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ABSTRACT

Utilizing non-local thermodynamic equilibrium time-dependent radiative-transfer calcula-

tions, we investigate the impact of mixing and non-thermal processes associated with ra-

dioactive decay on Type IIb/Ib/Ic supernova (SN IIb/Ib/Ic) light curves and spectra. Starting

with short-period binary models of �5 M⊙ helium-rich stars, originally 18 and 25 M⊙ on

the main sequence, we produce 1.2 B ejecta which we artificially mix to alter the chemical

stratification. While the total 56Ni mass influences the light-curve peak, the spatial distribution

of 56Ni, controlled by mixing processes, impacts both the multiband light curves and spectra.

With enhanced mixing, our synthetic light curves start their post-breakout re-brightening phase

earlier, follow a more gradual rise to peak, appear redder and fade faster after peak due to

enhanced γ -ray escape. Non-thermal electrons, crucial for the production of He I lines, deposit

a large fraction of their energy as heat, and this fraction approaches 100 per cent under fully

ionized conditions. Because energy deposition is generally local well after the light-curve

peak, the broad He I line characteristics of maximum-light SN IIb/Ib spectra require mixing

that places 56Ni and helium nuclei to within a γ -ray mean free path. This requirement indicates

that SNe IIb and Ib most likely arise from the explosion of stripped-envelope massive stars

(main-sequence masses �25 M⊙) that have evolved through mass transfer in a binary system,

rather than from more massive single Wolf–Rayet stars. In contrast, the lack of He I lines in

SNe Ic may result from a variety of causes: a genuine helium deficiency; strongly asymmetric

mixing; weak mixing; or a more massive, perhaps single, progenitor characterized by a larger

oxygen-rich core. Helium deficiency is not a prerequisite for SNe Ic. Our models, subject to

different mixing magnitudes, can produce a variety of SN types, including IIb, IIc, Ib and Ic.

As it is poorly constrained by explosion models, mixing challenges our ability to infer the

progenitor and explosion properties of SNe IIb/Ib/Ic.

Key words: radiation mechanisms: non-thermal – radiative transfer – stars: atmospheres –

stars: evolution – supernovae: general.

1 I N T RO D U C T I O N

While the number of peculiar transients has grown in the last decade,

much debate still surrounds the generic properties of stellar ex-

plosions, including core-collapse supernovae (CCSNe) and their

progenitors. Ultimately, we aim to make an accurate prediction

of the explosion energy, explosion morphology, ejecta mass, rem-

nant mass, nucleosynthetic yields, etc., of a massive star given its

mass, rotation rate, metallicity on the main sequence and binarity.

At present, the exercise is done the opposite way – for any new

SN a model is crafted to match observations with various levels of

success. To reach a higher level of consistency, considerable work

⋆E-mail: Luc.Dessart@oamp.fr

is still needed in stellar evolution, stellar explosion and radiative-

transfer modelling of CCSNe. The present work is devoted to this

later domain.

There is strong evidence that Type II Plateau SNe (SNe II-P)

are linked to red supergiant star explosions, either through di-

rect progenitor identification on pre-explosion images or through

light-curve modelling (Falk & Arnett 1977; Litvinova & Nadezhin

1985; Eastman et al. 1994; Utrobin 2007; Kasen & Woosley 2009;

Dessart, Livne & Waldman 2010; Bersten, Benvenuto & Hamuy

2011; Dessart & Hillier 2011a). The failure to detect the pro-

genitors of nearby SNe Ib/Ic on pre-explosion images (Smartt

2009) prevents such a robust identification. However, light curve

(Ensman & Woosley 1988; Shigeyama et al. 1990; Dessart et al.

2011) as well as spectral (Swartz et al. 1993) modelling favours

low-mass ejecta likely resulting from the explosion of essentially
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hydrogen-less cores of moderate mass evolved in binary systems

(Podsiadlowski, Joss & Hsu 1992; Yoon, Woosley & Langer 2010).

The surprisingly high occurrence rates of SNe Ib and Ic versus

II-P in existing surveys (Smith et al. 2011), together with the non-

detection of SN Ib/Ic progenitors so far, give further support to such

binary-star progenitors (Eldridge, Izzard & Tout 2008).

Georgy et al. (2009) have studied the evolution of single massive

stars and found a range of metallicities and initial masses for the

production of helium-rich and helium-deficient Wolf–Rayet (WR)

stars at death. Assuming that a successful explosion follows the

collapse of the core, they infer Ib to Ic SN rates that corroborate the

observations as well as the expectations from binary-star evolution.1

However, this low-mass binary-star population is distinct from the

recorded WR star population, which is dominated by higher mass

objects2 that shed their envelope through radiatively driven winds

rather than Roche lobe overflow, and endowed with a higher mass

at collapse. Such properties at death (Crowther 2007) do not seem

compatible with what makes the bulk of SNe Ib/c (Dessart et al.

2011).

Unstable 56Ni nuclei, created by explosive nucleosynthesis, are

ultimately responsible for the long-term brightness of CCSNe. In

Type I CCSNe, the radioactive-decay energy from 56Ni and its

daughter nucleus 56Co also powers the peak of the light curve,

whose evolution is controlled by the dynamic radiative diffusion of

the heat released at depth by decay (Colgate & McKee 1969).

As the densities decline with age, the assumption that

radioactive-decay energy is deposited only as heat becomes un-

tenable. Decaying nuclei produce γ -rays that Compton scatter with

free and bound electrons, producing a high-energy tail to the oth-

erwise Maxwellian electron distribution (Spencer & Fano 1954).

These non-thermal electrons are a source of heat, critical for the

light curve, and a source of non-thermal excitation and ionization.

The latter affect SN spectroscopic signatures, and are critical for

the production of the optical He I lines that characterize the Type Ib

SN class (Lucy 1991; Swartz 1991). They also play a considerable

role in determining the excitation/ionization of the gas during the

nebular phase (Kozma & Fransson 1992, 1998a,b). Because of such

complicated physics, in addition to non-local thermodynamic equi-

librium (non-LTE) and time-dependent issues (Dessart & Hillier

2008, 2010), estimating the exact composition of these ejecta, and

in particular the helium abundance, is a challenge.

In the last decade, the observational diversity of SNe Ib/c has been

documented (Richardson, Branch & Baron 2006; Modjaz 2007;

Drout et al. 2011). Several nearby events received special attention,

such as the SN Ib 2008D (Soderberg et al. 2008; Modjaz et al. 2009)

or the SN Ic 1994I (Filippenko et al. 1995; Clocchiatti et al. 1996;

Richmond et al. 1996). While helium is undoubtedly present in SNe

Ib, it is unclear whether the lack of obvious He I lines in SN Ic spectra

1 In all these stellar-evolution studies, the definition of a SN IIb, Ib and Ic is

based on the progenitor surface composition which does not directly translate

into a SN type due to the subtleties of atomic physics and radiative transfer.

Much ambiguity thus surrounds the definition of a SN Ib or Ic, which is

distinct for SN observers, SN modellers and modellers of stellar evolution.

However, with the exception of those evolved at twice-solar metallicity,

single-star models have final masses �10 M⊙, and thus are much larger than

those of pre-SN ‘hydrogen-less’ cores produced from binary-star evolution.
2 The reason is simply that WR stars are searched for using a

luminosity/mass-loss criterion, reflected by the strength of their optical

emission lines relative to the overlapping continuum. Only highly lumi-

nous WRs with dense stellar winds, which are primarily single massive

stars, are detected in such surveys (see Crowther 2007 for a review).

is evidence for helium deficiency (Filippenko et al. 1995; Clocchiatti

et al. 1996). Line overlap and line blanketing prevent a definite

resolution of this problem based on a single-epoch optical or near-

infrared (IR) spectrum. The task instead requires a full modelling

of the light curve and spectra, from photospheric to nebular phase,

since the successful model must support observations at all times

and wavelength ranges. Such results must also be confronted with

the predictions from single- or binary-star evolution.

So far, CCSN radiation modelling has been split into two distinct

efforts, one devoted to the light curve and the other, usually using

entirely different assumptions, to the spectra. Light-curve mod-

elling of SNe Ib/c has been performed based on theoretical models

of the hydrogen-less cores produced through binary-star evolution

(Ensman & Woosley 1988; Shigeyama et al. 1990). Because it is so

critical to the problem, time-dependent radiation transport is treated

but the gas is assumed in LTE and opacities are approximated. Using

this approach, Iwamoto et al. (1994) modelled the SN 1994I light

curve to infer a record-low ejecta mass of 0.9 M⊙ for a CCSN.

In contrast, spectroscopic modelling typically allows for depar-

tures from LTE but assumes steady-state radiation transport and is

limited to the photospheric layers exclusively. In this spirit, Sauer

et al. (2006) and Tanaka et al. (2009) used a Monte Carlo tech-

nique to model multi-epoch spectra of SNe 1994I and 2008D, re-

spectively. A similar photospheric steady-state approach assuming

an homogeneous composition and a diffusive inner boundary (but

with allowance for non-thermal effects) was performed by Baron

et al. (1999) on SN 1994I. The assumption of steady state makes

the modelling more practical since one can adjust model param-

eters any number of ways in order to fit the spectrum but this

limits both the accuracy and the consistency of the simulation.

The neglect of time-dependent effects impacts the ionization and

temperature structure; the prescribed diffusive inner-boundary flux,

which becomes inadequate as the ejecta thins out (i.e. as early as

the peak of the light curve), compromises the accuracy of synthetic

spectra longward of the visual band. In addition, the piecemeal ap-

proach of these studies, which compute separately light curves and

spectra, is not globally consistent: the best-fitting model to the ob-

served light curve may conflict with multi-epoch spectra, and vice

versa.

To remedy such shortcomings, we have developed a new non-

LTE line-blanketed time-dependent radiative-transfer modelling ap-

proach that simultaneously computes the multiband light curves

and spectra with the capability to cover continuously from early

times when the ejecta is optically thick to late times when it is thin

(Dessart & Hillier 2010; Hillier & Dessart 2012). We have applied

this method to study the early-time evolution of SN 1987A, and ex-

tended this work to SNe II-P up to 1000 d after explosion (Dessart

& Hillier 2011a).

More recently, to gauge the conditions under which one may see

H I and He I lines in the optical and near-IR ranges, we studied the

early-time evolution of SNe IIb/Ib/Ic (Dessart et al. 2011). These

full-ejecta simulations were based on realistic binary-star evolution

models (Yoon et al. 2010, Woosley et al, in preparation), evolved

until iron-core collapse and exploded by means of a piston with

allowance for explosive burning. These simulations indicate that as

little as 0.001 M⊙ of hydrogen with surface mass fraction as low

as 0.01 can produce a strong Hα line and a likely classification as

IIb (or IIc as we argue in this paper). Contrary to myth, we also

find that He I lines can be produced in the absence of 56Ni, but their

presence is short lived and hinges on a very high helium mass frac-

tion in the ejecta. From the general agreement of our synthetic light

curves with observations, we argued that SNe IIb/Ib/Ic are generally

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2141

low-mass ejecta, likely resulting from low-mass massive stars

evolved in interacting binaries, as generally proposed.

