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1 Introduction

Quantum electrodynamics and perturbative quantum gravity are effective quantum field

theories which describe the two long-ranged forces seen in nature. They also both suffer

from infrared divergences coming from virtual boson loops in Feynman diagrams in the

perturbative computation of the S-matrix. These divergences exponentiate when resummed

and set the amplitude for any process between a finite number of interacting particles to

zero. This is known as the infrared catastrophe.

One proposed resolution of the infrared catastrophe is to consider only inclusive quan-

tities, for example soft-inclusive transition probabilities in the context of scattering theory,

which are defined by summing over the production of any number of soft photons and

gravitons. In the case of electrodynamics, this resolution dates back to Bloch and Nord-

sieck [1, 2] and, in perturbative quantum gravity, it was developed by Weinberg [3]. The

contributions from emitted soft bosons cancel the IR divergences from virtual loops. An

upshot of this solution of the infrared problem is the fact that, in QED, any non-trivial
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scattering process involving charged particles inevitably produces a cloud of an infinite

number of arbitrarily soft photons. In the case of quantum gravity, soft gravitons are

produced, and, since all particles carry gravitational charge, IR divergences arise in any

scattering process. The use of inclusive probabilities is justified by the assumption that

the softest photons and gravitons must escape detection. These bosons carry very little

energy and have a negligible effect on the kinematics of the process. However, it was re-

cently shown that they carry a lot of information in the sense that their quantum states

are highly entangled with those of the charged particles. The loss of soft particles results

in decoherence of the final state of hard particles, where the momentum eigenstates for

electrically or gravitationally charged particles are the pointer basis [4, 5]. See refs. [6–8]

for related work.

The infrared catastrophe can be traced back to the long-ranged nature of the interac-

tions which is in conflict with the assumption of asymptotic decoupling needed to formulate

scattering theory [9]. An approach to the infrared problem, alternative to using inclusive

probabilities, is to use dressed states which are defined by including the aforementioned

clouds of soft photons and gravitons as coherent states with the asymptotic states [10–18].

Faddeev and Kulish argued that such an approach diagonalizes the correct asymptotic

Hamiltonian and therefore yields the asymptotic decoupling which is necessary for a satis-

factory formulation of scattering theory. The detailed structure of the coherent states can

be adjusted so as to cancel the infrared divergences in the S-matrix, providing an IR-finite

S-matrix and scattering probabilities. However, the out-going states still contain particles

accompanied by soft photon and graviton clouds. One can ask the same question: given

these infrared safe states, what is the nature of the state of only the outgoing hard par-

ticles? The answer is that for momentum eigenstates precisely the same decoherence is

found to occur in either the inclusive or dressed approaches [19], i.e. there is still a lot of

information in the entanglement between the hard particles and the radiation.1

Both the dressed and inclusive formalisms are designed to give the same predictions for

the probability of scattering from an incoming set of momenta p1, . . . ,pn into an outgoing

set of momenta p′
1, . . . ,p

′
m. The measurement of observables which only depend on the

hard particles should be predictable from the reduced density matrix obtained by tracing

over soft bosons, which are invisible to a finite size detector. If one is given an incoming mo-

mentum eigenstate the two formalisms agree. Thus, one might naively think for calculating

cross-sections in QED or perturbative quantum gravity it does not matter which formalism

one chooses. We show in this paper that this is not the case: the two approaches differ

in their treatment of incoming superpositions. This is relevant for quantum information

theoretic thought experiments, for example experiments in which quantum information is

localized, i.e. is carried by a pure state which is a superposition of momentum eigenstates.

As we will see, the dressing forces charged particles to be accompanied by strongly corre-

lated soft bosons and therefore one might wonder to which extend the information carried

by a particle can indeed be localized. For related work see [23, 24].

1Note, there are also other proposals for how to define an IR finite density matrix [20–22], which we will

not discuss here.
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Summary of results. Consider a pure state which is a superposition of two momentum

eigenstates of a single charged particle,

|ψ〉 = 1√
2
(|p〉+ |q〉), (1.1)

scattering off of a classical potential. The outgoing state is described by the density matrix

ρ = S |ψ〉 〈ψ|S† whose diagonal matrix elements give scattering probabilities. S denotes

the scattering operator. The scattering cross-sections are therefore proportional to

σψ→out ∝ 〈out| ρ |out〉 = 1

2
〈out|S (|p〉 〈p|+ |p〉 〈q|+ |q〉 〈p|+ |q〉 〈q|)S† |out〉 . (1.2)

If soft bosons are produced during the scattering we might not be able to detect them, in

which case ρ should be replaced by a reduced density matrix which is obtained by tracing

out soft bosons.

