
C /

On the Nature of Bias and Defects in

the Software Specification Process

PABLO A. STRAUB

COMPUTER SCIENCE DEPARTMENT

CATHOLIC UNIVERSITY OF CHILE

MARVIN Y. ZELKOWITZ

DEPARTMENT OF COMPUTER SCIENCE AND

INSTITUTE FOR ADVANCED COMPUTER STUDIES

UNIVERSITY OF MARYLAND AT COLLEGE PARK

Abstract

Implementation bias in a specification is an arbitrary

constraint in the solution space. This paper describes the

problem of bias and then presents a model of the specifi-

cation and design processes describing individual subpro-

cesses in terms of precision/detail diagrams, and a model

of bias in multi-attribute software specifications. While

studying how bias is introduced into a specification we re.

alized that software defects and bias are dual problems of a

single phenomenon. T'_is has been used to explain the large
proportion of faults found during the coding phase at the

Software Engineering Laboratory at NASA Goddard Space

Flight Center.

The remaining of this introduction presents our frame-

work, the problem of bias and the concel_t of specifica-

tion correctness. The next section presents our view of the

process of specification and design. Section 3 presents our

model of bias which is based both on the specification pro-

cess and on a classification of requirements. Within this

model, bias is not an absolute property of a specification,

but depends on the process of creation of the specified

requirements, that is bias depends on the process of spec-

ification and design. Section 4 presents the relationships

that exist between bias and defects in a specification, and

a study mscle at the Software Engineering Laboratory that

explains the high relative incidence of coding faults in that

environment.

1 Introduction

Most informal software specifications are ambiguous,

imprecise, and incomplete. Moreover, this is usually not

evident by loohing at a particular specification. This has

prompted research on desirable and undesirable charac-

teristics of specifications and specification languages. To

make specifications precise, formal languages are used.

Some of these languages are defined so that automatic

compilation or execution is possible. However, much detail

has to be included in executable specifications [5]. This ex-

tra detail not only makes the specification harder to read

[6], but also leads to 'implementation bias'.

Alas, implementation bias--an arbitrary constraint in

the solution space--is a term often used but not well de-

fined. This has resulted in two effects: Either (1) spec-

ifications are biased, or (2) they are incomplete, for fear

of bias. In fact, what has been called 'bias' in the litera-

ture is sometimes the desirable record of design constraints

and design decisions. The problem of bias is related to the

more important problem of software defects, because both

are manifestations of either misconceptions with respect to

the problem or preconceptions with .respect to the solution;

hence, we study these two problems together.

OVERVIEW OF THE PAPER. This paper presents a

model to help understand bias in software specifications.

1.1 Specification Framework

In this work we are considering multi-attribute specifi-

cations developed by starting from a description of require-

ments, and then refining it in several stages [3, Chapter 1].

Each stage takes a specification and produces a product,

which is a more refined specification, until a program (i.e.,

a specification for a computation) is obtained. This view is

not an endorsement of any particular development method:

it models top clown development, the waterfall life-cycle

model, Boehm's spiral model, transformational program-.

ming, and other development methods.

We first define some related concepts.

Attribute: feature or dimension that characterizes software

systems (e.g., average response time).•

Requirement: constraint in the values of attributes (e.g.,

average response time shall be 0.5 seconds).

Preference measure: a measure of the goodness of the dif-

ferent values for a given attribute (e.g., smaller re-

sponse time values are better).

Specification: statement of attributes, requirements, and

preference measures for a software system.

Specificand set: set of all systems that satisfy a specifica-

tion.

Solution set: set of all systems that solve a problem.

100_71111L

4-19
PRECEDING PPlGE BLANK NO I" FILMED



(a) (b) (c)

(d) (e) (f)

Figure 1: Specificand S, solution P, and particular

solutions z and z": (a) ideal, (b) acceptable initial

specification, (c) successive specification stages, (d) in-

complete specification, (e) bias, (f) usual case.

Whereas the specificand set is defined in terms of a par-

ticular precise specification of a problem, the solution set
is defined in terms of the problem itself without reference

to any written specification. That is, the specificand set

comprises all systems that are correct with respect to the

written specification, and the solution set comprises all

systems that satisfy the user or customer. The differences

between these sets are at the heart of our model; they are

also the cause of defects in specifications.

