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ABSTRACT

Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity
magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome
structure. Using analytical and computational models, we demonstrate several features of spine–fan reconnection
at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity
to another can occur. The flux transfer occurs across the current sheet that forms around the null point during
spine–fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takes place in a
manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.
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1. INTRODUCTION

It is known that magnetic reconnection occurs frequently
in astrophysical plasmas even though such plasmas typically
have extremely low dissipation. The resolution of this apparent
contradiction is that enormous currents must form on very
small length scales. The conditions under which thin current
sheets form—and reconnection subsequently occurs—remains
a hotly debated topic. This debate has been fueled by the
recent discovery that solar coronal magnetic fields have a highly
complex topological structure, down to scales much smaller than
previously thought. One generic feature of such complex fields
found in astrophysical plasmas is the presence of magnetic null
points (points in space at which the magnetic field vanishes).
The structure of the magnetic field in the vicinity of a null point
is characterized by a spine line along which field lines approach
(or recede from) the null, and a fan surface along which field
lines recede from (or approach) the null—see Figure 1. The
fan is a separatrix surface that divides the local volume into
two topologically distinct regions with respect to the magnetic
field line connectivity. Magnetic null points and their associated
separatrix surfaces have long been proposed as locations for the
formation of thin current layers and the conversion of magnetic
energy via reconnection (e.g., Lau & Finn 1990; Priest & Titov
1996; Antiochos 1996; Priest et al. 2002).

The traditional picture of magnetic reconnection involves
the transport of magnetic flux across the separatrices associ-
ated with a two-dimensional magnetic X-point. As discussed in
Section 2.2 below, the complexity and diversity of the re-
connection process is greatly increased when one moves to
three dimensions—which is clearly the relevant case for as-
trophysical plasmas. One mechanism for three-dimensional re-
connection involves the formation of a current layer along a
separator field line (a magnetic field line joining a pair of three-
dimensional nulls), with magnetic flux being transported across
the pair of separatrix surfaces associated with the nulls. It might
seem natural to suggest that meaningful flux transfer only oc-
curs at separators. Of course, flux transfer in three dimensions
occurs only across a surface and so cannot occur at a single
point (such as a null point). However, substantial flux transfer

can occur across the current sheet that forms around a null point
when three-dimensional spine–fan reconnection (see Section 2)
occurs.

There is observational evidence to support the importance of
nulls for energetic processes in space plasmas. Recent studies
show that the magnetic carpet field of the quiet Sun must consist
of a complex array of magnetic nulls points, separatrix surfaces,
and separators (Schrijver & Title 2002; Régnier et al. 2008;
Longcope & Parnell 2009). Indeed, it has been suggested that
reconnection at such nulls plays an important role in solar
flares, coronal mass ejections, jets, and bright points (e.g.,
Barnes 2007; Masson et al. 2009; Pariat et al. 2009; Zhang
et al. 2012; Moreno-Insertis & Galsgaard 2013). There are also
observations of flare ribbons that appear to be associated with
particle acceleration during null point reconnection (Zuccarello
et al. 2009; Liu et al. 2011). In addition, recent observations
in Earth’s magnetosphere show that there are many more nulls
present than initially expected in both the cusp regions (e.g.,
Dorelli et al. 2007) and in the turbulent plasma of the magnetotail
(e.g., Xiao et al. 2007).

In this study, we focus on reconnection at magnetic nulls
in the solar corona. That is, we consider nulls in a half-space
above a perfectly conducting photospheric plane. The existence
of null points in the corona is dependent on the magnetic field
distribution on the photosphere (as well as dynamical processes
occurring in the corona if the field is not in equilibrium). The
simplest generic configuration in which a null may appear in
the volume is shown in Figure 1, and involves an isolated
null whose fan field lines form a separatrix dome that con-
nects down to the photosphere (and which therefore do not
connect to any other null to form a separator). The separatrix
surface divides flux that is locally closed from flux that is lo-
cally open (but may close at some other distant location on the
photosphere). Such a dome structure exists above any parasitic
polarity region in which a patch of one sign of vertical magnetic
flux is surrounded by a region of opposite signed—and greater
total—flux. This characteristic separatrix dome configuration is
the structure most frequently observed in the coronal field ex-
trapolations discussed above. It is also a characteristic structure
often associated with X-ray jets and solar flares.
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Figure 1. Magnetic field lines outlining the spine and fan structures associated
with a magnetic null, located in a separatrix dome above a parasitic polarity.
The shading on the lower surface represents the normal component of B and the
dashed line marks the polarity inversion line.