In this work, we repeat a sample of such SN IIb/Ib/Ic simulations

but this time we include the treatment of non-thermal effects as-

sociated with γ -ray energy deposition. As shown by Lucy (1991),

non-thermal effects are crucial for understanding the production of

He I lines in SN Ib spectra. However, with advances in computa-

tional power and the availability of better atomic data, we relax

many of the assumptions made in his treatment, such as steady

state (applied to single-epoch spectra), not fully non-LTE, neglect

of line-blanketing and the use of fully mixed (i.e. homogeneous)

ejecta. Our paper is also a continuation of the earlier explorations of

Woosley & Eastman (1997) on the role of mixing and non-thermal

processes in SN Ib and Ic ejecta.

To investigate the effect of mixing on CCSN light curves and

spectra originating from our binary-star progenitors, we use a ‘box-

car’ algorithm to modulate the species distribution in the ejecta and

hence mimic multidimensional effects associated with massive-star

explosions (Kifonidis et al. 2003, 2006; Joggerst, Woosley & Heger

2009; Hammer, Janka & Müller 2010). Our crude mixing prescrip-

tion only affects the distribution of the elements – the density struc-

ture remains unchanged. While some mixing seems to occur in all

SNe Ib/c, we find that it must be very efficient in helium-rich ejecta

to yield a SN Ib – moderate mixing, even in helium-rich ejecta, will

still produce a SN Ic spectrum. This sets strong constraints on the

nature of these events, both concerning the pre-SN star evolution

and the explosion physics.

This paper is structured as follows. In the next section, we discuss

the various issues that surround mixing in CCSN ejecta (origin, na-

ture and effects). In Section 3, we briefly summarize our modelling

approach, focusing primarily on the treatment of non-thermal pro-

cesses since this aspect is an addition to the method described in

Dessart & Hillier (2010), Dessart & Hillier (2011a), Dessart et al.

(2011) and Hillier & Dessart (2012). We then describe in Section 4

the thermal and non-thermal effects associated with γ -ray energy

deposition and the production of Compton scattered high-energy

electrons, and how these affect the formation of He I lines (Sec-

tion 5). Section 6 describes the ejecta properties, in particular the

photospheric properties, and how these are reflected in the light

curves. We then discuss in Section 7 the spectral properties of our

grid of SN Ib/c models and their sensitivity to the efficiency of ejecta

mixing. In Section 8, we compare these synthetic spectra to obser-

vations in order to gauge the adequacy of our models. We finally

discuss the relevance of these results and present our conclusions

in Section 9.

2 T H E N E E D F O R M I X I N G

Before presenting detailed radiative-transfer models that include a

treatment of non-thermal effects, we start by motivating the need

for mixing, since it modulates the magnitude of these processes

through the local variation of the 56Ni mass fraction.

The γ -ray mean free path lγ is defined by lγ = 1/κγ ρ, where κγ is

the mass absorption coefficient to γ -rays and ρ is the mass density.

For a uniform ejecta composition, κγ is a constant,3 which we set

to 0.03 cm2 g−1 (Kozma & Fransson 1992), so that lγ just scales

3 At the energies of interest, γ -rays lose most of their energy through Comp-

ton scattering. While the scattering is forward peaked, the γ -rays lose little

energy until they undergo a large angle scattering. As shown by Swartz,

Sutherland & Harkness (1995) accurate answers for theγ -ray transport can

inversely with ρ. The density distribution in WR-star explosions is

well described above ∼3000 km s−1 by a power law with exponent

n ∼ 8 (Ensman & Woosley 1988; Dessart et al. 2011) and is thus a

steep declining function of radius (or equivalently velocity). Even

with the corresponding strong increase in lγ with radius, the ejecta

density is very large at early times so that lγ /R remains generally

small. Hence, γ -rays cannot travel the distance that separates the

inner ejecta layers, where the 56Ni was explosively produced, and

the optical photosphere where the bulk of the SN radiation escapes.4

Such deeply seated γ -rays will completely ‘thermalize’ and trigger

the formation of the heat wave that will eventually affect the light

curve. However, they will induce no visible non-thermal effect at

early times.

In homologously expanding ejecta, the density in any mass shell

varies with the inverse cube of the time since explosion, and thus

the optical depth to the surface of the ejecta varies as the inverse

square of the time. Hence, deeply emitted γ -rays will eventually

be able to directly influence the bulk of the ejecta mass. However,

this will happen no earlier than about 2 months after explosion in

unmixed SN IIb/Ib/Ic ejecta (Dessart et al. 2011), and thus after

the medium is thin to optical photons. Using as a reference the

spherically symmetric ejecta produced from the explosion of the

Bmi18mf4p41z1 model of Dessart et al. (2011), we illustrate in

Fig. 1 (left-hand plot) the depth and time variation of lγ /R. This

quantity is indeed less than unity below 10 000 km s−1 for up to

∼30 d after explosion, so that the γ -ray influence is essentially local

(there is no ‘transport’) for up to a month. An alternative method

of examining γ -ray transport is to examine the radial optical depth,

integrated inwards from the outermost grid point down to τ γ = 2/3

(Fig. 1, right-hand plot). This gives the location above which γ -ray

photons can ‘freely’ escape.

The critical observation that requires mixing and the early in-

fluence of non-thermal processes on the observed radiation in SNe

IIb/Ib is the persistence of He I lines throughout the photospheric

phase (Modjaz 2007). To produce non-thermal excitation/ionization

early on, 56Ni nuclei have to be mixed into regions where helium

atoms are present, although some helium will be mixed inwards

too. Quantitatively, the width of the He I 5875 Å line at early times

in the standard SN Ib 2008D implies that 56Ni has to be present in

ejecta shells travelling at ∼10 000 km s−1 (what this implies for the

SN explosion energy depends on the ejecta mass, which is debated;

see e.g. Tanaka et al. 2009). When we discuss mixing to large ve-

locities, we mean that the large velocities commensurate with the

observed line profile (half) widths. What clearly emerges from our

modelling is that helium richness alone is not sufficient to ensure a

SN Ib classification; the ‘right’ mixing has to occur to allow effi-

cient non-thermal excitation (Lucy 1991). In this respect, SNe Ib set

a very stiff constraint on the explosion physics through this mixing

efficiency, as well as on the composition and mass of the ejecta in

which this mixing operates.

Mixing of 56Ni out to large radii/velocities in CCSN ejecta may

take various forms but it is fundamentally associated with multidi-

mensional effects. Mixing may arise from a large-scale asymmetry

of the explosion associated with a jet/bipolar/unipolar morphology,

be obtained by treating γ -ray energy deposition as a purely absorptive

process.
4 The lower the main-sequence mass the smaller the (oxygen-rich) mass

buffer between these two regions. Intuitively, we anticipate such γ -ray trans-

port to occur sooner in lower mass ejecta from lower mass main-sequence

stars in binary systems.
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2142 L. Dessart et al.

Figure 1. Left: evolution of the radial variation of the γ -ray mean free path, normalized to the local radius in the SN IIb model Bmi18mf4p41z1 of Dessart

et al. (2011). A colour coding is used to distinguish different epochs, selected at fixed intervals between 1.1 and 40 d after explosion. The dashed line refers

to lγ = R, which is a representative threshold for the non-local influence of γ -rays. Right: same as left, but now showing the γ -ray optical depth integrated

inwards from the outer boundary of the ejecta. The dots indicate the location of the electron-scattering photosphere (i.e. τes = 2/3).

as in the collapsar model (Woosley 1993), an intrinsic large-scale

asymmetry of the shock in an explosion through the neutrino mech-

anism (Scheck et al. 2006; Marek & Janka 2009) or the magnetoro-

tational mechanism (LeBlanc & Wilson 1970; Bisnovatyi-Kogan,

Popov & Samokhin 1976; Khokhlov et al. 1999; Maeda et al. 2002;

Burrows et al. 2007; Dessart et al. 2008). Mixing may also stem

from the small-scale structure of the SN shock, associated with

convection and slowly developing Rayleigh–Taylor and Kelvin–

Helmholtz instabilities (Kifonidis et al. 2003, 2006; Joggerst et al.

2009; Hammer et al. 2010; Nordhaus et al. 2010). Note that even

with mixing, the bulk of the 56Ni mass remains deeply seated be-

cause mixing only affects the species distribution, while the mass

density is essentially unaffected and steeply rises towards the inner

ejecta.

Because the γ -ray mean free path tends to be much smaller

than the scale of the system at early times (Fig. 1), these different

aspherical morphologies behave very differently for the purpose of

non-local γ -ray transport and non-thermal excitation/ionization of

the gas. To illustrate this, we use the model shown in Fig. 1 at an

age of 26.8 d (which typically corresponds to the light-curve peak

in a SN Ib) and study the geometrical properties imposed on mixing

to generate non-thermal effects at the photosphere at that time. For

this model, τ γ = 2/3, is located at 7700 km s−1.

The definition of the γ -ray mean free path lγ contains no informa-

tion on the radial or angular dependence of the escape probability

of γ -rays at a given time from a given location in the ejecta. A

better quantity is the angle-dependent γ -ray optical depth, whose

variation dτγ over a step size ds ≪ Rphot is equal to κγ ρds (the

photospheric radius Rphot is used as a representative scale for the

system).

Using the tangent-ray method to compute optical-depth inte-

grals along multiple directions (Mihalas 1978), we compute the

location of the τ γ = 2/3 surface as seen from a selection of

heights/radii/velocities in the SN ejecta.5 This surface bounds the

ejecta volume over which a γ -ray source may cause non-thermal

5 This calculation uses the model density distribution, interpolated on a

logarithmic radial grid, with 400 radial points to ensure a good resolution in

particular for lateral directions. The tangent-ray method is fast since it does

not require any interpolation; all ray quantities are calculated at grid points.

effects. In Fig. 2, we show results for a γ -ray emission site that is

below, at, or above, the γ -ray photosphere.6

For locations below the γ -ray photosphere, the volume of in-

fluence is essentially a sphere centred on the emission site. As the

emission site is brought outwards nearer the photosphere, this sphere

gets stretched on its outer side, bulges somewhat laterally, while its

inner side stays very close to the emission site. As the emission site

crosses the photosphere, the τ = 2/3 surface breaks open along the

radial direction, reaching all the way to infinity (at this time, γ -rays

would be observable along this beam). In comparison, the opening

angle of that surface remains rather small, and wraps tightly to the

emission site at depth. As the emission site is brought further out,

the opening angle broadens, eventually reaching the opposite side

of the ejecta for the outermost locations. Even in this situation,

γ -rays do not penetrate significantly the ejecta layers interior to the

emission site.