1.2 The problem of bias

An ideal initial specification is general and precise

enough so that a software system satisfies the specification
if and only if it solves the problem at hand, that is, the

specificand set equals the solution set (Figure in). This

view is too optimistic, because there can be many solu-

tions that do not even involve software. In practice, we

only require software systems satisfying the specification

to be solutions, and that no substantial class of solutions

does not satisfy the specification, so that we can arrive at

an optimal or nearly optimal solution (Figure lb). An ide-

alized development by staged specifications constrain the

specificand set (Figure lc) by adding design decisions--

and nothing else. Incomplete specifications (Figure ld)

may lead to defects; for instance, z' satisfies the specifica-

tion but it does not solve the problem..On the other hand,

bias (Figure le) may lead to inefficiencies (e.g., optimal

solution is really x S') and other development problems be-

cause the developers are overconstrained. Unfortunately,

most specifications suffer both problems (Figure If).

A specification is biased if some of its requirements are

arbitrary. Biased specifications overly constrain the speci-

ficand set, precluding some valid implementations as solu-

tions to the problem at hand. Hence, the amount of bias is

a common yardstick to judge software specification meth-

ods: those that are considered biased are usually rejected.

Unfortunately, bias is sometimes confused with intended

1000S71ml.

constraintsin the solution set.

1.3 Avoiding bias

A generally accepted rule to avoid bias is "A specifica-

tion should describe only what is required of the system

and not how it is achieved. _1 However, this rule does not

solve the problem: it only shifts it, because whether some

requirement is a what or a how depends on one's point of

view. For instance, the same requirement can be seen as

a how by the designer and as a what by the implemen-

tor. During the process of refining the specification, some

bow's become what's: a design decision (i.e., how to do

something) made by a designer is a requirement (i.e., what

to do) for the implementor. A how becomes a what when

a decision is made: a new requirement is incorporated into

the current specification stage.

Consider a specification for a subprogram. The exter-

nal interface of the subprogram is considered a requirement

by the programmer (it is a what), because he or she can-

not change it. This same interface was previously a how

for the designer of the whole program, because he or she

could have chosen an alternative interface: On the other

hand, internals of the subprogram (e.g., algorithms, data
structures, local variable names) are mostly bow's for the

programmer, because he or she can change them.

There is no reason to include a how in a specification:

specifications should describe what is desired and no more.

However, often some attribute that is already fixed (i.e.,

it is a what) is not specified because of fear of bias. For

instance, if within an institution there is a convention for

local variable names for the purpose of easing maintenance,

then the adherence to this convention is a what: It is al-

ready fixed, the programmer cannot change it, so it should

be specified. We argue that this kind of constraint is not

bias; in Section 3.3 we provide a definition of bias that is

consistent with this view.

1.4 Specification Correctness

Specification bias and specification defects are inti-

mately related. As can be seen from Figure 1, bias is
related to the set difference of the solution set and the

specificand set, P - S. That is, there is bias only if there

are acceptable and preferred solutions outside the speci-

ficand set. Conversely, defects are related to tke specif-

icand set minus the solution set, S - P. That is, if an

implementation i is unacceptable but is correct with re-
spect to the specification, it is in the set difference (i.e.,

i ¢ PAi E S =_ i E S- P). In other words, bias and

IA common statementof tiffsruleis "A specificationshould

describeonly what the system should do, not how it should
do it."This modified ruleisonly usefulwith functionalspec-

ifications:it views a software system as a specificationfor a
computation,ratherthan as a product.

4-20



defects in the specification are dual problems.

Assume that for a given specification, the specificand

set is contained in the solution set. In this case, all correct

implementations are acceptable. This motivates the no-

tion of specification correctness with respect to a problem,
which is similar to the more familiar notion of implemen-

tation correctness with respect to a specification. (The

main difference between these two concepts is that specifi-

cation correctness cannot be formally verified because it is

defined relative to an abstract problem.) A specification is
correct if it is realizable (there is a correct implementation)

and complete (all correct implementations solve the prob-

lem). That is,for a correct specificationit is possible to

derive an implementation and any implementation derived

solves the problem. On the other hand, a specificationis

calledimpertinent to the problem ifthere is not a correct

implementation that solves the problem.

