate rich empirical observations regarding the physical 

nature of the brain. They are concrete but can be computationally expensive and are 

sometimes difficult to interpret because of a plethora of parameters needed to describe the 

network structure. In contrast, network models that emphasize functional phenomenology 

incorporate rich empirical observations regarding the informational nature of the brain but 

are less easily mapped onto brain structure. They are not concrete in the physical sense but 

can provide simplicity, interpretability, and formal links to non-physical theories such as 

information theory (Box 2). These fundamental differences are particularly important to 

keep in mind when network models at these two extremes have apparently similar 

properties. For example, in some imaging modalities edge strength as measured by structural 

connectivity is correlated with edge strength as measured by functional connectivity [121–

124]. However, a structural connection inferred from a physical measurement should be 

interpreted differently than a functional connection inferred from statistical similarities in 

time-series data [120, 125–127]. Accordingly, it is often useful to generate intermediate 

models along this dimension that combine approaches from the extremes. For example, an 

intermediate model could estimate functional interactions between units that are linked by 

biophysical estimates of inter-neuronal (synaptic) connectivity.
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From elementary descriptions to coarse-grained approximations

The third and final dimension is from elementary descriptions to coarse-grained 

approximations. Over the past decade, it has been argued constructively that the foundations 

of network science rely on accurately identifying well-defined, discrete, non-overlapping 

units that become nodes in the network, and the organic, irreducible relations that become 

edges in the network [128]. For some scientific questions, these units and their relations take 

on natural elementary forms. For other questions, the units and relations are coarse-grained. 

Consider the canonical physicist’s cow: an elementary description might begin with quarks, 

whereas the coarsegrained description might begin with a spherical mass. The former model 

is useful for questions related to quantum mechanics, and the latter is more useful for 

questions related to classical mechanics. In the context of network neuroscience, this 

distinction is important because models based on elementary descriptions seek to understand 

how relationships between structure and function emerge directly from those descriptions, 

whereas models based on coarse-grained approximations focus on emergent network 

properties that may be best understood without explicitly considering the system’s 

elementary building blocks.

Many common network models are based on the elemental units of the Neuron Doctrine: 

individual nerve cells and their synaptic connections [73]. Such models can be either data 

representations or first-principles theories and can either include extensive biophysical 

realism or explain functional phenomenology [80, 108, 118, 129, 130]. Network models at 

this scale can be used to ask questions about cellular mechanisms of growth and 

development or transitions from neural progenitor cells to neurons [131, 132]. Recent work 

has extended these approaches to even smaller scales, for example to investigate specific 

sections of a cell such as neurite outgrowth [133]. Ongoing efforts are also beginning to 

extend to the molecular scale to study the network architecture of chromatin folding within 

the cell nucleus, which changes as cells transition from pluripotent stem cells to neural 

progenitor cells and is altered in neurodevelopmental disorders [134].

In contrast, coarse-grained models are based on simplified descriptions of ensembles of 

smaller units and finer-scale processes. One example for such a simplification scheme, 

which is common in physics, is a continuum or mean-field theory that models the dynamics 

of a collection of different units as equivalent to the dynamics of an average unit [135]. This 

kind of coarse-graining is frequently used in simulations of molecular dynamics, cellular 

biology, and ecology [136–139]. In the context of the brain, it has been used to bridge 

spiking neurons to collective neural dynamics, to better understand synaptic plasticity, and to 

predict the effects of exogenous input [140–143]. Another example is neural mass models, 

which are explicit, coarse-grained approximations of neural ensemble dynamics [46]. 

Implicit coarse-graining also occurs in practically all studies of large-scale brain network 

models, in which each node’s properties are a coarse approximation of the properties of 

smaller units that are typically not directly accessible to measurement methodologies. A 

commonly encountered example is neuroimaging data, for which network-specific coarse-

graining approaches are being developed to better understand and control how data are 

aggregated when forming network models [13, 144, 145].
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Network models at the extremes of this dimension have both advantages and disadvantages. 