We see that the influence of γ -rays is highly angle dependent, with

a strong bias for escape in the radial direction for locations at and

above the photosphere. This results from the contrast in scale height

between the radial direction (i.e. ∼R/n for a power-law density dis-

tribution with exponent n) and the lateral direction (i.e. ∼2R/
√

n).

At early times, lγ is so small that γ -rays will only influence their

immediate vicinity. Thus to allow non-thermal ionization/excitation

of the bulk of the He atoms (preferentially located in the outer

ejecta), the 56Ni and 56Co γ -ray sources need to be thoroughly

mixed with the material in the helium-rich shell. By thorough mix-

ing, we mean that fingers or clumps of 56Ni will need to be suffi-

ciently densely distributed so that the inter-clump distance is of the

order of lγ . At a radial distance R, this translates into an inter-clump

angular distance �θ ∼ lγ /R. For the example shown in Fig. 2 at

26.8 d after explosion, clumps with a thickness �R and spaced every

Depending on the location of the γ -ray source, we adjust the location of the

outermost grid point to be at 20 000 or 40 000 km s−1.
6 This exercise is illustrative and thus the message conveyed is not altered

by the somewhat arbitrary choice for τ γ . In practice, using 2/3 yields the

volume over which ∼50 per cent of the γ -rays are absorbed, while non-

thermal processes may be sufficiently strong with only 10 per cent of such

γ -rays. In that case, the edge of that volume would correspond to τ γ = 2.3

from the emission site and the contours shown in Fig. 2 would correspond

to 14.5 d after explosion rather than 26.8 d.

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2143

Figure 2. Slices through a SN ejecta (containing its centre of mass; we use model Bmi18mf4p41z1 of Dessart et al. (2011) at 26.8 d after explosion) and

illustrating the area (shown in grey) that is within a γ -ray optical depth of 2/3, assuming various heights along the vertical axis for the γ -ray emission site

(shown as a black dot). We assume that the SN ejecta has a spherically symmetric mass distribution, so that this area corresponds to a volume of revolution

about the vertical axis. Its morphology changes drastically as the γ -ray emission site crosses the γ -ray photosphere (double dot–dashed line) located at 7700 km

s−1 at this time (where the optical photosphere at that time depends on the model; see Section 6). For emission sites near the γ -ray photosphere, γ -rays are

incapable of reaching regions of similar radius/velocity but at different latitudes/longitudes: the larger γ -ray mean free path in the radial direction makes it the

preferred direction of escape.

∼10◦ would allow γ -rays to influence the entire shell at R. Strongly

asymmetric explosions propelling 56Ni nuclei to large velocities in a

‘jet’ or a strong bipolar/unipolar explosion are not attractive alterna-

tives since the non-thermal processes would only affect a restricted

volume of the SN ejecta – primarily the high-velocity material as-

sociated with the ‘jet’ that does not contribute much to the bulk of

the SN radiation.

3 N U M E R I C A L A P P ROAC H A N D S E T U P

The numerical procedure is the same as that used in our recent sim-

ulations on SN 1987A (Dessart & Hillier 2010), SNe II-P (Dessart

& Hillier 2011a) and SNe IIb/Ib/Ic (Dessart et al. 2011), and will

thus be briefly summarized below. A full description of the code

is presented in Hillier & Dessart (2012). The first distinction with

those works is that instead of adopting a unique ejecta composition

structure, we explore different stratifications produced by different

levels of mixing. Secondly, we now treat explicitly the effects of

non-thermal excitation and ionization – in our former studies the

entire decay energy was treated as heat (Li et al. 2012).

3.1 Pre-SN evolution and explosion models

In this study, we employ a subset of the models discussed in Dessart

et al. (2011), whose pre-SN evolution was described by Yoon et al.

(2010, see also Woosley et al., in preparation).7 These two models

correspond to their models 21 and 28. Namely, we focus on the

binary-star models Bmi18mf4p41z1 and Bmf25mi5p09z1, which

result from the evolution of an 18 and a 25 M⊙ star in a binary sys-

tem at solar metallicity, with, at the time of explosion, a mass of 4.41

7 In future work, we will investigate a broader range of progenitors, including

single rotating and non-rotating WR stars (Georgy et al. 2012), and wider

interacting binaries (Claeys et al. 2011).
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2144 L. Dessart et al.

Table 1. Progenitor and ejecta properties for models Bmf4p41x[1–4] and Bmf5p09x[1–4]. In our nomenclature, ‘B’ stands for binary (evolution), ‘mfXpYZ’

for the final star mass X.YZ in M⊙ (i.e. at the time of explosion). The suffix x1–x4 refers to increasing levels of mixing. Since mixing affects the ejecta

distribution but not the cumulative ejecta masses of species, the yields are the same within a mixing sequence. The remnant mass is 1.48 M⊙ (1.5 M⊙)

for model sequence Bmf4p41x[0–4] (Bmf5p09x[0–4]), and all model ejecta have the same kinetic energy of 1.2 B. For both series, the pre-SN evolution is

computed at solar metallicity. In model sequence Bmf4p41x[0–4], the inner four zones of the KEPLER ejecta are infalling. We trim these regions, and because

of the different levels of mixing, this causes slightly different 56Ni cumulative masses, in the range of 0.157–0.177 M⊙. Note that in the subsequent evolution

with CMFGEN, the steep density variation in the innermost ejecta layers of model Bmf5p09xn causes numerical-diffusion issues, which are worse in cases of

weaker mixing.

Model Mi Mf Mejecta MH MHe MC MN MO MNe MMg MSi MFe M56Ni

(M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙) (M⊙)

Bmf4p41x(0–4) 18.0 4.41 2.91 6.88(−3) 1.63(0) 1.63(−1) 8.83(−3) 5.36(−1) 1.47(−1) 6.99(−2) 1.05(−1) 6.87(−3) 1.57(−1)... 1.77(−1)

Bmf5p09x(0–4) 25.0 5.09 3.61 1.39(−6) 1.58(0) 4.31(−1) 8.56(−3) 1.15(0) 7.60(−2) 7.30(−2) 7.01(−2) 8.85(−3) 1.84(−1)... 2.20(−1)

and 5.09 M⊙, and a stellar radius of 12.3 and 4.35 R⊙, respectively.

These two models were exploded with KEPLER (Weaver, Zimmerman

& Woosley 1978) by driving a piston at the iron-core edge to yield

an asymptotic ejecta kinetic energy of 1.2 B. Explosive burning was

computed from first principles with an approximate 13-isotope net-

work that includes 56Ni (for simplicity, 56Ni is also the only unstable

isotope that we consider in this work). In Dessart et al. (2011), the

ejecta were unmixed, i.e. the composition was taken directly from

the results of stellar evolution as modified by the explosion. The

radiative-transfer simulations were started with CMFGEN from such

hydrodynamical inputs evolved to 1 d after explosion. To be more

concise, we adjust our former model nomenclature and assign to

these two ejecta the root-names Bmf4p41 and Bmf5p09.

In this work, we wish to explore the effects of mixing and non-

thermal processes on SN radiation. We selected these two models

from the study of Dessart et al. (2011) to investigate the role of non-

thermal processes in helium-rich low-mass cores with and without

hydrogen at their surface, thus covering potential SN types of IIb/IIc

and Ib/Ic. All numerical codes used here are 1D, i.e. the stellar

evolution is done in 1D, as is the radiation-hydrodynamics of the

explosion, and the subsequent detailed radiative-transfer modelling

of the ejecta gas and radiation. So, to mimic the multidimensional

effects that may be at the origin of mixing in CCSN ejecta (see

Section 2), we run a ‘boxcar’ through the unmixed ejecta models

Bmf4p41x0 and Bmf5p09x0, and increase the efficiency of mixing

by increasing the mass range over which the material is mixed.

This mixing is applied to the original model shortly after explosive

burning ceases so that the evolution to 1 d properly accounts for the

heating associated with this ejecta stratification (in particular for

the 56Ni heat source). We produce Bmf4p41 and Bmf5p09 models

that cover unmixed (suffix x0), weakly mixed (x1 and x2), moder-

ately mixed (x3) and strongly mixed (x4) configurations. Mixing

does not change the cumulative yields of models Bmf4p41x0 and

Bmf5p09x0, shown in Table 1, but it gradually modifies the chem-

ical stratification, shown for each model in Fig. 3. Table 2 gives

additional information on the surface composition for each model.8

Mixing softens composition gradients. In the most mixed models,

the ejecta is nearly homogeneous – any species abundant at one

depth is present at all depths. For stars of increasing mass, a greater

mass buffer exists between the ejecta base and the helium-rich outer

shells. Progressing outwards from the innermost ejecta layers, one

encounters an oxygen-rich helium-deficient shell (here bounded

8 Since the mixing is performed over a specified mass range, it can affect

all the way to the surface so a more desirable mixing approach would be

to use a velocity criterion when setting the range of mass shells that are

homogenized.

between 1.8 and 2.5 M⊙), followed by a shell with a composition

shared between He, C and O. In our models, only the outermost

layers (�0.5 M⊙ below the surface) are nearly pure helium (with

a mass fraction that depends on the level of mixing). In model

Bmf4p41x0-3, hydrogen is also present with a mass fraction in

excess of 0.01, which is sufficient to produce Hα emission at early

times (Dessart et al. 2011).

The velocity of the ejecta shell that bounds 99 per cent of the total
56Ni mass is a good indicator of the magnitude of mixing in our

models. This velocity varies from ∼1500 km s−1 up to �8000 km

s−1 (Table 2). Note that the bulk of the mass of such unstable

isotopes is still located at small velocities because the mixing, which

affects the profile of species’ mass fractions, leaves the steeply rising

density distribution at depth unaffected.