The above is formalized as follows: Let S be the speci-

ficand set of a specificationand let P be the solution set

of a problem.

s The specification is realizable iff S # 0.

• The specification is complete w.r.t, the problem iff S C_
P.

• The specificationis correctw.r.t,the problem iffit is

realizableand complete.

• The specification is pertinent to the problem iff S A

P#0.

(a) (b) (c)

(d)

Figure 2: Specificand set S with respect to solution

set P: (a) unrealizable, (b) correct, (c) realizable but

impertinent, (d) pertinent but incomplete.

problem-specific information is needed to achieve a correct

specification.

2 Specification Refinement

The specification and design processes are complex pro-

cesses in which technical knowledge, art and inspiration

take p_rt [10]. God and Pirolli [4] describe the tradi-

tional view of design as a four-step process: "(1) an ex-

ploration and decomposition of the problem (that is, anal-

ysis); (2) an identification of the interconections; (3) the

solution of the subproblems in isolation; and (4) the com-

bination of the partial solutions taking into account the

interconnections (that is, synthesis)."

The following relations between these concepts are imme-

diate: correctness implies pertinence (S :# 0 A S C P =:,

S A P _ 0); pertinence implies realizability (,9 A P _ 0 =_

S # 0); completeness and pertinence imply correctness

(because pertinence implies realizability); unrealizability

implies completeness and impertinence (S = 0 =_ S C

P A S A P = 0); there is no correct specification for a

problem without a solution (P = 0 ::_ _S: S _ 0 A S C P).

To analyze the correctness of a specification with re-

spect to a problem, _:onsider the emptyness of the set S-P,

related to the completeness of the specification, and of the

set S A P, related to the pertinence of the specification.

There are four cases: (a) The specification is unrealizable;

(b) the specification is correct; (c) the specification is real-

izable but not pertinent; and (d) the specification is perti-

nent but incomplete, that is the specification can be made

correct by adding more requirements. Figure 2 presents

these cases, with case (d) comprising two subcases. In

cases (a) and (c), the only choice is to backtrack, since

at this point it is impossible to derive an acceptable solu-

tion. In case (b) there are no problems of correctness, but

there can be problems of specification bias, if the preferred

solution lies outside the specificand set as in Figure le.

In case (d), the specification is incomplete, so addition of

In this work we go beyond these general processes and

describe the subprocesses that occur specifically in soft-

ware design. We characterize these subprocesses by how a

current specification is updated to produce the next spec-

ification within a series, and also by how precision and de-

tail are added to the specification. There is no assumption

that all requirement analysis is done before design; on the

contrary, requirements gathering and design are supposed

to be intertwined [12].

2.1 Refinement Subprocesses

We assume that there is a written initial specification

and that successive specifications will be created by a series

of modifications to that specification. With respect to the

subprocesses that perform these modifications--typically

additions to the current specification--we postulate that

there are four main kinds of activities that modify a spec-

ification:

Explication: addition of a requirement by making explicit

a nonexplicit requirement.

Design decision: addition of a requirement by choosing a

particular design.

4-21



Presentation ch-onge: change in the notation, presenta-

tion, or structure of the specification.

Retraction: withdrawal of a requirement from a previous

decision or explication.

Even though we present these as discrete changes, actual

changes to a specification usually involve a combination of

them. For example, after finding an incorrect explication

an analyst may replace the corresponding requirement by

another one: a retraction followed by an explication.

Explication

Explication is one of the main activities during require-

ments gathering. Explications make the specification more

complete, that is, ensure that software systems satisfying

the specifications are solutions. In Figure 1 the goal is

to transform a specification like (d) into one like (a). This
goal is achieved by maldng explicit either domain informa-

tion, problem-specific information, or consequences of the

specification, thus reducing the specificand set.

Of course, the new requirement is not always a valid

explication (e.g., something believed to be a consequence of

the requirements might not be). This is intimately related

to the concepts of specification correctness (Section 1.4)

and bias (Section 3.3).

Design Decisions

As the name suggests, design decision is the most im-

portant process during design activities. Design decisions

guide the implementation process towards a preferred set

of solutions reducing the specificand set (as in Figure lc).