For example, elementary models are often most useful for understanding neural codes and 

network function at the cellular level. In contrast, coarse-grained approximations are often 

most useful for understanding population and ensemble codes and network function at the 

ensemble level and beyond. A current focus of interest is the development of network 

models that cross these scales, using data and theory to better understand how the structure 

and function at one scale can be used to make inferences about structure and function at 

another scale [6, 146, 147].

Density of study in this three-dimensional space

We consider the dimensions described above to be relatively independent, such that, for 

example, a data-driven model can be structurally or functionally realistic, or fine- or coarse-

grained. These dimensions thus describe a three-dimensional space in which many different 

kinds of network models can be placed. It is interesting to consider whether there are 

particular parts of this volume that have been more or less well-studied. The answer is 

intertwined with the history of how the field of network neuroscience emerged, as well as 

with changes in the landscape of technology that have quickened the pace of data acquisition 

and broadened the extent of computational modeling. Network neuroscience largely began 

with observations of structural connectivity at the large- scale represented as graphs or 

networks devoid of any explicit dynamics [51, 65, 148]. This early focus has continued, with 

more extensive efforts in data representations than first-principles theories, more biophysical 

realism than functional phenomenology, and more coarse-grained approximations than 

elementary descriptions. Therefore, the least well-studied extreme in this cube represents 

first-principles theories of functional phenomenology at the elementary level of description.

Looking ahead, we emphasize two features of this space that are likely to promote new 

advances. The first is the increasing accessibility of the region of convergence at the center 

of our three-dimensional scheme. The growth of technology and data science has increased 

efforts that constrain or parameterize first-principles theories with real data representations 

[149], filling out the middle of the first dimension [97]. Efforts linking biophysical realism 

with functional phenomenology seek to understand structure-function relations in the brain 

facilitated by both its physical and informational nature, filling out the middle of the second 

dimension [49]. Computational methods and novel data-acquisition methods have also 

increased efforts to bridge elementary descriptions with coarse-grained approximations in 

explicit, multiscale models, filling out the middle of the third dimension. These integrative 

efforts, along with those that work across these dimensions, will help bridge levels of 

understanding of brain structure and function.

The second important feature of this space is the usefulness of its full volume, which 

comprises network models that seek to explain different parts, processes, or principles of the 

nervous system. In general, it is not necessary for any one model to provide the same 

insights as any other model. For example, a biophysical model of synaptic transmission in 

the dentate gyrus is not likely to provide direct insight into the functional phenomenology of 

the default-mode network. Similarly, a map of the whole structural connectome of the 

human at a resolution of 1-mm voxels is not likely to provide insight into the transmission of 
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spontaneous or task-induced action potentials in auditory cortex. Therefore, in addition to 

integration at the center of this space we hope for continued exploration at its 

underdeveloped frontiers.

HOW CAN WE ASSESS THE VALIDITY AND EFFECTIVENESS OF MODELS 

IN NETWORK NEUROSCIENCE?

Assessing the validity of a particular network model typically involves standard statistical 

model-selection methods. These methods balance goodness-of-fit to the data with penalties 

for complexity to avoid overfitting and provide parsimonious and generalizable conclusions. 

However, it can be challenging to achieve this balance for network models because of their 

diversity of goals and uses. For example, a close fit to known anatomical connectivity 

patterns is likely to be a more valid approach for understanding principles that govern 

interactions between elementary, biophysically realistic components of the nervous system 

than for network models of abstract computations. Here we propose a classification system 

for validating network models based on different goals and domains of inquiry. This system 

is based on principles developed in the context of both statistical model selection and the 

evaluation of the efficacy of animal models for psychiatric disorders [150–153]. The 

categories, which are not necessarily mutually exclusive in terms of their relevance to 

assessing a particular network model, are: descriptive, explanatory, and predictive (see Fig. 

3). Below we consider each in detail.

Descriptive validity

The first category is descriptive and is related to the concept of “face validity” that is 

commonly discussed in the context of animal models. It addresses the question of whether 

the model resembles in some key way(s) the system it is constructed to model. In 

considering animal models, face validity is often assessed by comparing symptoms of, for 

example, an animal model of depression to those listed in the Diagnostic and Statistical 

Manual of Mental Disorders [154]. For network models in neuroscience, descriptive validity 

naturally aligns with questions about how well the structure of the model (i.e., the specific 

patterns of nodes and edges) matches the anatomical and/or functional data that it represents. 