3.2 Non-LTE time-dependent radiative transfer including

non-thermal processes

The critical improvement in this work over all past studies of SN

Ibc explosions is the simultaneous computation of the SN multi-

colour light curve and spectra with allowance for line blanketing,

non-LTE, time dependence in the statistical, energy and radiative-

transfer equations, and non-thermal processes associated with

high-energy electrons Compton scattered by the γ -rays arising from

radioactive decay. All ingredients but the last have been described

in detail in Dessart & Hillier (2010, 2011a), Dessart et al. (2011)

and Hillier & Dessart (2012). In these former works and in the

present study, time dependence is considered both for the treat-

ment of the radiation field (i.e. DJ/Dt and DH/Dt terms in the 0th

and 1st moment of the radiative-transfer equation) and of the gas

(De/Dt and Dn/Dt terms appearing in the energy and the statistical

equilibrium equations; Dessart & Hillier 2008 ; we thus naturally ac-

count for time-dependent ionization). The new addition is the treat-

ment of non-thermal processes through a solution of the Spencer–

Fano equation (Spencer & Fano 1954) using the approach presented

in Kozma & Fransson (1992). Assuming a γ -ray energy deposition

profile, we inject the corresponding energy in the form of electrons

at 500 eV and compute the local degradation of such electrons as

they collide with electrons and ions/atoms in the plasma. Once this

degradation function is known, we can determine how this deposited

energy is channelled into the various forms of heat, ionization and

excitation. The non-thermal terms associated with ionization and ex-

citation are entered as rates in the statistical equilibrium equations

and are thus fully integrated in the CMFGEN solution to the non-LTE

time-dependent ionization and level populations. A full description

of the technique and an in-depth analysis of non-thermal effects in

core-collapse SNe are presented in a companion paper (Li et al.

2012). Here, we will limit the discussion of non-thermal effects

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2145

56

Figure 3. Helium (dashed line), oxygen (dotted line) and 56Ni (solid line; we show here the initial distribution unaffected by decay) mass distribution versus

ejecta mass for Bmf4p41 (left) and Bmf5p09 (right) model sets. The suffix x1–x4 refers to increasing levels of mixing (see Tables 1 and 2). In the top row

panels, we also add the velocity information.
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2146 L. Dessart et al.

Table 2. Same as for Table 1, but now showing the surface composition for each model in each series. The models with suffix x0 correspond to the unmixed

ejecta studied in Dessart et al. (2011) and are repeated here for completeness and reference. We also quote the ejecta velocity that encompasses 99 per cent of

the 56Ni mass initially, i.e. V56Ni, the peak bolometric luminosity Lpeak and the time to peak luminosity tpeak.

Model XH XHe XC XN XO XNe XMg XSi XFe XNi V56Ni Lpeak tpeak

(km s−1) (×108L⊙) (d)

Bmf4p41x0 1.25(−1) 8.55(−1) 1.48(−4) 1.33(−2) 4.53(−4) 1.85(−3) 7.25(−4) 7.34(−4) 1.36(−3) 0.0 2541 9.02 31.65

Bmf4p41x1 4.91(−2) 9.32(−1) 2.63(−4) 1.32(−2) 4.09(−4) 1.85(−3) 7.24(−4) 7.35(−4) 9.08(−4) 0.0 2755 8.37 33.27

Bmf4p41x2 2.76(−2) 9.51(−1) 1.99(−3) 1.30(−2) 1.19(−3) 2.05(−3) 7.27(−4) 7.35(−4) 9.08(−4) 3.0(−10) 3040 8.27 34.37

Bmf4p41x3 1.44(−2) 9.42(−1) 1.65(−2) 1.10(−2) 9.11(−3) 4.13(−3) 8.63(−4) 7.85(−4) 9.10(−4) 5.23(−5) 3680 7.95 35.93

Bmf4p41x4 6.83(−3) 8.35(−1) 4.35(−2) 6.95(−3) 6.01(−2) 1.79(−2) 6.00(−3) 7.28(−3) 1.24(−3) 1.14(−2) 7500 7.61 34.20

Bmf5p09x0 6.33(−5) 9.81(−1) 2.92(−4) 1.33(−2) 3.21(−4) 1.85(−3) 7.23(−4) 7.34(−4) 1.36(−3) 0.0 1230 7.88 50.46

Bmf5p09x1 1.12(−5) 9.81(−1) 3.54(−4) 1.32(−2) 3.42(−4) 1.85(−3) 7.24(−4) 7.35(−4) 1.36(−3) 0.0 1510 7.54 52.33

Bmf5p09x2 5.81(−6) 9.72(−1) 3.68(−3) 1.30(−2) 5.98(−3) 2.11(−3) 7.80(−4) 7.35(−4) 1.36(−3) 0.0 1930 7.43 52.23

Bmf5p09x3 2.94(−6) 8.93(−1) 3.29(−2) 1.10(−2) 5.57(−2) 4.41(−3) 1.28(−3) 7.37(−4) 1.36(−3) 2.92(−6) 3100 6.91 47.20

Bmf5p09x4 1.16(−6) 6.77(−1) 9.88(−2) 6.06(−3) 1.87(−1) 1.14(−2) 5.21(−3) 3.62(−3) 1.36(−3) 8.24(−3) 6430 7.15 36.56

relevant to understanding the formation of He I lines (Section 4) in

SNe Ibc.

In practice, the non-thermal solver in CMFGEN is only used if the

mass fraction of unstable isotopes at the photosphere is indeed size-

able, typically above 0.0001. This was decided for each model by

switching on the non-thermal processes at selected times and check-

ing if this produced any effect on the gas properties and/or on the

SN radiation. As discussed in Section 2, lγ in the 56Ni-rich regions

is small at early times in all but the most mixed models (suffix x4),

so we switch on non-thermal processes at the start of the time se-

quence only in the x4 series. To save space and since the unmixed

models have already been discussed in Dessart et al. (2011), we do

not show results for models Bmf4p41x0 and Bmf5p09x0; models

Bmf4p41x1 and Bmf5p09x1 behave very similar to them and are

thus used as substitutes.

For the γ -ray energy deposition, we can either assume that it is

local or we can compute its distribution in the ejecta using a γ -ray

Monte Carlo transport code we developed (Hillier & Dessart 2012).

We find that the γ -ray energy deposition is essentially local up to

about 30 d after the light-curve peak in all models. Because we

focus on the photospheric-phase evolution all simulations shown

here assume a local energy deposition. Non-local energy deposition

is not crucial for the non-thermal effects discussed here since it

merely stretches the deposition profile outwards, with an enhanced

escape at large velocity. It does, however, change the amount of

energy trapped in the ejecta and thus the luminosity decline rate

during the nebular phase.

The model atoms adopted for all simulations in this work are

identical to that used in Dessart & Hillier (2011a). The complete-

ness of the model atoms influences the spectral appearance but it

does not alter the He I-line strength or the non-thermal effects we

observe. The main impact of increasing the size of the model atoms

in our simulations, in particular for metals, is to enhance the mag-

nitude of line blanketing, which tends to make the spectral energy

distribution (SED) redder. This effect is generally weaker than ob-

tained here through variations in composition caused by mixing (i.e.
56Ni, C/O versus He, etc.), although it noticeably alters the colours

after the light-curve peak. Since atomic data represent an important

part component of the work we do, we wish to provide the sources

and references for the data we use. The sources of atomic data are

varied, and in many cases multiple data sets for a given ion are avail-

able. In some cases these multiple data sets represent an evolution

in data quality and/or quantity, while in other cases they represent

different sources and/or computational methods. Comparisons of

models calculated with different data sets and atomic models po-

tentially provide insights into the sensitivity of model results to the

adopted atomic atoms and models (although such calculations have

yet to be undertaken for SN). Oscillator strengths for CNO elements

were originally taken from Nussbaumer & Storey (1983, 1984).

These authors also provide transition probabilities to states in the

ion continuum. The largest source of oscillator data is from Kurucz

(2009); its principal advantage over many other sources (e.g. Opac-

ity Project) is that LS coupling is not assumed. More recently,

non-LS oscillator strengths have become available through the Iron

Project (Hummer et al. 1993), and work done by the atomic-data

group at Ohio State University. Other important sources of ra-

diative data for Fe include Becker & Butler (1992, 1995a,b) and

Nahar (1995). Energy levels have generally been obtained from the

National Institute for Standards and Technology (NIST). Collisional

data are sparse, particularly for states far from the ground state. The

principal source for collisional data among low-lying states for a va-

riety of species is the tabulation by Mendoza (1983); other sources

include Berrington et al. (1985), Lennon et al. (1985), Lennon &

Burke (1994), Shine & Linsky (1974), Tayal (1997a,b) and Zhang

& Pradhan (1995a,b, 1997). Photoionization data are taken from

the Opacity Project (Seaton 1987) and the Iron Project (Hummer

et al. 1993). Unfortunately, Ni and Co photoionization data are

generally unavailable, and we have utilized crude approximations.

Charge exchange cross-sections are from the tabulation by Kingdon

& Ferland (1996).

Finally, we have identified a numerical-diffusion problem which

arises from the repeated remappings performed at each step in a

time sequence. These remappings are necessary to adjust the grid

on to the optical-depth scale, which changes due to expansion and

recombination/re-ionization. Unfortunately, the 1D hydrodynami-

cal inputs we employ have strong composition and density gradients

which are smoothed by such remappings. Since the model at a new

time step uses the model at the previous time step, these remap-

pings produce systematic shifts which become continually worse

as we evolve the models to later time. This alters the total mass

of some species by 10 per cent, but by as much as 30 per cent for
56Ni in unmixed models because 56Ni is most abundant in a narrow

shell at the ejecta base where the density steeply rises. While this

does not impact the discussion on non-thermal effects, it induces a

slight shift between model light curves (most visible at light-curve

peak). In future modelling this problem, at least for models where

the velocity of a given mass shell is constant, will be rectified by

interpolating the density structures from the original hydrodynamic

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2147

model grid. Radiation-hydrodynamics codes do not suffer from this

shortcoming because they use a high-resolution Lagrangian mass

grid, but it is then the poor resolution of the optical-depth scale that

affects their results.

4 T H E R M A L A N D N O N - T H E R M A L E F F E C T S

ASSOC IATED WITH γ - R AY E N E R G Y

D E P O S I T I O N

Before presenting light curves and synthetic spectra obtained for all

model sequences, we first describe the effects associated with γ -ray

energy deposition in two representative models – one with strong

mixing (Bmf4p41x4) and one with weak mixing (Bmf4p41x1).

These two models are characterized by the same total mass, the

same cumulative yields (i.e. same total mass of individual species),

the same density structure and the same explosion energy (or expan-

sion rate). Hence both models have, at a given post-explosion time,

the same mass-density structure (versus radius or velocity). The dif-

ferences between them arise directly from differences in chemical

stratification and in particular how the different 56Ni distributions

influence the heating/ionization/excitation of the gas. Further, mix-

ing impacts the opacity and emissivity of the gas through changes

in the chemical abundances.