The information needed to make design decisions comes

mainly from the previous specification and the solution do-

main. For example, semantic-preserving transformations

in transformational programming are design decisions, be-

cause they preserve the functionality while improving other

attributes of the algorithm.

We have identified several "kinds of design decisions: de-

composition, refinement, composition, abstraction, instan-

tiation, reuse, creation of alternatives, and choice. Some of

these are intimately related so we discuss them together.

Decomposition and refinement. Decomposition consists

of dividing the problem into subproblems. It is usually

followed by refinement, which means defining unspecified

concepts or objects. These two processes are the core of

stepwise refinement.

Composition. On the other hand, composition is the

process of creating a solution to a problem by combining

solutions to subproblems. That is, composition is the main

process in bottom-up development. Composition is used

most effectively in combination with reuse.

1R

Abstraction, instantiation, and reuse. Abstraction as a

design decision consists of specifying a solution to a more

general problem (i.e., a problem of which the problem of

interest is an instance), usually defining a set of (formal)

parameters to describe particular instances. The rationaie

for solving more general problems is that it is often easier

to abstract away particulars of the problem of interest and

solve a general problem. Furthermore, the more general

solution can be reused in other contexts.

Reuse as a design decision consists of prescribing the use

of a particular solution to a subproblem. If the solution to

be reused is paxameterized (i.e., it has formal parameters)

actual parameters must be provided to do the reuse. In-

stantiation is the process of defining actual parameters for

a parameterized abstract solution.

A solution to reuse need not be already implemented: it

may be simply specified as the solution to another subprob-

hm. When several subproblems in the current design are

instances of a single general problem, abstraction, instan-

tiation and reuse can be employed to "factor _ the design.

Creation of alternatives and choice. When it is not im-

mediate which kind of design is the best, it is possible to

create several alternative designs using some of these tech-

niques. A valid implementation must conform to one of the

created designs. After more elaboration of these designs,

some axe discarded until one design prevails. Choice is the

process of selecting among alternative designs; the choice

process is more objective when it is based on preference

measures [2].

Presentation Changes

Presentation changes are intended to change the pre-

cision, formality, readability, modularity or other aspects

of the specification itself, without affecting the specificand

set, that is, without adding more information. For exam-

ple, a condition written in English, referring to a collection

of objects can be replaced by a logical predicate in which

the collection is represented by a set.

Ideally, a presentation change does not change the

specificand set, that is, it does not create new require-

ments. However, restrictions in the specification languages

or methods used may impose additional constraints. In the

above example, should our specification language support

lists but not sets, we might have specified a list as an im-

plementation for a set. If we later coded this list in Pascal

we might have coded our list specification into an array

or linked structure rather than the more efficient set data

type that actually was originally specified. That is, as a

result of a specification language deficiency we have added

an additional arbitrary constraint for the program that re-

suited in it being less efficient, that is, we have added bias.

Retraction

4-22



INonexplicitl

Figure 3: Classification of requirements: explicitness.

Fictitious requirements are shown with segmented line

because they are not real requirements.

Retraction occurs when a designer realizes that the cur-

rent design is incorrect or otherwise undesirable. The goal

of retractions is to create a pertinent specification, as de-

fined in Section 1.4. As we said before, the retraction pro-

cess is usually done in conjunction with other processes

that create a new "replacement" requirement.

3 A Model of Bias

Presence of bias cannot be determined from the require-

ments alone, because it depends on the origins of require-

ments. For instance, if the origin of a particular require-

ment is in the problem, the requirement is not bias; if the

origin is a misconception it may be. Hence, our definition

of bias is based on a classification of requirements.

Requirements are classified into several classes with

subtle differences. These subtleties are what makes bias

hard to define and even harder to find. The main clas-

sification criteria we consider are explicitness and origin,

which depends on the process of creation of new require-

ments.

3.1 Explicitness

A requirement is explicit if it is present in the specifi-

cation-; otherwise, it is nonezplicit.

Nonexplicit requirements are a recurring cause for mis-

understandings in product development. They are further

classified as follows (Figure 3).

Implicit requirements are those that are understood to

be part of every product in the application domain, and

so they are left unstated.

Implied requirements are logical consequences of other

requirements.