This match can be assessed using standard model- selection procedures with an emphasis on 

the goodness- of-fit to the measured data, but it also can reflect choices about how to 

construct the model in light of potentially relevant neurobiological features. For example, 

network models in which nodes represent brain areas that obey cytoarchitectonic or 

functional boundaries have more descriptive validity than those in which nodes represent 

randomly chosen volumes of tissue [22]. Similarly, network models in which edges are 

assigned continuous weights representing the strengths of anatomical connections or 

functional relations have more descriptive validity than those in which edges are assigned 

binary weights [51, 155].

Establishing the descriptive validity of network models faces two major challenges. One is 

that the neural architecture and functional dynamics being modeled are highly complex, with 

nontrivial structure and function present across multiple spatial and temporal scales [13, 

156]. Thus, identifying the appropriate level of complexity that should be modeled can be 
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difficult, both in principle and in practice [157]. In principle, problems arise because there is 

almost always uncertainty about which spatial and temporal scales in the brain are relevant 

for a particular anatomical architecture, neuro-physiological process, cognitive task, or 

behavior [77]. In practice, problems arise because the available imaging, physiological, 

anatomical, and other data used to build the model typically provide particular spatial and 

temporal resolutions that are constrained primarily by the measurement methodology and 

not by any consideration of the scales that are most appropriate for the model [158]. One 

way to address this challenge is to improve the descriptive validity of node definitions, for 

example by detecting node boundaries using structural or functional connectivity or using 

clustering methods to agglomerate smaller regions into larger regions [159–161]. Another 

useful approach is to integrate information from different sets of measurements, including 

anatomical and functional data, micro- and macro-scale network mapping, and integration of 

neurotransmitter function and chemoarchitecture to functional magnetic resonance imaging 

(fMRI) [6, 122, 124, 146, 162–167].

The second major challenge for establishing the descriptive validity of network models is 

extensive individual variability. Individual variability exacerbates problems of underfitting 

and overfitting, because of uncertainty associated with whether idiosyncratic network 

features are relevant to a particular model or are just noise and should be ignored. In general, 

little is known about the principles that govern individual differences in neural connectivity 

patterns in organisms with central nervous systems. However, network architecture and 

function show differences across people that are associated with cognitive functions and 

symptom severity for certain diseases, and these differences may be modulated or 

constrained by the environment, socio-economic status, and genetics [75, 168–175]. 

Network dynamics also can show appreciable individual differences that are reproducible 

across iterative measurements and can be separated into state and trait components [176, 

177]. Efforts to overcome the challenges posed by these kinds of individual differences 

should include schemes to test for both general principles that are robust to individual 

variability and specific markers of behaviorally meaningful between- subject differences that 

are robust to measurement noise. Ideally, future first-principles models could use these tests 

to construct a general form for population-level features, as well as variable parameters to 

account for individual variability.

Explanatory validity

The second category in our proposed classification system for validating network models is 

explanatory. This category is related to the concept of “construct validity” that is commonly 

discussed in the context of animal models. It focuses on a theoretical construct that is 

ultimately used to develop statistical tests and support conclusions drawn from the use of the 

model. Thus, for example, an animal model of depression is considered to have construct 

validity based on arguments about not just how it relates to what is known about depression 

in humans, but also how the model is used to probe causal questions about mechanisms, 

symptoms, and/or treatments that cannot be easily tested in humans. Likewise, a network 

model of the brain can be considered to have construct or explanatory validity if its 

architecture can be justified in terms of brain data and if it can then be used to test for causal 

relationships based on that architecture [77].
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Explanatory validity thus requires an assessment of both a model’s architecture (i.e., a form 

of descriptive validity) and its ability to test for causal relationships. This dual assessment 

can be accomplished using statistical model-selection approaches, with goodness-of-fit 

metrics applied to both structural and functional data balanced by penalties for the 

complexity of particular instantiations of the model [178–181]. Model-selection approaches 

have played an important role in both graphical modeling and neuroimaging [182–184]. 