(A color version of this figure is available in the online journal.)

In this paper, we discuss how the magnetic field of the corona
is restructured by reconnection at a three-dimensional coronal
null. The paper is arranged as follows. In Section 2, we review
previous results on current sheet formation at null points and
three-dimensional reconnection. In Section 3, we introduce a
simple model that demonstrates the effects of reconnection at
a coronal null on the coronal field structure. In Section 4, we
show that the results carry forward when a full MHD evolution is
followed numerically, and we present a discussion in Section 5.

2. BACKGROUND: CURRENT SHEETS AND
RECONNECTION AT THREE-DIMENSIONAL NULLS

2.1. Formation of Current Sheets at Three-dimensional Nulls

Magnetic reconnection always occurs in strong current con-
centrations, usually in thin current sheets. Such current sheets
may form dynamically at nulls points, separators, or quasi-
separatrix layers in response to a driving of the system or to
a spontaneous relaxation process. There also exist additional
mechanisms of current sheet formation, including ideal MHD
instabilities. Here, we focus on the occurrence of current sheets
at three-dimensional nulls.

There are a number of compelling arguments as to why current
sheets should naturally form at three-dimensional nulls. First,
various studies have demonstrated the build-up of currents close
to nulls. For example, linearizing the magnetic field (B) and
plasma flow (v) about the null in an open system has shown
that gradients of B and v tend to become singular (Bulanov &
Olshanetsky 1984; Bulanov & Sakai 1997; Klapper et al. 1996;
Parnell et al. 1997). Furthermore, Hornig & Schindler (1996)
proved that certain evolutions of the magnetic field in the vicinity
of a three-dimensional null are prohibited by an ideal evolution.
In particular, the ratio between any pair of eigenvalues of the
Jacobian matrix of B evaluated at the null must remain fixed. It
can be demonstrated that a variation in these ratios is a natural
consequence of external perturbations focusing around the null
(Pontin et al. 2007a). This strongly suggests that, in the absence
of dissipation, a singular current sheet will form at the null, and
that in the presence of a small but finite dissipation a thin, intense
current layer will form. The formation of singular current layers
at nulls in a line-tied volume during an ideal relaxation has
been demonstrated numerically (Pontin & Craig 2005; Pontin
& Huang 2012). Furthermore, the formation of thin (but finite)
current sheets in a resistive plasma has been demonstrated both
in numerical simulations (Pontin et al. 2007a) and in laboratory
experiments (Bogdanov et al. 1994; Frank & Bogdanov 2001).

In each of the studies discussed above, the current sheet that
forms at the null involves a local collapse of the spine and

fan toward one another. The current sheet forms at an angle
intermediate between the global orientations of the spine and
fan and the current vector is oriented orthogonal to the spine
line (see, e.g., Figure 6 of Pontin 2012). Current layers focussed
on either the spine or fan can also form in response to rotational
perturbations centered on the spine (Galsgaard et al. 2003;
Pontin & Galsgaard 2007). There is an associated spiralling of
field lines in the current layers, within which torsional spine
or torsional fan reconnection (see below) take place. These
reconnection modes are not our focus here. Indeed, there are
also indications that in the absence of resistivity, a singular
current may form with the current vector parallel to the spine
line, associated with an increasingly tight spiralling of field lines
around the spine (Fuentes-Fernández & Parnell 2012).