Absent requirements are requirements unintentionally

omitted in the specification, but are required by the so-

lution set. These are not part of every product in the

application domain.

Fictitious requirements [8] are assumptions made by the

100_t.

I Explicit reqs. J

Figure 4: Classification of explicit requirements: ori-

gin.

reader of the specification and not requirements at all: the

reader believes that they are either implicit, implied or

absent requirements.

A real nonexplicit requirement is either an implicit, im-

plied, or absent requirement.

3.2 Origin

An explicit requirement is new with respect to a cer-

tain specification stage if it is first made explicit at that

stage; otherwise, the requirement is inherited from previ-

ous stages. (When the specification stage is clear from con-

text we will say simply 'new' or 'inherited' requirement.)

Of course, every explicit requirement is new to one stage,

namely the stage in which it is introduced.

The discussion in Section 2 motivates the following clas-

sification of new requirements with respect to their origin

(Figure 4).

Designed requirements are the consequence of design

decisions taken at the current specification stage.

Explicative requirements are created by explication of

implicit, implied, or absent requirements.

Extraneous requirements are created by explication of

fictitious requirements.

Imposed requirements are those imposed by the limita-

tions of the specification method or language used, created

as a side effect of a presentation change.

This classification describes possible origins for the re-

quirements, but it does not provide a method to determine

the origin. For example, without a complete analysis of

the application domain, there is no definite method to tell

whether a requirement is extraneous or the explicatioxi of

an implicit requirement.

3.3 The Nature of Bias

We define bias in terms of the-origin of the requirements

described in a specification: A specification containing ex-

traneous or imposed requirements is biased.

4-23



This definitioh provides insight into the problem of bias,

including both its origins and consequences. The origin

of bias is either wrongful interpretation of nonexplicit re-

quirements or the limitations imposed by the specification

method. The consequences are that the specificand set

can be Overly constrained or that the solution adopted can

be suboptimal. That is, a biased specification will lead

the design towards particular implementations that are not

necessarily the best possible.

The definition does not provide a method to measure

bias content in a specification, because bias is defined in

terms of the origin of requirements and we cannot be com-

pletely sure of the origin of some requirements. Further-

more, bias is relative to the application domain and the

software engineering environment, because the domain and

environment define what is implicit.

For example, in an environment in which all programs

are written in a particular programming language, the

presence of idioms of this language in a specification is

not necessarily bias, unless another implementation lan-

guage is introduced to the environment. This is what

happened at the Software Engineering Laboratory (SEL)

at the National Aeronautics and Space Administration
(NASA)? During the first experience with development

in the Ada language they realized that software specifica-

tions for satellite dynamics simulators were "heavily biased

toward FORTRAN. In fact the high level design for the

simulators is actually in the specifications document" [1].

This was not a problem----on the contrary, it facilitated

both development and reuse of specification and code--

until the first development in Ada: the specifications had
to be rewritten first. Given our definition of bias these

FORTRAN-oriented specifications were not necessarily bi-

ased; they contained many designed requirements. Before

Ada was introduced, the use of FORTRAN was an im-

plicit requirement. After that, the choice of appropriate

language became an explicit attribute, resulting in the as-

sumption of FORTRAN as a fictitious requirement.

The relative nature of bias is an essential ch.aracteris-

tic. It stems from the existence of nonexplicit requirements

and the inherent uncertainty with respect to those require-

ments. That does not imply that there is nothing to do:

an obvious task is to make explicit as much as possible

about the domain and environment. If this is done, we

are reducing considerably the possibilities of bias. How-

ever, as long as there are nonexplicit requirements, there

will be doubt about these requirements and hence possi-

bility of bias. Making explicit the implicit requirements of

a certain domain and environment still leaves two sources

of bias: restrictions on the method and languages, and

absent requirements. These two cannot be avoided com-

pletely: the first because any method that provides some

2The SEL was created in 1976 to study and improve the

software process at NASA Goddard Space Flight Center.

1000578W.

guidance in the specification process will guide the design

to some particular kind of solutions; the second because at

the beginning of a project most requirements are absent.