Using the highly mixed model Bmf4p41x4, we show in Fig. 4

the ionization fraction (xe; black), the fractional energies going

into heat δEh (blue), ionization δEi (green), excitation δEe (red),

and the normalized energy deposition rate (eγ,n; orange) versus

ejecta velocity at 10.3 (top), 29.3 (middle) and 63.0 d (bottom) after

explosion. To gauge the potential effects of non-thermal electrons

on the continuum and line formation regions, which are located at

and above the optical photosphere, we show this location in each

panel with a black dot. We find that at all three epochs, most of

the energy originally in non-thermal electrons gets degraded into

heat. Hence, even if injected non-thermally, most of this energy

ends up thermal here and directly influences the light curve. Near

the photosphere, 10 per cent of the total deposited energy goes into

ionization and about half that goes into excitation. Because helium

is the most abundant species throughout most of the ejecta, it is

He I that benefits the most from this non-thermal ionization and

excitation (dashed curves).

In a complicated fully coupled non-LTE situation, there is no

strict separation between these various heat, ionization and excita-

tion contributions. For example, heat can indirectly cause photoion-

ization from a thermal blackbody and collisional ionization with

thermal electrons at large optical depth where the material is close

to LTE. Furthermore, overexcitation of upper levels in an atom/ion

will facilitate photoionization and thus indirectly influence the ion-

ization state of the gas. These complications justify a full non-LTE

treatment so that all important rates are allowed for in the deter-

mination of the level populations, the electron density and the gas

temperature. This treatment must also allow for time-dependent

terms in the statistical equilibrium equations since these are known

to influence the ionization state of the gas (Dessart & Hillier 2008),

and thus the fate of non-thermal electron energy.

The magnitude of the effects associated with each channel scales

with the actual energy deposited by radioactive decay. In the highly

mixed model (Fig. 3), the decay energy is deposited not only in

the inner ejecta but also in high-velocity regions at and beyond

the photosphere. This extra thermal and ionization energy causes the

SN to brighten and peak earlier compared to unmixed models (see

Section 6). As we shall see in Section 7, it also leads to a sizable

strengthening of He I lines in this model series.

Figure 4. Illustration of the fractional energies going into heat δEh (blue),

ionization δEi (green) and excitation δEe (red) as a function of ejecta ve-

locity and shown at 10.3 (top), 29.3 (middle) and 63.0 d (bottom) after

explosion in model Bmf4p41x4. The fractional energies shown with solid

lines denote the total contributions in each energy channel, while the cor-

responding dashed lines give the ionization and excitation associated with

He I only. We also show the ejecta ionization fraction xe (black), which we

take here as the ratio of the total ion population to the combined total atom

and ion populations, and the normalized decay-energy deposition profile at

the time (eγ,n, in units of erg cm−3 s−1, and normalized to its maximum

value; orange). In each plot, the black dot represents the location where the

inward-integrated Rosseland mean optical depth is 2/3.

In the weakly mixed model Bmf4p41x1 (shown at 29.4 d only),

the actual channelling of non-thermal energy into heat, ionization

and excitation is very similar (Fig. 5). The magnitude and distribu-

tion of the energy deposited are, however, drastically different. It is

C© 2012 The Authors, MNRAS 424, 2139–2159
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2148 L. Dessart et al.

Figure 5. Same as Fig. 4, but now for the very weakly mixed model

Bmf4p41x1 at 29.4 d after explosion. The relative fractions of the energy

deposited by radioactive decay are comparable to those obtained for model

Bmf4p41x4 at the same time (middle panel of Fig. 4), although the lower

ejecta ionization enhances somewhat the contributions to ionization and

excitation (which primarily go to He I). However, the magnitude of these

non-thermal processes is completely dwarfed at and above the photosphere

by the very steeply declining energy deposition profile (orange). In fact,

most of the decay energy is deposited in regions that are ionized, located

below the photosphere (black dot), so that the bulk of the decay energy goes

into heat in this unmixed model.

negligible at, and above, the photosphere, since the bulk of the 56Ni

is confined to the inner ejecta layers located below 2800 km s−1.

Since models Bmf4p41x1 and Bmf4p41x4 have the same amount

of 56Ni at a given post-explosion time, the temperature in those

inner layers is much higher than in the contemporaneous model

Bmf4p41x4. As a consequence, the bulk of the decay energy is de-

posited below the photosphere, in deep regions that at this time are

ionized. Consequently, the bulk of the injected non-thermal energy

not only ends up as thermal energy, but it also fails to influence

non-thermally the line and continuum formation regions.

Non-thermal ionization and excitation are thus favoured when

the decay energy is deposited in regions of low ionization, which

also tend to be external to the photosphere. Mixing is thus critical to

propel 56Ni at large velocities (and in all directions; see Section 2),

in regions that on a short time-scale will be above the photosphere.

In unmixed ejecta, heating from the 56Ni at depth causes a strong

and delayed heat wave that causes the photosphere to be external

to the deep-seated 56Ni-rich regions (Dessart et al. 2011). As an

aside, the dependency of non-thermal effects to ionization suggests

that they may not be paramount in SN Ia ejecta since the large 56Ni

mass causes a large ejecta ionization at all times.

Interestingly, we find that the strong mixing adopted in models

Bmf4p41x4 and Bmf5p09x4 actually quenches the impact of non-

thermal ionization/excitation on He I in the outer ejecta. Indeed,

energy deposited at large velocities causes heating of these layers,

which over time and through the ionization freeze-out caused by

time-dependent effects (Dessart & Hillier 2008) cause helium to

be fully ionized in those outer regions (the ion that gets the largest

share of non-thermal ionization and excitation energy at large ve-

locities is indeed He II in Fig. 4). In this context, a lower level of

mixing with allowance for non-local energy deposition could have

allowed helium to recombine, and thus a stronger non-thermal ex-

citation of He I atoms. In the future, we will need to investigate

ways of mimicking as close as possible the mixing properties of

multidimensional explosion simulations.

5 P RO C E S S E S C O N T RO L L I N G T H E H E I

L E V E L P O P U L AT I O N S

In SN ejecta, departures from LTE are usually very strong at, and

above, the photosphere (see e.g. Dessart & Hillier (2011a) for an

illustration of the departure coefficients of H I, O I and Fe II in a SN

II model). Here, non-thermal effects drive the material even further

from LTE.

In this section, we describe in more detail how the He I level

populations are controlled by showing the dominant rates in and out

of the lower nine levels (Fig. 6). To assist with the interpretation,

we give a succinct summary of the properties of these levels and the

associated bound–bound transitions in Table 3.

Rates controlling the level populations fall into different cat-

egories but are fundamentally collisional or radiative. The for-

mer include thermal and non-thermal (collisional) ionization

and excitation, and the latter photoionization and recombination

(bound-free/free–bound transition), and radiative excitation and de-

excitation (bound–bound). In each panel of Fig. 6, we display a

given rate if it exceeds 5 per cent of the total rate at any given depth

in the model (see label and colour coding). The rate associated

with a line transition at frequency νul corresponds to the quantity

nuAul(1 − Jνul
/Sul), where nu is the population of the upper level,

Aul is the Einstein coefficient, Jνul
is the mean intensity at the fre-

quency νul and Sul is the line source function. This rate may be

positive (implying a net decay of electrons from the upper level) or

negative (implying a pumping of electrons from the lower state into

the upper state) depending on how Jνul
compares to Sul.

Below ∼4000 km s−1 recombination and photoionization rates

appear to dominate. However, at these depth we are almost in LTE

and many processes contribute to setting the level populations. The

line rates are also large, but since we plot the net rates they have

been analytically cancelled. Above ∼4000 km s−1 individual pro-

cesses are (generally) no longer in detailed balance, and the level

populations are controlled by a variety of processes.

In our treatment of He I non-thermal ionization is only allowed

from the ground state of He I and thus only directly affects the

population of level 1s2 1S (top-left panel) and the ground state of

He II. This is a valid approximation since the ground state is the most

populated. Unlike recombination and photoionization rates that tend

to cancel each other, there is no significant reverse process, and so,

despite the modest rate, the impact on He ionization is important.

While many different non-thermal excitation routes are consid-

ered, the most important is from the ground state (1s2 1S) to the

1s 2p 1Po level. When the bound–bound transition to the ground

state is sufficiently optically thick, the 1s 2p 1Po level decays to

1s 2s 1S producing He I 20 581 Å. Other 1Po levels are also signifi-

cantly influenced by non-thermal excitations from the ground state

– in the Bethe approximation (van Regemorter 1962) the rate of

excitation to these levels is proportional to the oscillator strength.

In contrast, level 1s 2p 3Po is primarily populated through down-

ward transitions from higher levels and thus the 10 830 Å line from

transition He I (1s 2p 3Po–1s 2s 3S) stems primarily from recombi-

nation following photoionization and non-thermal ionization. He I

10 830 and 20 581 Å dominate the cascade into levels 2 and 3, i.e.

1s 2s 3S and 1s 2s 1S (red curves in the second and third panels from

top left).

The distinction between the 1s 2p 1Po and the 1s 2p 3Po primarily

arises because of the large difference in collision cross-section.
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Radiative transfer of SN Ib/Ic ejecta 2149

Figure 6. Illustration of the dominant fractional rates in (positive) and out (negative) for the first nine levels of He I, ordered from left to right and top to

bottom 1s 1s 1S, 1s 2s 3S, 1s 2s 1S, 1s 2p 3Po, 1s 2p 1Po, 1s 3s 1S, 1s 3p 1Po and 1s 3d 3D (we omit level 1s 3s 3S). For this illustration, we use model Bmf4p41x4

at light-curve peak. For better visibility, we display the individual rates as a fraction of the total rates for a given level at a given depth. (See Section 6 for

discussion.)
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2150 L. Dessart et al.

Table 3. Selection of properties of He I lower levels and

important transitions in between them. We present an illus-

tration of the rates controlling the population of the lower

levels of He I in Fig. 6 in model Bmf4p41x4 at light-curve

peak. We first give the level Id. number, the level name, its

statistical weight g and its excitation energy Ei (in cm−1)

above the ground state. We then list the main transitions be-

tween these levels that fall in the optical and near-IR ranges,

giving the oscillator strength and the wavelength for each.

Id. Level g Ei (cm−1)

1 1s 1s 1S 1 0.0

2 1s 2s 3S 3 15 9856.1

3 1s 2s 1S 1 16 6277.5

4 1s 2p 3Po 9 16 9087.0

5 1s 2p 1Po 3 17 1135.0

6 1s 3s 3S 3 18 3236.9

7 1s 3s 1S 1 18 4864.9

8 1s 3p 3Po 9 18 5564.7

9 1s 3d 3D 15 18 6101.7

10 1s 3d 1D 5 18 6105.07

11 1s 3p 1Po 3 18 6209.47

Transition gf Wavelength (Å)

4–2 5.399E−01 10830.17

8–2 6.406E−02 3888.64

5–3 3.294E−01 20581.28

11–3 1.558E−01 5015.68

6–4 6.953E−02 7065.25

9–4 6.097E−01 5875.66

7–5 4.703E−02 7281.35

10–5 7.094E−01 6678.15

11–3 1.558E−01 5015.68

The collision strength between levels with permitted transi-

tions scales as log E (energy of electron) at high energies (i.e.