They also have been applied to model selection at several scales, ranging from the small 

scale of a network subgraph (e.g., dynamic causal modeling) to the large scale of a statistic 

or statistical distribution estimated from the entire network (e.g., the degree distribution or 

Rentian scaling [99, 185, 186]). Formal frameworks for building and evaluating such models 

include exponential random graph models, which create a class of graphs with fixed values 

for topological statistics, and generative network models, which create a class of graphs 

from a wiring rule [93, 149, 187, 188].

Model-selection procedures to maximize explanatory validity involve two particular 

challenges. One is that model complexity, often quantified in terms of the number of free 

parameters, may involve other degrees of freedom in network models that are harder to 

quantify and account for, particularly when considering both structure and function. That is, 

the effective dimensionality of a particular network model may be difficult to define. For 

example, many network features can have non-trivial dependencies, making the number of 

parameters in a model ill-defined [189]. These dependencies can occur from known 

mathematical relations and therefore remain true across all types of networks and be 

relatively easy to account for, or they can occur from unknown constraints on - or drivers of 

- network topology and therefore require different approaches across different network 

ensembles or classes [190–192]. The second challenge is that the complexity of a neural 

network model may be defined or constrained by the desire to maintain biological realism in 

the model’s architecture (descriptive validity) beyond that which is necessary for the 

model’s function. Under these conditions, it can be challenging to identify the statistically 

simplest explanation under those constraints. Efforts to meet this challenge include model-

selection procedures that aim to identify a reduced structural subsystem or slow functional 

manifold that captures the system’s effective architecture and dynamics in the simplest way 

possible [193].

Predictive validity

The third category in our proposed classification system for validating network models is 

predictive. By comparison, an animal model has predictive validity if there is a human-

animal correlation of therapeutic outcomes. That is, a treatment, such as a particular drug, 

should affect a condition in an animal in a manner that corresponds to - and thus is 

predictive of - how that treatment affects that condition in a human [152]. Likewise, a 

statistical model is predictive if there is an organism-model correlation in response to 

perturbation. That is, a perturbation to the network, such as the addition, removal, 

strengthening, or weakening of a node or edge, or the alteration of the function of that node 

or edge via drug, stimulation, neurofeedback, or training, should affect the network in a 

model or simulation in a manner that corresponds to, and thus is predictive of, how that 

perturbation affects the network in the organism. These models, like explanatory models, 
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often combine both structural and functional features. Accordingly, procedures for assessing 

and selecting models with predictive validity face many of the same challenges as for 

explanatory validity, concerning both model complexity and constraints imposed by a desire 

also to provide descriptive validity.

Opportunities for predictive validity often occur later in a field’s lifetime than opportunities 

for descriptive validity, as each discipline moves from developing a language for the subject 

matter, developing tools and techniques relevant to the subject matter, and finally using the 

language, tools, and techniques to answer novel questions and test novel predictions [194]. 

Thus, building models with predictive validity is a relatively new endeavor in network 

neuroscience, although several prominent examples exist. For models of large-scale network 

control, exogenous activation of strong modal controllers, which move the system to distant 

states on the intrinsic energy landscape, was predicted to induce task switching. This 

theoretical prediction was supported by observations of strong modal controllers in human 

brain areas that activate during task switching [90]. For models of smaller-scale network 

control, a theoretical prediction about the control function of a node inside the network 

model was confirmed by ablation studies in C. elegans [92]. For models of complex, 

nonlinear, high-frequency dynamics, a theoretical prediction of synchronization patterns 

produced by seizure dynamics at the onset zone which propagated along human white matter 

network architecture matched observed seizure dynamics in patients with medically 

refractory epilepsy [195]. For models of network dynamics, an observation that network 

flexibility was an intermediate phenotype for schizophrenia motivated the hypothesis that it 

was causally driven by the brain’s state of excitatory/inhibitory balance, thought to underlie 

the disease. This hypothesis was tested and validated in a separate set of healthy subjects 

undergoing a pharmacological challenge with an NMDA-receptor inhibitor 

(Dextromethorphan) [166]. These kinds of predictive models will need to play a more 

prominent role in network neuroscience for the field to grow beyond its current boundaries 

and affect other basic and translational studies of the brain.