4 Software Defects

Both bias and software defects are a consequence of

problems in the development process. Section 1.4 shows

the duality of bias and faults by analysing the differences
of the specificand set and the solutions set. Here this com-

parison is extended further. We classify software defects in

three classes [11]: faults occur in documents, errors occur

in human processes, and failures occur in automatic pro-

cesses. There is an analogy between the problem of bias

and defects: fictitious requirements are like errors (both

during human processes), imposed and extraneous require-

ments like minor faults (both occur in documents), and

inefficiencies like minor failures (both occur during auto-

marie processes). The criticality of the attributes involved

is related to whether something is considered a fault or

simply bias.

During software development, successive specifications

are written, usually starting from an incomplete specifi-

cation towards a correct specification. Every specification

inherits from all previous specifications, so if there is a

new requirement that contradicts an explicit previous re-

quirement the new specification is inconsistent and hence

unrealizable. The only solution is to retract either the

new requirement or previous requirements. Similarly, if

a new requirement contradicts a nonexplicit real require-

ment the specification is made impertinent to the problem

(i.e., it solves another problem); again, the only solution

is to retract. All too often a specification is unrealizable

or impertinent but this is not evident to the developers so
no retraction occurs and development continues. This is a

secondary but important source of defects.

We have studied these problems at the SEL. The soft-

ware analyzed are ground support systems for unmanned

spacecraft. Most systems are about 100K source lines FOR-

TRAN programs, but a sizable percentage are now in Ada.

The SEL has a database describing systems and their de-

velopment processes made in the last 15 years. The anal-

ysis that follows uses data from that database, but only

considers relatively recent data (since January 1, 1986),
because the software process has changed.

Table 1 summarizes counts of change reports classified

by type of change (e.g., requirement changes, fault cor-
rection) in all SEL projects. From the table, 49.4% of the

changes are due to faults, 12.3% correspond to planned en-

hancements and 10.6% are due to requirements changes.

Table 2 summarizes counts of the changes due to the
8074 faults of Table 1, classified by source of fault. From

the table, 74.8% of faults are related to coding and 16.3%

4-24



Type of change Count %

Fault correction

Environment change

Improvement of user services
Planned enhancement

Presentation changes

Requirement changes

Other

8074 49.4

533 3.3

1205 7.4

2018 12.3

1464 9.0

1730 10.6

1327 8.1

Total 16351 100.i

Table 1:

Table

Changes by type in SEL projects since 1986.

Fault source All faults

Count %

Requirements 76 0.9
Functional specification 242 3.0

Design 996 12.3

Subtotal specifications 1314 16.3

Code 6043 74.8

Previous change 714 8.8
Other 3 0.0

Total 8074 99.9

2: Fault source in SEL projects since 1986.

Source Comm. Om. Both None Total

Reqs.

Specs.

Design
Code

Prev. chg.

19 40 8 9 76

102 78 40 20 240

253 550 159 34 996

2302 2334 921 482 6039

289 295 79 50 713

Total 2965 3297 1207 595 8064

Percent 36.8 40.9 15.0 7.4 100.0

Table 3: Omission and commission faults in SEL

projects.

10 faults had invalid data). At the SEL 37% of all faults

are faults of commission, 41% are faults of omission and

15% are faults of omission/commission. Thus, about one

half of the faults are of omission and potentially can be

attributed to incompleteness in the specifications.

In conclusion, even though coding appears to be by far

the most important source of faults, a deeper a-_aalysis of

the specification process reveals that many coding faults

have roots in earlier stages. Implementation bias undoubt-

edly plays an important role in many of these 3000 faults

that are related to cha_uges due to specification issues.

of the detected faults are directly related to incorrect spec-

ifications (our definition of 'specification' includes three

SEL phases: requirements, functional specifications, and

design). This simple analysis demonstrates that up to 16%

of all problems can be related to implementation bias in

the specifications.

However, because requirements documents and their

changes originate outside the SEL and within some re-

quirements generation group at NASA, these changes are

not considered faults in the specifications. If we assume

that the 1730 requirements changes in Table 1 were in-

deed fault corrections, the total number of faults would

be 8074 + 1730 = 9804, the total number of specification

faults would be 1314 + 1730 = 3044 and hence specifica-

tion errors would account for up to 31.0% of all faults.