E ≫ ionization energy), while the collision strength of other transi-

tions is almost constant (transitions to 1s 2s 1S) or declines with E

(transitions to 1s 2s 3Po).9 Two other factors also come into play –

for He I the rate of non-thermal ionizations is somewhat larger than

the rate of non-thermal excitations, and approximately 3/4 of the

recombinations (excluding the ground state) are to triplet levels.

An important issue to remember when discussing the influence

of various processes is that the size of a particular process does

not necessarily give an indication of its importance. An obvious

example is bound-free processes for the ground state of He I. While

the component rates for the process may be larger than other rates,

they may be negligible in controlling the helium ionization structure

when the He I ground-state continuum is in detail balance, and the

two rates (photoionization and recombination) cancel with a high

degree of accuracy.

In the present case, non-thermal excitation and ionizations lead

(directly or via recombination and cascades) to an overpopulation

of the n = 2 levels (primarily the 2s states) in He I. The population of

these state is set by the leakage back to the ground state which com-

pensate for the non-thermal excitations and ionizations. When this

occurs photoionizations from these states may become the dominant

ionization process, even though this process would be negligible in

9 We utilized the online Los Alamos Atomic Physics Codes at

http://aphysics2.lanl.gov/tempweb/lanl/, which are based on Hartree–Fock

method of R. D. Cowan, to compute collision strengths for both H I and He I.

Figure 7. Bolometric light curve for the Bmf4p41 series shown with respect

to the time of peak bolometric luminosity and assuming full γ -ray trapping.

In practice, γ -ray escape starts a few weeks after the peak in such progenitors

(Dessart et al. 2011) and is slightly greater for higher mixing magnitudes (at

100 d, we find that the fraction of γ -rays that escape increases from ∼25 per

cent to ∼40 per cent from Bmf4p41x1 to Bmf4p41x4). (See Section 6 for

discussion.)

the absence of non-thermal processes. As noted by Lucy (1991) this

can amplify the influence of non-thermal processes.

Non-thermal processes act directly only on a few levels in He I.

However, non-thermal ionization affects all levels indirectly through

its influence on the He ionization and hence on recombination. Non-

thermal processes are important throughout the evolution of SNe

Ibc, including the nebular phase.

6 L I G H T C U RV E A N D P H OTO S P H E R I C

PROPERTI ES

In our non-LTE time-dependent radiative-transfer simulations, we

compute the emergent spectrum from a few Å to a few hundred µm.

The frequency integral of this emergent spectrum at each epoch

yields the bolometric luminosity of each model. We show the evo-

lution for the bolometric luminosity for the Bmf4p41x[1–4] model

series in Fig. 7, using the peak of the light curve as the time ori-

gin (the Bmf5p09x[1–4] series behaves similarly and is thus not

shown). Full γ -ray trapping is assumed at all times.

Enhanced mixing causes an earlier and more gradual rise to the

peak. The post-breakout plateau that characterizes the unmixed or

weakly mixed models, as described in Dessart et al. (2011), vanishes

for the highest levels of mixing. (This is similar to what was found

by e.g. Shigeyama & Nomoto 1990 for SN 1987A.)

Enhanced mixing causes an earlier peak (merely a few days in

this series but as much as ∼15 d in the Bmf5p09x4 model), and an

earlier transition to γ -ray escape, making the nebular luminosity

drop earlier and faster (not shown here, but see Dessart et al. 2011).

This effect is however weak because, irrespective of mixing, the

bulk of γ -ray energy deposition reflects the 56Ni distribution that is

coupled with the density, and which steeply increases towards the

inner ejecta. As we discussed earlier in the paper, some numerical

diffusion affects somewhat the total mass of unstable isotopes, in

particular in unmixed models. Since the main focus of this paper

is on the non-thermal effects on SN Ib/c spectra, we defer to a

forthcoming study a more quantitative description of mixing on SN

Ib/c light curves (Dessart et al., in preparation).

The light-curve behaviour reflects the evolution of the photo-

spheric properties (Fig. 8) and nearly exclusively the radius and the

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2151

Figure 8. Evolution with respect to days since the light-curve peak of the radius (top-left panel), the temperature (top-right panel), the velocity (bottom-

left panel) and the overlying mass at the electron-scattering photosphere for both model sequences Bmf4p41xn and Bmf5p09xn. Note the non-monotonic

photospheric velocity in the weakly unmixed Bmf5p09xn models, a feature that disappears as mixing is enhanced.

temperature. For both model series Bmf4p41 and Bmf5p09, mixing

causes the same effect on the photosphere behaviour and primarily

reflects the induced change on the 56Ni distribution. With enhanced

mixing, the heating of the outer ejecta layers is increased and the

diffusion time of that energy to the outer layers is shorter. Conse-

quently, the photosphere migrates outwards in radius earlier with

enhanced mixing. The extra heat produces a higher temperature ini-

tially, which thus causes the luminosity to rise earlier, even avoiding

a post-breakout plateau for the highest level of mixing here. The

reduced mass fraction of 56Ni at depth causes a smaller tempera-

ture rise associated with the heat wave. With increased mixing, the

non-monotonicity of the photosphere trajectory in mass/velocity is

reduced and even disappears for the highest level of mixing. In this

case, the temperature, the velocity and the mass above the pho-

tosphere continuously and gradually decrease with time. The extra

heat generated from the mixed radioactive material keeps the photo-

sphere further out in the ejecta, at larger velocities. Without mixing,

the photosphere recedes in mass very fast and abruptly changes its

properties when it suddenly feels the heat wave from decay.

These effects are all fundamentally of non-thermal origin, but

as described in the previous section, the energy from non-thermal

electrons is always channelled primarily in the form of heat. In the

low-ionized conditions above the photosphere, it represents ∼70 per

cent of the local energy deposition, and reaches 95–100 per cent far

above the photosphere where the conditions are ionized (which

results primarily from ionization freeze-out associated with time-

dependent effects; Dessart & Hillier 2008). Below the photosphere,

the heat channel represents ∼95 per cent of the total energy de-

posited locally, but decreases with time at and beyond the peak

of the light curve, i.e. ∼92 per cent at 29.3 d and ∼82 per cent at

63.0 d after explosion. Since the energy deposition occurs primarily

at depth, the bulk of the non-thermal energy is deposited as heat.

Decay energy thus influences primarily the light curve, allowing

such Type I CCSNe to be bright a few weeks after explosion.

7 I N F L U E N C E O F M I X I N G O N S Y N T H E T I C

SPECTRA

Variations in mixing cause changes in composition (Fig. 3), light-

curve evolution (Fig. 7) and in non-thermal processes (Figs 4–5).

In Figs 9 and 10, we show the spectral evolution over the first 100 d

for models Bmf4p41x1–4 and Bmf5p09x1–4, respectively (black

curves). We overplot in each panel the corresponding spectra when

He I lines are excluded from the formal solution of the transfer

equation. All simulations are done with large, but not huge, model

atoms (Section 3; note that these simulations represent nonetheless

the most CPU-intensive non-LTE line-blanketed simulations ever

performed for SNe Ib/c), so the spectral colours and morphology

are not fully converged. For the present qualitative presentation, this

is sufficient but we will explore the dependency of our results on

the adopted model atom in a forthcoming paper. We obtain three

different types of spectral evolution, corresponding to different SN

classification.
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2152 L. Dessart et al.

Figure 9. Left column: montage of synthetic spectra (black) for the models Bmf4p41x1 (left; model Bmf4p41x2 has a similar evolution and is thus not shown),

Bmf4p41x3 (middle) and Bmf4p41x4 (right) from 2 until 100 d after explosion. For illustration, we overlay the synthetic spectrum that results when excluding

He I bound–bound transitions in the formal solution of the radiative-transfer equation (red). The left-hand panel corresponds to a SN IIc evolution, owing to

the strong Hα line initially, and the transition to a spectrum without lines of H I, He I, nor Si II in the optical after about 15 d. The middle panel corresponds to a

SN IIb evolution, with presence of Hα initially and He I lines, albeit anomalously narrow, at later times. The right-hand panel corresponds to a rather standard

SN Ib evolution, with broad He I lines at all times.

Figure 10. Same as Fig. 9, but now for the Bmf5p09x1–4 model set. Owing to the larger ejecta mass, only the model with the largest mixing (right) produces

a genuine SN Ib, while the other two series correspond to a SN Ic evolution.

(i) The weakly and moderately mixed models (i.e. Bmf4p41x1–2

and Bmf5p09x1–3) have a similar spectral appearance as the corre-

sponding unmixed models presented in Dessart et al. (2011). Despite

variations in mixing, which impact both 56Ni and all other species,

the differences in this set are subtle. Most important, none of these

models shows optical He I lines after about 10 d past explosion, and

when such He I lines are present early on, they arise exclusively

from non-LTE effects (Dessart et al. 2011). In the optical, model

Bmf4p41x1 (and Bmf4p41x2, not shown) shows strong Hα ini-

tially, which quickly vanishes to leave a spectrum without H I and

He I lines, nor the strong Si II absorption at 6300 Å. In a strict sense,

this spectral evolution would correspond to a SN IIc, a SN subtype

unobserved today. All other models in this set would be of Type Ic.

We note that the presence of He I and Hα in these models at early

times is influenced by the ionization freeze-out in the outer ejecta,

a time-dependent effect (Dessart & Hillier 2008) that dominates

in the absence of non-thermal excitation/ionization (Dessart et al.

2011).

(ii) In the moderately mixed model Bmf4p41x3 (middle panel),

He I 5875Å is visible but it is extremely weak and very narrow, dis-

qualified for a standard SN Ib spectrum. Nonetheless, we can clearly

see that the increasing mixing starts to have a visible effect on the

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2153

spectra. Non-local energy deposition at late times compensates for

the weak mixing and causes the non-thermal excitation/ionization

of He I 10 830 Å; this effect is however too weak to produce unam-

biguous He I optical lines. Because of the presence of Hα at early

times, this spectral evolution corresponds to a Type IIb SN, although

of a peculiar kind due to the weakness of the He I lines.

(iii) For the heavily mixed models Bmf4p41x4 and Bmf5p09x4,

the spectral appearance is markedly different from all other models

discussed above. In both models, and despite the differences in

ejecta mass, the spectral appearance is the same and very typical of

SNe Ib in the sense that He I lines are now unambiguously seen at

all times. Because of the mixing procedure, which affects the entire

ejecta, model Bmf4p41x4 does not show H I lines initially (the

surface hydrogen mass fraction is too low). If the surface hydrogen

mass fraction had been kept as high as in model Bmf4p41x1, model

Bmf4p41x4 would be a Type IIb SN, but given the absence of H I

lines, model Bmf4p41x4 (just like model Bmf5p09x4) corresponds

to a SN Ib.