2.2. Properties of Magnetic Reconnection in Three Dimensions

Fundamentally, magnetic reconnection involves a breakdown
in the magnetic connection between plasma elements. In three
dimensions, this occurs in general when a spatially localized
component of the electric field parallel to the magnetic field
(E‖) exists (Schindler et al. 1988; Hesse & Schindler 1988).
The rate of reconnection is defined as the maximal value of

Φ =

∫

E‖ds, (1)

over all magnetic field lines threading the non-ideal region
(region within which E‖ �= 0), where s is a parameter along
the field lines. In general, the equation

∂B

∂t
− ∇ × (w × B) = 0, (2)

describes the ideal evolution of a magnetic field B, where w is a
flux transport velocity. If, for a given magnetic field evolution,
a smooth flow w exists then the topology of the magnetic field
is preserved, and no reconnection occurs (the magnetic flux is
frozen into the flow w). The properties of three-dimensional
reconnection are then crucially different from the simplified
two-dimensional picture in the following ways.

In two-dimensions, a flux transport velocity w exists every-
where except at an X-point or O-point, where it is singular if
E �= 0 there. The singularity of w at an X-point is a signature
of the fact that each magnetic field line is cut and rejoined in
the instant that it passes through the X-point (and separatrix).
Since w is smooth and continuous everywhere else, field lines
evolve as if they are reconnected only at the X-point, in a
one-to-one pairwise fashion.

In three dimensions, reconnection occurs within a spatially
localized region of E‖, and one can prove that no flux transport
velocity w exists for the flux threading this non-ideal region
(see Priest et al. 2003). As a result, within any infinitesimal
time interval δt , every field line threading the non-ideal region
changes its connectivity. Therefore, magnetic field lines traced
from footpoints comoving in the ideal flow appear to split as
soon as they enter the non-ideal region, and their connectivity
changes continually and continuously as they pass through
the non-ideal region. This means that the restructuring of the
magnetic field no longer involves magnetic field lines being
reconnected in a one-to-one fashion as in the two-dimensional
case. We emphasize that the above holds true for all reconnection
processes in three dimensions, independent of the local field
structure.

While no single flux velocity can describe the motion of
magnetic field lines during three-dimensional reconnection, one
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can nevertheless replace the concept by a flux velocity pair win
and wout (Priest et al. 2003). This can be a useful tool to visualize
the evolution of field lines during the reconnection process. win
represents the evolution of field lines entering the non-ideal
region (with respect to the direction of B) traced from footpoints
comoving in the ideal flow. Correspondingly, wout represents
the velocity of field lines exiting the non-ideal region, traced
from ideal comoving footpoints. The continuous change of field
line connectivity means that field lines that are traced through
and beyond the non-ideal region move at some virtual flow
velocity that is not related to the local plasma velocity. This
often leads to an apparent “flipping” of magnetic field lines
(as first suggested by Priest & Forbes 1992). This velocity has
been ascribed physical significance in the idea of “slip-running
reconnection” (Aulanier et al. 2006).

2.3. Modes of Reconnection at Three-dimensional Null Points

There are different characteristic modes through which re-
connection can take place in three dimensions. Here we focus
on the modes of reconnection at three-dimensional nulls, which
were categorized by Priest & Pontin (2009). The relevant re-
connection mode that we consider here is spine–fan reconnec-
tion. This occurs in a current sheet localized around the null
that forms in response to a collapse process, as discussed in
Section 2.1. Such a collapse is initiated by any shear disturbance
of the spine or fan (i.e., any disturbance locally orthogonal to the
spine/fan field lines). The result is a transfer of magnetic flux
across the fan separatrix surface as well as past the spine line.
Tracing field lines from comoving ideal footpoints transported
past the spine, one observes a flipping of these field lines around
the fan plane. So, while the flipping of field lines is a natural sig-
nature of quasi-separatrix layer reconnection, one should note
that it also occurs in three-dimensional spine–fan reconnection
at a null point. This is a direct result of the fundamental theo-
rem regarding the non-existence of a flux transporting flow as
discussed above.