A complementary but distinct line of work capitalizes on emerging methods from machine 

learning with the goal of developing network models that can inform other learning 

algorithms. For example, in translational research it is often of considerable interest to 

distinguish between patients and controls, to foreshadow conversion from one clinical 

phenotype to another, to distinguish between one pathology and another pathology leading 

to the same abnormal behavioral phenotype, or to predict the outcome of electroconvulsive 

therapy in major depression or of resection surgery in temporal lobe epilepsy [169, 196–

200]. In these cases, summary statistics of network models have been used as features in 

machine- learning algorithms that make predictions [201]. A key challenge hampering the 

field is that it is not always known a priori which network statistics should be used. One 

useful benchmark could be to assess directly the predictive validity of the network model 

itself. An important area for future growth will be to use such approaches to infer 

fundamental and generalizable models that accurately predict the response of the brain to a 

perturbation or pathology.
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FUTURE OUTLOOK

In the face of the multiplicity of model and validity types, it is imperative that investigators 

clearly specify their study’s goal(s). Insights that can be drawn reasonably from one type of 

model can be quite different than insights that can be drawn reasonably from another type of 

model. What is truth for one may be speculation for another. Furthermore, it is well 

established, although not always acknowledged in practice, that the different goals that 

motivate model construction can affect model fitting and selection in dramatic ways. For 

example, a model that provides the best explanation for how certain factors causally 

influence measured network dynamics might not, because of overfitting, be the best model 

for generating predictions of how the network will respond in the future to those factors. 

Conversely, a particular model that does not provide as effective explanations as another 

might be better suited to prediction problems. It is also possible to construct models that 

span types and dimensions, thereby bridging inferences and overcoming the limitations of 

one model with the advantages of another (see Fig. 4 and Box 3).

A primary strength of network neuroscience is its natural descriptive validity. A key goal 

should be to use models that build on this strength and press forward towards better 

explanations and predictions [77]. However, care must be taken to assess the validity of 

these efforts using appropriate statistical approaches, which can differ for explanation versus 

prediction [150]. Models designed to explain are assessed according to goodness-of-fit, with 

various kinds of penalties assigned to model complexity. In general, these procedures 

minimize bias to obtain accurate representations, which tends to emphasize more complex 

models that can overfit the data. In contrast, models designed to predict are often assessed 

according to their ability to generalize, which can be tested by holding out subsets of data 

during fitting to then compare to predictions from the best-fitting model. These procedures 

typically minimize both bias and variance (overfitting to noise), which tends to emphasize 

simpler models. Finding the appropriate balance in these procedures is particularly 

challenging for network models because the models themselves, and the data to which they 

are applied, are often highly complex. Moreover, there is often a lot of uncertainty about 

how to match the complexity of the model to the complexity of the data in some reasonable 

and appropriate way. Thus, new tools must be developed to measure and compare the 

complexity of network models and to make principled decisions that balance the need for 

biological realism, which may demand complex physical network models, with the desire 

for computational simplicity.

CONCLUSION

Because of the recent explosion of work in the emerging field of network neuroscience, the 

current usage of the term “network model” is broad and multifaceted, encompassing 

multiple dimensions of scientific inquiry. Many practitioners are unaware of complementary 

work being done by others in distinct regions of the three-dimensional space that we define. 