This assumption is not as extreme as it looks, because

predicted changes in the requirements, improvements and

environment (hardware) changes are classified separately.

In summary, considering all faults, between 1/6 and 1/3

of all faults at the SEL are related to specifications, and

potentially are related to implementation bias.

Another source of faults related to specifications are

faults of omission: when something is not specified it is not

a problem of the code but of the specification. The fact

that the problem shows up during coding or testing does

not mean that the problem is coding. Table 3 shows counts

of faults of omission, commission, omission/commission

separated by fault source (the 'Total' column is not identi-

cal to the 'All faults, Count' column from Table 2 because

100067_L

5 Conclusion

Even though bias is widely recognized as an undesir-

able property of specifications, it has not been adequately
studied. This has caused confusion with the related con-

cept of design decision, so that the presence of designed

requirements in specifications has been considered unde-

sirable. This is in contrast with the use of specifications

in other engineering disciplines, where a specification may

include many designed requirements (e.g., materials, man-

ufacturing methods).

In this paper we presented a model to describe the na-

ture of bias and distinguish bias from designed require-

ments and other requirements in a specification. This

model is based on a classification of all the requirements

described in a specification and also those that are not de-

scribed (i.e., nonexplicit); it explains the nature of bias,

but since it uses nonexplicit requirements it does not lead

to any definite method to detect bias. However, the model

does explain both the relative and unavoidable nature of

bias. Because bias depends on the specification process we

had to model that process. This modeling shed light on

the problem of software defects, a relationship that in turn

helped us to potentially explain the high relative number

of coding faults found at the SEL.

Although we have developed an explanatory model

of the design process, quantification of these concepts is

needed before we can develop practical procedures for ap-

plying them in large scale developments. Additional work

4-25



in this direction in continuing.

Acknowledgements

This research was supported in part by grant NSG-5123

from NASA Goddard Space Flight Center to the Univer-

sity of Maryland. Thanks to Sergio C&denas-Garcia a_d

Eduardo Ostertag for their helpful comments. P. Straub

was partially supported by a scholarship from the Catholic

University of Chile while he was at the University of Mary-
land.

References

[1] Carolyn E. Brophy, W.W. Agresti, and Victor R.

Ba.sili. Lessons learned in use of Ada-oriented design
methods. In Proceedings o] the Joint Ada ConJerence,

March 1987.

[2] Sergio C_rdenas and Marvin V. gelkowitz. Evaluation

criteria for functional specifications. In Proceedings

l_th Int'l Conf. on Software Engineering, pages 26-

33, Nice, France, March 1990.

[3] Bernard Cohen, William T. Harwood, and Melvyn I.

Jackson. The Specification o] Complex Systems.

Addison-Wesley, Reading, Massachusetts, 1988.

[4] Vinod God and Peter PiroUi. Motivation the notion of

generic design within information-processing theory:

The design problem space. AI Magazine, 10(1), spring

1989.

[5] I.J. Hayes and C.B. Jones. Specifications are not (nec-

essarily) executable. Software Engineerin 9 Journal,

pages 330-338, November 1989.

[6] C.A.R. Hoare. An overview of some formal methods

for program design. 1EEE Computer, pages 85-91,

September 1987.

[7] Cliff B. Jones. Systematic program development. In

N. Gehani and A.D. McGettrick, editors, Software

Specification Techniques. Addison Wesley, Reading,

Massachusetts, 1986.

[8] Edward V. Krick. An Introduction to Engineering and

Engineerin 9 Design. John Wiley and Sons, New York,

N.Y., second edition, 1969.

[9] Harlan D. Mills, Michael Dyer, and Richard C. Linger.

Cleanroom software engineering. IEEE Software,

pages 19-24, September 1987.

[10] Ellen Shoshkes. The Design Process. Whitney Library

of Design, New York, 1989.

[11] Pablo A. Straub and Eduardo J. Ostertag. EDF: A

formalism for describing and reusing software expe-

rience. In International Symposium on So]tware Re-

liability Engineering, pages 106-113, Austin, Texas,

May 17-18 1991.

10005_1111.

[12] William Swartout and Robert Balzer. On the in-

evitable intertwinning of specification and implemen-

tation. Communications o] the ACM, 25(7):438-440,

July 1982.

4-26