If the plasma is incompressible, pure spine or fan reconnection
modes may exist (Priest & Titov 1996; Craig & Fabling 1996)
in which the current extends along the spine or fan, respectively.
However, so far only the incompressible fan reconnection
solutions have been shown to be dynamically accessible, and
when the incompressibility assumption is relaxed it turns out
that the plasma pressure gradient is too weak to oppose the
collapse of the null and the formation of a fully localized current
sheet at the null (see Section IV B of Pontin et al. 2007b).

Two additional reconnection modes result from rotational mo-
tions centered on the spine. These lead to current concentrations
localized to either the spine or the fan, within which a type of
rotational slippage known, respectively, as either torsional fan
reconnection or torsional spine reconnection occurs (Galsgaard
et al. 2003; Pontin et al. 2011; Wyper & Jain 2010). There is no
flux transfer across the separatrix surface in either of these recon-
nection modes, and so they are not relevant to the present study.

3. SIMPLE MODEL

3.1. Model Setup

In this section, we present a simple model that demonstrates
the fundamental properties of magnetic reconnection as it occurs
at a three-dimensional null point in the solar corona. We begin
with a potential magnetic field due to five photospheric flux
patches, constructed by placing five magnetic point charges at
locations outwith our domain of interest. Specifically, we restrict

Figure 2. Field lines of the simple model magnetic field (described in Section 3)
outlining the spine and fan of the magnetic null at t = 0. The shading on the
lower surface represents the normal component of the magnetic field there. The
circle on the lower surface shows the approximate location of the footprint of
the separatrix dome (i.e., fan separatrix surface). The numbers refer to source
numbering discussed in the text.

(A color version of this figure is available in the online journal.)

our studies to the half-space z > 0, where z = 0 represents the
photosphere, and place all point charges at z < 0. The resultant
magnetic field is given by

Bp =

n
∑

i=1

ǫi

x − xi

|x − xi |3
, (3)

where n = 5 and where xi are the locations and ǫi

are the strengths of the point charges. Here we take
{ǫ1, ǫ2, ǫ3, ǫ4, ǫ5} = {0.01,−0.01, 0.01, 0.01,−0.02} and x1 =
(0, 0,−0.1), x2 = (0.5, 0,−0.1), x3 = (0.7, 0.5,−0.1), x4 =
(0.7,−0.45,−0.1), x5 = (−1, 0,−0.1). Hereafter, we refer
to the flux patch in the photosphere (z = 0) associated with
the charge located at xi as “source i.” Since the negative
source 2 is surrounded by three positive sources, a null point
is naturally located above source 2. The null is located at
x = xN = (0.416, 0.00478, 0.390). The spine of the null inter-
sects the photosphere within sources 2 and 5, while the footprint
of the dome-shaped fan surface links sources 1, 3, and 4 (see
Figure 2).

We proceed to simulate the effect of a spine–fan magnetic
reconnection process at the coronal null point as follows. It
is known from previous numerical simulations that such a
reconnection event occurs when the spine and fan of the null
collapse toward one another, and a localized region of parallel
electric field forms around the null (associated with a current
sheet there) parallel to the fan surface (Pontin et al. 2007a). We
therefore introduce a perturbation to the magnetic field in the
form of a ring of magnetic flux in the xz-plane, centered on the
null, that leads to a collapsed spine–fan structure (see Figure 3).
This flux ring generates an electric current parallel to the fan
surface, and, by choosing its modulus to grow linearly in time,
we obtain a time-independent electric field, also parallel to the
fan surface and localized around the null. Specifically, we take

Bj = b0
t

τ
∇ ×

(

exp

(

−
L

4
(x − xN )2

− L(y − yN )2 − L(z − zN )2

)

ey

)

, (4)
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(b)(a)

Figure 3. Sample magnetic field lines in the y = 0 plane showing the null point structure at (a) t = 0 and (b) t = 0.8. The vectors show magnetic field orientation and
the background shading is proportional to Ey. The field lines in (a) and (b) are traced from the same fixed footpoint locations in the positive polarities near the fan.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 4. (a) Magnetic flux as a function of time connecting the negative source 2 with positive sources 1 (diamonds), 3 (circles), and 4 (squares). The stars represent
the total of these three values, which is constant. (b) Change of flux connecting source 1 to source 2, measured by integrating in time the reconnection rate given by
Equation (1) (diamonds), and by performing a direct numerical integration of field lines and assessing their connectivity (circles).

where xN = (xN , yN , zN ) is the location of the null, given above,
and Faraday’s law can be satisfied by taking

E =
b0

τ
exp

(

−
L

4
(x − xN )2 − L(y − yN )2 − L(z − zN )2

)

ey .