The accompanying potential for myopia increases domain-specific usage and interpretation 

of terms. Because of this multiplicity of meanings, we suggest that practitioners provide 

explicit definitions corresponding to their particular usage when appropriate, so as to avoid 

confusion and facilitate interdisciplinary collaboration. While such care is critical in all areas 
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of science, it is particularly worth raising in the collective awareness when a field is young 

and expanding. We suggest that concerted efforts to extend current frontiers in evaluating 

and assessing model types, as well as bridging model types, will be necessary in order to 

gain a fuller understanding of how networked brain structure and function give rise to our 

mental capacities.
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BOX 1:

MODEL THEORY - A PHILOSOPHICAL PERSPECTIVE

Recent model theory aims both to distinguish unique types of models from one another 

and to identify structural elements of models that are generalizable across scientific 

subfields. A model is a functional representation of a feature of the world. That is, it 

depicts what something is in terms of some of its measurable aspects to yield insights 

into how it works. There are at least four basic sorts of models [202, 203]. Some models 

are scalar, illuminating a feature by reducing or expanding it. Some are idealized, 

creating simplified, abstract representations. Other models are analogical, generating 

comparative structures at either the material or formal level. And still others are 

phenomenological, depicting merely observable elements. Insofar as all models are 

representations, they face the difficult task of defining the relation they have to the feature 

they model. What makes them heuristic devices? How is their accuracy or truth 

determined? Are functional models less true, given their distance from material 

substructures? Or are physical models less accurate, given their inability to account for 

higher level system dynamics?

All models represent reality in some sense and fail to represent reality in another sense. 

They are, therefore, akin to literary fiction. Models mobilize a creative approximation of 

some world-feature for an identifiable end. As such, they are perhaps best interpreted as 

imaginative objects and evaluated pragmatically. Theorizing models as fictions involves 

reframing them as imagined entities that aid in the narrativizing of a physical system 

[204–208]. As with any fiction, the community or discipline in question provides the 

principles that define how the model is generated and used. The model thus explores 

possible interpretations that are of value and interest to the community that uses it to gain 

insights that will move the field forward [209, 210]. Moreover, insofar as different 

models represent different features of a system, they may be used conjunctively to 

construct complementary narrative schemas. Whether taken together or separately, 

models clarify the anatomy and the architecture of a thing, precisely through the exercise 

and further provocation of scientific imagination.
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BOX 2:

FUNCTIONAL PHENOMENOLOGY AND INFORMATION THEORY

Common network models of functional phenomenology are those whose edges are 

defined by measures of statistical similarity between the activity time series of node i and 

the activity time series of node j [36]. Across cellular and systems neuroscience, the use 

of a simple correlation as the measure of statistical similarity has proven useful in 

decoding uncertainty; probing the optimality of computations in the face of limited 

inputs; and predicting a subject’s identity, age, and response to interventions such as deep 

brain stimulation [211–215]. However, many other measures of statistical similarity exist, 

including those that assess non-linear relations, mutual information, and other types of 

conditional dependencies between time series [16, 216, 217]. Important open questions in 

building network models are whether insight into neural function is best obtained by 

considering multiple measures of statistical similarity, and how to quantify their relative 

capacity to capture neural information [218].

While far from a panacea, information theory - the mathematical study of the coding and 

transmission of information - provides useful tools for statistical inference that could 

prove increasingly important for network neuroscience [219, 220]. Although commonly 

used statistical metrics probe shared information between two processes, the theory also 

provides expectations such as maximum entropy and other metrics to probe time-

asymmetric transfer of information between two or more processes, such as transfer 

entropy [119, 221, 222]. In measurements of calcium imaging at the cellular level, 

transfer entropy can be used to distinguish between causal influences between neurons 

and non-causal correlations due to light scattering artifacts [223]. Similar efforts for 

larger-scale network models have used transfer entropy to demonstrate that diverse states 

of information routing can be induced on the same structural network model, simply by 

minor modulations of background Y activity [224]. Important open questions include how 

to quantify non-pairwise causal interactions, and how to think about causality in dynamic 

networks characterized by higherorder, non-pairwise interactions occurring over multiple 

spatiotemporal scales [56].
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BOX 3:

BRIDGING MODEL TYPES

The three model dimensions we considered (Fig. 2) are relatively independent of each 

other, but each encompasses principles that have been of great value to the field. It 

therefore is useful to consider ways to bridge two or more model types within and across 

these dimensions. The concept of bridging models raises the possibility of overcoming 

the limitations of one model type with the strengths of another. This benefit is particularly 

relevant when bridging models across two ends of a single dimension. For example, by 

informing first-principles theories with data, it is possible to overcome a common 

limitation of the former (impoverished empiricism) with a common strength of the latter 

(enriched empiricism) [96]. These bridges can also go in either direction: just as data can 

inform theories, so too can theories inform data-driven approaches [225]. A salient 

example of this latter approach is Latent Factor Analysis via Dynamical Systems 

(LFADS), a model of latent neural dynamics informed by an explicit dynamical-systems 

hypothesis regarding the generation of the observed neural spiking data [226].