So, while all these He-rich ejecta show He I lines at early post-

explosion times, as discussed in detail by Dessart et al. (2011), only

the moderately and heavily mixed models show optical He I lines

after about 10 d, throughout the peak of the light curve and beyond.

This also applies to the He I lines at 10 830 and 20 581 Å.

These models suggest that there is a continuum of He I-line

strengths as we increase the mixing efficiency (this would have been

more obvious if we had intermediate models between Bmf4p41x3

and Bmf4p41x4, for example). As mixing increases, non-thermal

excitation and ionization become more efficient at and above the

photosphere (Section 4). The enhanced ionization populates excited

levels of He I producing He I lines that are otherwise vanishingly

weak. In these SN Ib models the He I lines dominate over weaker

overlapping lines in the optical. In contrast, the He I lines are weak

in our SN Ic models, and one sees instead a complex mixture of

weak lines associated with Si II, Fe II, Na I, C II and O I. In our simu-

lations, these weaker lines tend to be always present and thus, what

yields here the Ib or Ic classification depends on how strong the

He I lines are, which in our set of helium-rich ejecta models is more

related to the abundance and spatial distribution of 56Ni rather than

the He abundance (line identifications for observed SNe Ib and Ic

are given in the next section).

To illustrate this feature, we show in Fig. 11 the variation at the

photosphere of the mass fraction of helium and of unstable isotopes

associated with 56Ni decay in all models (the time origin is the

time of light-curve peak). Varying the mixing efficiency leads at the

light-curve peak to variations of a few tens of per cent for the helium

mass fraction, but it causes orders of magnitude variations in the
56Ni mass fraction. We find that He I lines only appear strongly if

the original 56Ni mass fraction in the corresponding layers is greater

than ∼0.01. We expect some sensitivity to the helium mass fraction

too but not as dramatic. In the heavily mixed models, a helium mass

fraction of 0.2–0.3 deep in the ejecta is still enough to produce He I

lines.

This 56Ni mass-fraction threshold makes the production of SNe Ib

a challenge – all ejecta without adequate 56Ni mixing will produce

SNe Ic. This also suggests a maximum mass for a SN Ib ejecta of

no more than a few M⊙. Indeed, the typical SN Ib/Ic 56Ni mass

is 0.1 M⊙. For a fully mixed 10 M⊙ ejecta, this would produce a

0.01 56Ni mass fraction. Since even in our fully mixed models the
56Ni mass fraction drops by a factor of 5–10 between the inner and

outer regions, the SN Ib ejecta mass cannot be more than ∼3 M⊙
for the successful production of He I lines. Because 56Ni needs to

be quite abundant in those helium-rich layers, SNe Ib have to be

fundamentally associated with lower mass ejecta. As we discussed

recently, they cannot be associated with high-mass ejecta because

of the short rise time to light-curve peak, the narrow light-curve

peak and the fast light-curve decline at nebular epochs (Ensman &

Woosley 1988; Dessart et al. 2011).

In the massive-star community, high-mass progenitors leading

to WR stars are often considered as potential candidates for SNe

Ib/c (Hirschi, Meynet & Maeder 2004; Georgy et al. 2009), but the

corresponding stellar-evolution simulations yield final masses that

are typically too large to accommodate the observed SN Ib/c light

curves. They are also more generally characterized by an envelope

with a large oxygen-rich buffer between the core and any remaining

outer helium-rich shell, potentially compromising the efficiency of

mixing, and hence of non-thermal ionization/excitation. An alter-

native is fast rotation, which can allow lower mass massive stars

to die as a moderate-mass WR star with some outer helium-rich

shell and thus one cannot completely exclude this route. To resolve

this issue requires that all stellar-evolutionary models for such ob-

jects be evolved until iron-core collapse to permit the modelling of

the SN light curves and spectra and a direct confrontation to SN

observations.

In helium-rich ejecta, the absence of optical He I lines may simply

come from a reduction in 56Ni mass fraction in the helium-rich

layers, either because of moderate or weak mixing or because of an

asymmetric 56Ni distribution that fails to thoroughly mix with the

helium-rich ejecta layers. At the very least, helium deficiency is not

a prerequisite for the production of a SN Ic, although it is a sufficient

condition. Additional explanations may be that some SN Ic ejecta

are more massive, so that, even if fully mixed, the larger mass will

cause greater dilution and weaker non-thermal excitation. Non-

thermal processes are not selective – atoms/ions share the available

non-thermal ionization and excitation energy largely in proportion

to their relative abundances.

To close the discussion on our synthetic spectra, we present evi-

dence that mixing must occur at some levels in all SNe Ib/c. Relative

to unmixed models, mixing causes the colours at peak to be redder

and more compatible with the observations (Fig. 12; e.g. Modjaz

et al. 2009). This issue requires detailed spectral modelling since

an uncertain reddening can compromise the inferred colours of ob-

served SNe Ib/c and synthetic spectral colours are sensitive to the

completeness of the model atoms. In any case, mixing is likely a

generic property of Type I CCSN ejecta, and it is probably varia-

tions in the resulting mass fractions for both helium and 56Ni that

control the classification as Ib or Ic.

8 C O M PA R I S O N TO O B S E RVAT I O N S

The goal of this paper is not to do a comprehensive comparison of

our model results to observations. Rather, we are primarily inter-

ested in understanding the key physics and ejecta properties that

influence the light curves and spectral evolution of Type Ib and

Ic SNe. Although we use only two initial ejecta models, it is interest-

ing to check how well our models fare against some well-observed

SNe Ib/c.

In Fig. 13 (left-hand panel), we show a comparison of the heav-

ily mixed model Bmf5p1x4 at 10.3 d after explosion with the

observations of the Type Ib SN2008D (Modjaz et al. 2009) on

2008 February 2, which corresponds to 23.88 d after the X-ray

detection (we choose a time when the model matches both the

SN2008D spectral colour and the line widths approximately). Be-

sides a good fit to the He I lines we reproduce well the effects of line

C© 2012 The Authors, MNRAS 424, 2139–2159
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2154 L. Dessart et al.

Figure 11. Evolution of the helium (black), oxygen (blue) and 56Ni (including its decay products; red) mass fractions at the photosphere for the simulations

associated with the Bmf4p41x1–4 (top) and Bmf5p09x1–4 (bottom) model sets and shown with respect to the time of peak bolometric luminosity. All ‘standard’

SNe Ib show strong He I lines at maximum brightness. Only models Bmf4p41x4 and Bmf5p09x4 have this property, which seems to require a 56Ni mass

fraction of the order of 0.01 in the helium-rich regions.

blanketing in the blue part of the optical, as well as the features due

to intermediate-mass elements (IMEs) in the red part of the spec-

trum. Despite ubiquitous line overlap, He I lines are strong enough

to be unambiguously identified. For example, He I 5875 Å remains

stronger than the overlapping lines due to Fe II, Si IIand to a weaker

extent C II. In the near-IR, He I 10830 Å overlaps with two weak C I

and O I lines, and a strong Mg II line, but the broader component

is clearly due to helium. This is in agreement with the chemical

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2155

Figure 12. Spectral comparison from UV to near-IR and at light-curve peak for models Bmf4p41x1–4. A distance of 10 Mpc is adopted. With increasing

mixing, colours are redder (the photosphere is cooler and more strongly affected by line blanketing in the UV), line profiles are broader (the strongest lines are

optically thick to larger distances/velocities) and the photospheric velocity is larger (the continuum also forms further out).

stratification of the ejecta, with a larger abundance of IMEs at

smaller velocities in such a helium-rich progenitor star.

In the right-hand panel of Fig. 13, we show a similar comparison,

but now to the Type Ic SN 2007gr at ∼25 d after discovery (Valenti

et al. 2008), using the moderately mixed model Bmf5p1x3 at 15.1 d

after explosion. Unlike the spectrum of SN2008D discussed above,

the He I lines are very weak and dominated by overlapping compo-

nents. For example, He I 5875 Å is now weak so that this spectral

region is composed of a number of overlapping lines due to Na I,

Fe II, Si II and O I. In the near-IR, the He I 10 830 Å line is now

weaker/narrower and suffers greater contamination from C I and

Mg II lines. While SN 2007gr is classified a Type Ic SN, a model

with weak helium lines (but truly helium-rich) provides a satisfac-

tory match to observations. This shows that the evidence behind the

helium deficiency of SNe Ic is weak, if not inexistent.

A property of SNe Ib that is interesting to examine is the width

of the He I 5875 Å line. For example, for the standard SN Ib 2008D,

the blueshift with respect to line centre of the maximum absorp-

tion in this line corresponds to a velocity of about 10 000 km s−1

at the light-curve peak. In Fig. 14, we show the corresponding ve-

locity versus time since light-curve peak for the moderately and

heavily mixed models (we overlay the trajectory of the photo-

spheric velocity for each model as a solid line). In the heavily

mixed models, we obtain velocities at maximum absorption in He I

5875 Å of about 7000–8000 km s−1, which is close but somewhat

short of the observed standard. Interestingly, the moderately mixed

model Bmf4p41x3, which has the same mass and kinetic energy

as model Bmf4p41x4, has a maximum-absorption velocity in He I

5875Å about 50 per cent less than that of Bmf4p41x4. This might

mean that this model is too massive for its energy, or its energy is

too low for its mass, a combination of both, or that the mixing is

still too weak. In any case, although not surprising in light of the

present discussion, this highlights the difficulty of determining the

kinetic energy of SN Ib ejecta, even with the use of spectroscopic

information. This inference requires the treatment of non-thermal

effects and detailed radiative-transfer modelling (including time de-

pendence since it does also modify the ejecta ionization structure;

Dessart & Hillier 2008). Such a physically consistent treatment

is generally not performed, which suggests that the inferred char-

acteristics of SNe Ib/c published in the literature today are not

converged.

9 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented results from non-LTE time-dependent radiative-

transfer simulations based on 1.2 B piston-driven explosions pro-

duced from two of the binary-star evolution models of Yoon et al.

(2010). This work departs from the previous study of Dessart et al.

(2011) by the explicit treatment of non-thermal processes which are

associated with the high-energy electrons arising from Compton

scattering of γ -rays emitted by decaying 56Ni and 56Co nuclei. Our

approach solves for the relative contribution of these non-thermal

electrons to heating, ionizing and exciting the ejecta gas, and allows

us to compute accurate spectra and light curves through the entire

photospheric phase.

This work primarily focused on exploring the effects of non-

thermal processes on the photospheric phase of SNe IIb/Ib/Ic.