(5)
This technique has also been used by Wilmot-Smith & Hornig
(2011), who investigated reconnection in the vicinity of a

separator line. In what follows, we set τ = 1, b0 = 1.5 × 10−3

and L = 100, and consider the effect of varying the time
parameter t between t = 0 and t = 1. The result of adding
the flux ring of Equation (4) to the initial potential field (3) is
to locally reduce the relative angle between the spine and the
fan close to the null point—see Figure 3. This process of null
collapse is a characteristic signature of this reconnection mode
(see Section 2). If we were to continue to increase t to values
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Figure 5. Representative field lines traced from fixed footpoints (marked by spheres) located close to the footprint of the fan dome, at times t = 0, 0.1, 0.2, 0.5, 0.62, 0.8.
The footpoints are located in the positive sources, so the motions of the field lines represent the flux velocity win. The location of the null is marked by the red diamond.

(A color version of this figure is available in the online journal.)

greater than 1, we would obtain a bifurcation of the coronal
null point; by restricting to t < 1, we ensure that at all times
only a single null point is present, which remains at x = xN by
symmetry.

3.2. Flux Transfer across the Separatrix Surface

The perturbation magnetic field Bj decays exponentially
away from the null, and is effectively zero at the photosphere.
This implies that B at z = 0 is independent of time. Crucially,
however, the locations of the intersection of the spine and fan
with the photosphere change in time, since the spine and fan field
lines change their identities as a result of the local reconnection
event at the null. The implication is that since the separatrix
surface moves in time, the quantities of flux connecting the
different photospheric flux sources are also time-dependent.
This is already clear from observing the field lines in the y = 0
plane plotted in Figure 3. These field lines are traced from fixed
footpoints on the photosphere in the positive sources, i.e., near
the footprint of the fan dome. Locally closed field lines are seen
to open by transferring across the separatrix surface and vice
versa.

We now calculate the change of magnetic connectivity in-
duced by the simulated reconnection event by calculating the
total flux connecting the negative source 2 with each of the
surrounding positive sources 1, 3, and 4. This is done by trac-
ing field lines from 10,000 starting points distributed across
source 2 and assessing the locations at which they each return to
the photosphere. The results are presented in Figure 4(a), from

which it is clear that the flux connecting sources 1 and 2 in-
creases in time while the flux connecting source 2 with sources
3 and 4 decreases with time. Clearly, the net flux must remain
the same—being the total flux through the photosphere within
source 2.

It was argued by Pontin et al. (2005) that for the spine–fan
reconnection mode the rate of flux transport across the separatrix
surface coincides with the reconnection rate defined within
the framework of general magnetic reconnection, i.e., with the
maximum value of integrated E‖ along all field lines in the fan
surface (see Section 2.2). This can be verified for our present
configuration by seeking the maximum value of integrated E‖,
integrating this quantity in time, and then comparing with the
numerically evaluated connectivities. In Figure 4(b), we see an
excellent agreement between the time-integrated reconnection
rate and the flux connecting sources 1 and 2 as a function of time.
The small discrepancies result from the numerical integration of
field lines, the fact that we have a finite number of field lines (and
therefore how the flux is associated with each of them), and the
numerical time integration of the cumulative reconnected flux
from the reconnection rate.

3.3. Field Line Motion: Flipping

Three-dimensional reconnection involves a change of field
line connectivity within a finite volume, very different from
the two-dimensional case where field lines break only at the
X-point (see Section 2.2). In three dimensions, in general, the
field lines change connections continually and continuously
as they traverse the non-ideal region (region within which
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Figure 6. Representative field lines traced from fixed footpoints (marked by spheres) located close to the spine axes, at times t = 0, 0.33, 0.38, 0.5, 0.62, 0.8. The
footpoints are located in the negative sources, so the motions of the field lines exhibit the flux velocity wout. The location of the null is marked by the red diamond.