The potential to link model types with one another, by either directed or undirected links, 

opens the possibility of building multiscale network models, where one type of model 

informs another type of model in a scale either above or below it. Conceptually, such 

multiscale models become meta-network models in which nodes represent models, and 

edges represent inter-model relations such as how one model predicts, informs, or is 

combined with another model (Fig. 4). For example, a network representation of fine-

grained data (node) can inform (edge) a first-principles theory (node), as can a network 

representation of coarse-grained data (node). In turn, the first-principles theory (node) 

can predict (edge) patterns of functional connectivity (node) or patterns of structural 

connectivity (node). When one considers building such a meta-network model, the same 

challenges arise as with building a simple network: how to accurately identify well-

defined, discrete, non-overlapping model units that become nodes in the network, and the 

organic, irreducible relations between models that become edges in the network [128]. 

Care must also be taken to consider the relative advantages and disadvantages of model 

complexity, biological realism, and interpretational simplicity.

Bassett et al. Page 26

Nat Rev Neurosci. Author manuscript; available in PMC 2019 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 1. Schematic of network models used in neuroscience.
(Left) The simplest and most commonly used network model for neural systems is one that 

represents the pattern of connections (edges) between neural units (nodes). More 

sophisticated network models can be constructed by adding edge weights and node values, 

or explicit functional forms for their dynamics. Multilayer networks can be used to represent 

interconnected sets of networks, and dynamic networks can be used to understand the 

reconfiguration of network systems over time. (Right) Common measures of interest 

include: degree, which is the number of edges emanating from a node; clustering, which is 

related to the prevalence of triangles; cavities, which describe the absence of edges; hubness, 

which is related to a node’s influence; paths, which determine the potential for information 

transmission; communities, or local groups of densely interconnected nodes; shortcuts, 

which are one possible marker of global efficiency of information transmission; and core-

periphery structure, which facilitates local integration of information gathered from or sent 

to more sparsely connected areas.
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FIG. 2. Three dimensions of network model types.
(a) We posit that efforts to understand mechanisms of brain structure, function, development, 

and evolution in network neuroscience can be organized along three key dimensions of 

model types. (b) The first dimension extends from data representation to first-principles 

theory. (c) The second dimension extends from biophysical realism to functional 

phenomenology. (d) The third dimension extends from elementary descriptions to coarse-

grained approximations.
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FIG. 3. Illustrations of different categories of model assessment.
(a) Descriptive validity addresses the question of whether the model resembles in some key 

way(s) the system it is constructed to model. For network models, descriptive validity 

naturally aligns with questions about how well the specific patterns of nodes and edges 

(circular inset) matches the anatomical and/or functional data that it represents (main panel). 

(b) Explanatory validity focuses on a theoretical construct that is ultimately used to develop 

statistical tests and support conclusions drawn from the use of the model. A network model 

can be considered to have explanatory validity if its architecture can be justified in terms of 

brain data and if it can then be used to test for causal relationships to dynamics or behavior 

based on that architecture. Here we show a formal model of network node dynamics 

(circular inset) that can be used to test for causal relationships with dynamics in the true 

system (main panel). (c) Predictive validity occurs when there is an organism-model 

correlation in response to a perturbation, such as a drug, electrical or chemical stimulation, 

neurofeedback, or training. Here we show the model’s response to perturbation (circular 

inset) matching the organism’s response to perturbation (main panel).
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FIG. 4. Bridging model types in network neuroscience.
There are many ways to bridge model types. One natural path begins with fine-scale and 

coarse-grained information drawn from real systems (left) to create network models as data 

representations, which in turn are used to inform first-principles theories (middle). These 

theories then predict observed patterns of functional or structural connectivity (right).
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