Rather than using a large grid of models with very diverse prop-

erties, we choose for clarity to focus on only two ejecta models,

but arising from binary-star evolution. For each of these models

C© 2012 The Authors, MNRAS 424, 2139–2159
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2156 L. Dessart et al.

Figure 13. Left: comparison of model Bmf5p1x4 at 10.3 d after explosion (we show the total synthetic flux in red and the synthetic continuum flux in blue),

reddened by E(B − V) = 0.7, with the observations of the Type Ib SN2008D on 2008 February 2, 23.88 d after the X-ray detection (Modjaz et al. 2009).

Right: same as left, but now showing a comparison of model Bmf5p1x3 at 15.1 d after explosion, reddened by E(B − V) = 0.15, with the observations of the

Type Ic SN2007gr on 2007 September 10, ∼25 d after discovery (Valenti et al. 2008). Here, we illustrate the correspondence between these observations and

our models when both are characterized by the same colour and line widths. In each panel, the lower part shows the relative contribution to the total spectrum

of bound–bound transitions associated with individual species. Note in particular the distinct He I contribution in the strongly mixed (left) and the moderately

mixed model (right).

Figure 14. Time evolution of the velocity at maximum absorption in the

strongest optical He I line at 5875 Å. We only select here the models that

show weak (Bmf4p41x3) and strong (Bmf5p09x4 and Bmf5p09x4) He I

lines. We also overlay in each case the evolution of the velocity at the

electron-scattering photosphere (solid line).

we create four additional models that are characterized exclusively

by different levels of mixing. This mixing is performed through a

‘boxcar’ algorithm which affects all species indiscriminately. We

arrive at the following conclusions.

(i) The most important consequences of mixing are associated

with the change in 56Ni distribution. We identify both thermal and

non-thermal effects.

(ii) Under ionized conditions, and thus generally at optical depths

in excess of unity, the non-thermal electrons dump most of their

energy in the form of heat, thus primarily modulating the ejecta

temperature, its ionization state, its optical depth and thus the light-

curve evolution. With enhanced mixing, the light curve starts its

post-breakout re-brightening phase earlier, follows a more gradual

rise to peak and peaks at an earlier time. The post-breakout plateau

is absent in the most mixed models we study. In all our models,

γ -rays are trapped for up to ∼30 d after peak and thus ejecta dif-

fering only in mixing properties have similar light-curve slopes in

the first month after peak. However, with enhanced mixing, γ -ray

escape starts earlier and causes the nebular luminosity to decrease

faster. This sensitivity to mixing conditions are exacerbated by the

small ejecta masses that characterize all our binary-star progenitor

models.

(iii) While non-thermal ionization and excitation are weak in

optically thick ionized layers, non-thermal electrons in partially

ionized regions dump a significant fraction of their energy through

non-thermal ionization and excitation of the plasma. In heavily

mixed models, the significant decay energy deposited above the

photosphere affects primarily the He I ionization and excitation since

C© 2012 The Authors, MNRAS 424, 2139–2159
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Radiative transfer of SN Ib/Ic ejecta 2157

helium is nearly recombined there and is the dominant species. In

contrast, weakly or moderately mixed models deposit most of the

energy at depth, below the photosphere, and fail to non-thermally

excite (or ionize) the outer ejecta region where lines and continuum

form. However, in these models, the exclusive deposition of heat at

large optical depths creates highly ionized conditions.

(iv) Consequently, during the photospheric phase of SNe Ib/c,

non-thermal effects are favoured in highly mixed ejecta. As pro-

posed by Lucy (1991), non-thermal excitation and ionization are

key for the production of He I lines. In our present set of helium-rich

models, the primary feature is the presence of optical and near-IR

He I line characteristic of the Type Ib classification. Although char-

acterized by the same cumulative yields, moderately mixed models

fail to non-thermally excite helium atoms and lead to a Type Ic

classification.

(v) In spite of our small model set, we identify a diverse range of

spectral evolution and classification, and obtain both Type Ib and

Ic SNe. Furthermore, some models show hydrogen at early times

(produced by non-LTE effects alone; Dessart et al. 2011), followed

by the presence or absence of He I lines. These would correspond

to classifications as Type IIb and IIc, respectively. The latter has

never been identified with confidence (see Branch et al. 2006 for

a possible identification of Hα in the Type Ic SN 1994I), but this

may just be a bias of observational campaigns which rarely capture

Type Ib/c at a few days past explosions. In view of the present

simulations, a Type IIc classification is easily understood as stem-

ming from a progenitor with both hydrogen and helium, the former

being underabundant but easily seen, and the latter arbitrarily abun-

dant but quickly invisible in the absence of non-thermal excitation

(Dessart et al. 2011). A transition from Type Ic to Type Ib is more

difficult to achieve as it would require a large amount of helium

together with moderate mixing. Non-thermal excitation of helium

may then become effective only when the photosphere has receded

to deeper layers where 56Ni is more abundant. This unique transi-

tion has been seen for SN2005bf by Folatelli et al. (2006), although

mixing is unlikely the cause in this special case (Maeda et al. 2007).

(vi) Apart from the cases where He I lines are really strong, line

overlap considerably complicates the identification of spectral fea-

tures. We identify a slew of lines from He I, C I, O I, Na I, Mg II and

Fe II in the optical and the near-IR. One can, for example, easily

mistake He I 5875 Å with Na I D, Si II 6350 Å with Hα, etc. Multi-

epoch spectroscopic observations from a few days after explosion

until the nebular phase are critical to build a comprehensive and

accurate picture of the SN-ejecta composition.

(vii) From our explorations, we are led to associate SN Ib ejecta

with the explosion of low-mass helium cores in which efficient

small-scale mixing takes place. The scale of relevance for non-

thermal excitation/ionization is the γ -ray mean free path, which

varies with both depth and time. We favour progenitors that have

only a small oxygen-rich mass buffer between the 56Ni production

site and the outer helium-rich layers, facilitating the mixing, and

preventing too much dilution of 56Ni into a large mass. In our set

of models, we find that a minimum 56Ni mass fraction of 0.01 is

necessary at large velocities to trigger significant non-thermal ef-

fects early on. The small-scale mixing necessary in this context may

originate from the fragmented structure of the SN shock (Nordhaus

et al. 2010).

(viii) It requires special circumstances for our low-mass quasi-

hydrogen-less cores to become a Ib – failure to meet these require-

ments will typically lead to a Type Ic. This may stem from any

combination of properties that prevent helium atoms from being

non-thermally excited. This difficulty to make SNe Ib might be

reflected by the 2:1 occurrence rates of SNe Ic:Ib (Smartt 2009).

Inefficient non-thermal excitation of He I may result from (1) he-

lium deficiency or underabundance (Yoon et al. 2010 argues for the

possibility of even lower mass helium-deficient progenitors than

those presented here); (2) a higher mass helium core with a sizeable

oxygen-rich mass buffer, which causes a stronger dilution of 56Ni –

this could naturally occur for single WR stars which are born from

high-mass stars with higher mass helium cores (Georgy et al. 2009);

(3) explosions that are not mixed on small scales so that most of the
56Ni is contained within a limited solid angle and ejecta volume.

In this context, a ‘jet’ of 56Ni-rich material is not expected to be a

suitable morphology for non-thermal excitation of ejecta material

because the γ -rays would not be able to penetrate the other latitudes

that would contain the bulk of the helium-rich material, i.e. only a

tiny fraction of He I atoms would be excited.

(ix) Because the combination of thermal and non-thermal pro-

cesses considerably affect ion/atom excitation and thus the associ-

ated line optical depths, we find that models of the same mass and

kinetic energy but with enhanced mixing display broader line-profile

widths at a given post-explosion time. This sensitivity complicates

the reliable inference of SN Ib/c ejecta masses and explosion en-

ergies, and suggests the importance of accounting for both time-

dependent and non-thermal effects when modelling their spectra

and light curves.

(x) Adding to conclusions of earlier studies (Ensman & Woosley

1988; Shigeyama et al. 1990; Dessart et al. 2011), our spectral

simulations including non-thermal effects strengthen the notion that

the bulk of SNe Ib/c arise from low-mass ejecta likely resulting from

binary-star evolution. The broad line Ic’s with and without gamma-

ray bursts (GRBs), associated with larger mass ejecta and higher

kinetic energy (Woosley, Eastman & Schmidt 1999), may stem

from different progenitors and different explosion mechanisms. Our

simulations suggest that these may in fact contain some helium,

which is invisible because it is not excited. This result does not

conflict with the predictions of massive-star evolution for carbon

and oxygen WR stars (Georgy et al. 2009). Furthermore, it would

not conflict with the prerequisites of the collapsar model (Woosley

1993) or those of the protomagnetar model (Wheeler et al. 2000;

Metzger et al. 2011) of long-duration GRBs.

(xi) We identify a negative feedback on non-thermal effects. As

the 56Ni abundance is increased, the heating caused by energy de-

position increases and forces non-thermal electrons to channel their

energy in the form of heat, thereby quenching the non-thermal

ionization and excitation channels. In contrast, non-thermal effects

thrive under neutral conditions, i.e. plasmas that are cool, and thus

not too 56Ni-rich. We thus anticipate non-thermal ionization and ex-

citation to be stronger for moderate 56Ni abundances. They should

be more efficient in the cool photospheres of SNe Ib/c than in the

hot ionized photospheres of SNe Ia, highly 56Ni-rich, where non-

thermal electrons will tend to dissipate their energy as heat.

(xii) Our radiative-transfer modelling is 1D so the emergent spe-

cific intensity or flux is independent of viewing angle. As we inde-

pendently argue in Section 2, multidimensional effects are unlikely

to turn a SN Ib into a SN Ic, or a SN IIb into a SN Ib, but instead

should introduce slight variations in line width and/or strength with

viewing angle, as illustrated in our 1D models differing in mix-

ing magnitude (Fig 14). Recently, Rest et al. (2011) have used

light echoes to reveal the viewing-angle-dependent intensity from

the Type IIb SN associated with Cas A, typically characterized

by variations in line widths along different directions. However,

each recorded light echo supports the IIb classification for the SN.

Using a similar approach to Dessart & Hillier (2011b), we will

C© 2012 The Authors, MNRAS 424, 2139–2159
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2158 L. Dessart et al.

investigate the magnitude of the asymmetries required to explain

such observations.

The next step in our modelling effort is to compute light curves

and spectra for a large grid of progenitor stars, both single and

from binary systems, exploded with a range of explosion energy,

and characterized by different levels of mixing. Such a diversity

of initial conditions should reflect the diversity of SNe IIb/Ib/Ic

seen in Nature and allow a better assessment of the progenitor and

explosion properties of these CCSNe.
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