(A color version of this figure is available in the online journal.)

E · B �= 0). That is, between any two adjacent times t and
t + ∆t , every field line threading the non-ideal region changes its
connectivity. This is a manifestation of the fact that no single flux
transport velocity exists in the presence of a three-dimensional-
localized non-ideal region (see Priest et al. 2003). In the
case of spine–fan reconnection at a null point, this continual
change of connections still occurs, with the field line mapping
changing continuously for all field lines except those that pass
instantaneously through the null itself, where the mapping is
discontinuous.

The flux evolution for spine–fan reconnection about an
(initially) linear null point has been described by Pontin et al.
(2005, 2007a) in the kinematic and full MHD regimes. Here, we
describe how this translates to the separatrix dome geometry.
Due to the non-existence of a single flux velocity, in order
to visualize the field line evolution it is necessary to follow
field lines anchored at either side of the non-ideal region
independently. In three dimensions the field line velocity is in
general not well defined, but we here follow previous work
in making the physically motivated choice that in the ideal
region field lines move at the component of the plasma velocity
perpendicular to B (which is in this case zero).

We first follow field lines from fixed footpoints anchored in
the three positive sources close to the fan plane which move at
velocity win—see Figure 5. We clearly observe the transfer of
flux discussed above, with the blue field lines being transferred
from outside to inside the separatrix surface, and black field lines
being transferred from inside to outside. The field lines change

connections continuously for most of their passage through the
non-ideal region, both before and after the discontinuous jump
in mapping at the separatrix surface.

Now consider field lines anchored in the two negative sources,
close to the intersections of the spine with the photosphere.
Some representative field lines are plotted in Figure 6. As the
field evolves the spine footpoints sweep across the sources, and
field lines “flip” around from one side of the dome to the other,
in opposite directions inside and outside the dome. We visualize
the flipping velocity in Figure 7. Here we trace a set of field
lines lying close to the null (Figure 7(c)) at t = 0, anchored in
the negative sources, and calculate where they move to some
small time ∆t later. The associated ∆x, when divided by ∆t ,
gives an approximate instantaneous velocity of field lines in the
chosen plane. In order to improve the clarity of the figures, we
here represent the flipping velocity in the plane z = 0.2 (note
that the field perturbation is still negligible here). In Figures 7(a)
and (b), the velocity is plotted for field lines lying inside and
outside the separatrix dome, respectively. We clearly see the
oppositely directed flipping from one side of the dome to the
other. We also note that the flipping velocity is highest in regions
where the field strength is lowest (required here for continuity).
This flipping occurs in a thin envelope around the separatrix
surface. In Figure 7(d) we present a close-up at a typical location
of the dome footprint. It is clear that the flipping velocity is
fastest close to the separatrix surface, and falls away sharply as
one moves away from the surface. Indeed, the flipping velocity
must approach infinity as one approaches the separatrix surface,
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(a) (b)

(c) (d)

Figure 7. (a) and (b) Maps of the flipping velocity (wout) of field lines traced from points anchored in the negative flux patches close to the spine footpoints, at t = 0,
plotted on the plane z = 0.2. The field lines are plotted in (c)—black field lines lie inside the dome and have velocities shown in (a), whereas gray field lines lie outside
and have velocities shown in (b). The arrows point in the direction of the flipping velocity, and their length is scaled with the square root of the velocity magnitude. (d)
A close-up at a typical location around the separatrix surface footprint showing the velocity of field lines both inside and outside the separatrix dome, with the arrow
length scaled to the velocity magnitude.

since there is one particular field line (at any given time) that
by symmetry passes exactly through the spine and therefore has
a discontinuous mapping or infinite flipping velocity. Similarly,
there are field lines that pass arbitrarily close to the spine (and
therefore also the separatrix), and have arbitrarily large flipping
velocities.

4. RESISTIVE MHD SIMULATION

We now consider a full MHD evolution illustrating spine–fan
reconnection at a coronal null point. We solve the resistive
MHD equations numerically using the Copenhagen Stagger
Code (Nordlund & Galsgaard 1997). We use a grid of 3603

points distributed over x ∈ [0, 2], y, z ∈ [−3, 3]. All boundaries
are line-tied, with v = 0 everywhere except in a region
of prescribed boundary driving at z = 0 (see below). The
density and pressure are initiated as spatially uniform (ρ = 1,
p = 0.05), and a spatially uniform resistivity (η = 3 ×
10−4) and viscosity (μ = 3 × 10−3) are employed. The
initial state is an equilibrium, with a potential magnetic field
representing a bipole with an embedded parasitic polarity (at
around x = 0.5) above which is located a coronal null point;
see Figure 8. The field has similar structure to the simple
model described in the previous section, but is easier to deal
with numerically since the field strength around the separatrix
surface is closer to being isotropic. It is generated in practice

using three point charges—again outside the domain of interest.
Specifically, B at t = 0 is given by Equation (3) with n = 3,
{ǫ1, ǫ2, ǫ3} = {1.0,−1.0, 0.3}, and x1 = (−1.9, 0,−1.0), x2 =
(0.1, 0,−1.0), x3 = (0.3, 0,−0.4). This magnetic field has a
structure similar to that associated with a C-class flare observed
in active region AR10191, as studied by Masson et al. (2009)
and Baumann et al. (2013).

This equilibrium is disturbed by applying a boundary-driving
velocity at z = 0 that advects the parasitic polarity—and
associated spine footpoint—in the positive x-direction. In order
to ensure that the flux through z = 0 is preserved, this is done
with an incompressible flow profile, so that the parasitic polarity
becomes distorted (see Figure 8). The driving velocity increases
smoothly to a steady value, and then decreases smoothly to
zero at t = 3. As a result of this disturbance, a current front
propagates upward along the field lines beneath the separatrix
and focuses eventually on the separatrix surface, in the vicinity
of the null point. After the driving ceases, this current slowly
dissipates (see Figure 9).

The localized current concentration on the separatrix leads
to a change in field line connectivities as seen in the simple
model of the previous section. This can be observed by tracing
field lines from the vicinity of the separatrix footprint during
the simulation, and determining whether they lie inside or
outside the dome at each time. Figure 10(a) shows the result
of performing such a procedure using 106 field lines. The black
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(a)

(b) (c) (d)

Figure 8. (a) Representative magnetic field lines at t = 0 in a subsection of the domain for the MHD simulation. The shading on the z = 0 plane represents the vertical
magnetic field strength on that plane. (b) Pattern of the driving flow close to the parasitic polarity. Also shown are the normal component (Bz) of the magnetic field at
the photosphere, z = 0, at (c) t = 0 and (d) t = 3.0.

region of the resulting connectivity map shows the footpoint
locations of field lines that are initially under the dome, but
which end up outside the dome at t = 6 following the
reconnection process. The white region corresponds to field
lines that begin outside the dome but end up inside it. We
clearly see that the separatrix deforms to expel a region of flux
on the flank closest to the null, while admitting flux in a narrow
band around its remaining circumference. We measure the flux
entering and leaving the dome by counting field lines that enter
and leave, weighting them by the local field strength at z = 0 and
the area element they correspond to with respect to neighboring
field lines. This is plotted in Figure 10(b). It is clear that the flux
leaving the dome (solid line) is balanced by the flux entering the
dome (dashed line)—there are only very small discrepancies
due to uncertainties and approximations used in this method.
We see that between t = 1 and t = 2 there is a relatively sharp
change in the flux, with this flux change gradually slowing down
as the currents are dissipated.

5. CONCLUSIONS

Three-dimensional magnetic null points are ubiquitous in the
solar atmosphere, and in any generic mixed-polarity magnetic
field. They are known to be susceptible to collapse leading to
the generation of intense current layers at which, even with
astrophysical plasma parameters, magnetic reconnection can

occur. The simplest generic null configuration in a field above
a conducting plane is that of a separatrix dome. Spine–fan
reconnection at the null permits a transfer of flux from inside
to outside the dome and vice versa. Importantly, there is no
separator and yet still a transfer of flux between topologically
distinct domains occurs. The null collapse and current sheet
formation may be driven dynamically as in the MHD simulation
described in Section 4, or may occur during a relaxation of the
field (Pontin & Huang 2012), and this flux transfer allows the
magnetic field to lower its energy.

In the simple case without any flux emergence, the net flux
through the photosphere beneath the dome is fixed (equal
to the total flux associated with the parasitic polarity), so
the reconnection process involves a balance between flux
transferred into the dome on one region of the fan surface and
flux transferred out on another region. The rate of this flux
transfer is calculated by integrating the parallel electric field
along the particular fan field line perpendicular to the plane
of null collapse, this giving the maximum integrated parallel
electric field.

In the two models discussed above, we studied field configu-
rations in which the outer spine closes down to the photosphere.
Thus, all flux close to the null was closed on the global scale
(with some flux closing locally beneath the dome). However,
one can also consider the situation where the outer spine is open
to interplanetary space. In this case, spine–fan reconnection at

8
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Figure 9. Frames showing the magnetic field components (arrows) and current
density (shading) in the y = 0 plane over x ∈ [−0.8, 0.8], z ∈ [0, 0.8] for the
MHD simulation. From top to bottom, times t = 1.0, 2.4, 4.6, and 6.0.

(A color version of this figure is available in the online journal.)

the null involves the conversion of globally open flux to globally
closed flux and vice versa. This has previously been called “in-
terchange reconnection” (e.g., Crooker et al. 2002; Edmondson
et al. 2010; Masson et al. 2012). This terminology is rather mis-
leading, as it seems to suggest a direct one-to-one reconnection
of field lines at the null. However, as discussed in Section 2.2,
three-dimensional reconnection occurs in a finite volume, not
at a point, and there is no one-to-one correspondence between
field line pairs before and after reconnection. Understanding the

(a)

(b)

Figure 10. (a) Map at z = 0 showing connectivity change of field line footpoints
for the MHD simulation. Field lines that lie inside the dome at t = 0 but outside
at t = 6 emanate from the black region. Field lines originating in the white
region are outside the dome at t = 0 and inside at t = 6. Field lines originating
in the gray region remain either inside or outside the separatrix. (b) Cumulative
flux entering (dashed line) and leaving (solid line) the dome over time.

dynamics of the reconnection between open and closed mag-
netic flux requires that we understand the reconnection process
occurring in the null point current sheet (see also the discussion
of Antiochos et al. 2007).

As mentioned in Section 2.2, the magnetic connectivity
change is by definition continuous during three-dimensional
reconnection. This is a direct consequence of the non-existence
of a single flux velocity solving Equation (2) in the presence
of a localized non-ideal region. Thus the apparent flipping of
magnetic field lines when traced from ideal comoving footpoints
through the non-ideal region is a natural feature of three-
dimensional reconnection. When tracking field lines in this way,
the change of footpoint mapping is discontinuous for field lines

9
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that pass exactly through the spine. Importantly, the flipping
velocity (wout in the example of Section 3, displayed in Figures 6
and 7) is arbitrarily fast for field lines passing close to the spine.
As a result, we do not believe it to be physically meaningful to
discuss the “slip-running” speed of field lines in the presence of
a null (Masson et al. 2012; Reid et al. 2012). In particular, since
the squashing factor Q is infinite by definition at a null point,
there will always be a finite region around the null of large Q
(a quasi-separatrix layer). However, the current will typically
focus in a thin current sheet at the null, with reconnection
occurring everywhere within this finite volume. This is the
nature of three-dimensional null point reconnection: as with
all three-dimensional reconnection, it occurs in a finite volume
and involves a continuous change of field line connectivity.

D.P. and E.R.P. are each grateful to the Leverhulme Trust for
financial support. Computations were carried out on the
UKMHD consortium cluster funded by STFC and SRIF.
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