We show that if |p〉 , |q〉 are dressed states, this expectation is indeed correct. In the

inclusive formalism, however, where |p〉, |q〉 are Fock space momentum eigenstates, there

is no interference between the different momenta. Instead we find that the diagonal entries

of the density matrix which encode the cross-sections are of the form

σψ→out ∝ 〈out| ρincl |out〉 = 1

2
〈out| S (|p〉 〈p|+ |q〉 〈q|)S† |out〉 . (1.3)

Comparing to equation (1.2) we see that the interference terms proportional to |p〉 〈q|,
|q〉 〈p| are missing. In other words, the cross-section behaves as if we had started with

a classical ensemble of states with momenta p and q. The entire scattering history is

decohered by the loss of the soft radiation. In general the presence of interference terms is

relevant, as measurements employing e.g. the Hanbury Brown-Twiss [25] effect are sensitive

to the absence of such terms.2 At a purely theoretical level the above result indicates that

the action of the S-matrix removes the interference terms, which in itself should be worrying

enough.

Even worse, repeating the analysis for wavepackets, |ψ〉 =
∫

dpf(p) |p〉, leads to the

nonsensical conclusion that a wavepacket is not observed to scatter at all. In the dressed

state formalism of Faddeev-Kulish, scattering happens as expected. This strongly sug-

gests that scattering theory in quantum electrodynamics and perturbative quantum grav-

ity should really not be formulated in terms of standard Fock states of charged particles.

Formulating the theories using dressed states seems to be a good alternative.

Dressed states also arise naturally in the recent discussions of asymptotic gauge sym-

metries [26–31], which imply the existence of selection sectors [32–35]. See also [36, 37] for

work on soft charges and dressing in holography. Our findings have a nice interpretation

in the language of this program: only superpositions of states within the same selection

2Note that S-matrix calculations assume that an infinite time has passed. Accounting for the fact that

every realistic experiment has only a finite extend in space and time we expect the typical decoherence

times from coupling to soft bosons to be too small to ever be observable in practice. This however does

not invalidate our argument, since the prediction for experiments differ between the dressed and inclusive

formalism.
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sector can interfere and should therefore be used to build superpositions. This explains

the failure of the undressed approach to wavepacket scattering. In the inclusive formalism,

essentially any pair of momentum eigenstates live in different charge sectors. In contrast,

the Faddeev-Kulish formalism is designed so that all of the dressed states live within the

same charge sector.

Our results can also be viewed in the context of the black hole information prob-

lem [38, 39]. In particular, Hawking, Perry, and Strominger [40] and Strominger [41] have

recently suggested that black hole information may be encoded in soft radiation. In black

hole thought experiments, one typically imagines preparing an initial state of wavepack-

ets organized to scatter with high probability to form an intermediate black hole. Our

results suggest then that one needs to use dressed initial states to study this problem. See

also [42, 43] for some remarks on the use of dressed or inclusive formalisms for studying

black hole information.

Consistency of standard QFT calculations. The result presented in this paper might

seem puzzling at first. After all, quantum field theories with massless bosons are sucessfully

employed in the description of nature using inclusive summation techniques and do not

seem to suffer from the problems outlined above. And indeed, the results in our paper are

completely consistent with the standard methods of calculating scattering probabilities of

momentum eigenstates. For example, in hadron scattering, standard QCD factorization

means that the incoming parton momentum distribution is classical. The scattering process

is assumed to be incoherent and instead of combining the amplitudes, one multiplies the

scattering probability of the hard process with parton distribution functions which capture

the probability of a parton carrying a certain momentum. This way no calculation involving

scattering of wavepackets is even done and one never encounters the issues associated with

using true wavepackets constructed from Fock-space states.

The main lesson of our results is that although scattering with Fock space states can

be used to make predictions for scattering experiments in QED or perturbative quantum

gravity, they are unsuited for any discussion which assumes unitarity of the S-matrix or

the existence of localized pure states. Rather, we find that for QED and perturbative

quantum gravity once one goes beyond the plane wave approximation and uses bona-

fide wavepackets, resummation techniques a la Bloch-Nordsieck cannot be naively applied

anymore, while dressed states seem to be a viable alternative.

Organization of the paper. The rest of the paper is organized as follows. We start

by presenting the calculations showing that the dressed and undressed formalism disagree

in section 2 for discrete superpositions and in section 3 for wavepackets. The discussion

and interpretation of the results takes place in section 4. There, we will argue why our

findings imply that dressed states are better suited to describe scattering than the inclusive

Fock-space formalism and comment on the KLN theorem in the context of our results. We

will give a new very short argument for the known result of [34] that the dressing operators

and the S-matrix weakly commute and argue for a more general form of dressing beyond

Faddeev-Kulish. We will then interpret our results in terms of asymptotic symmetries and

selection sectors before concluding in section 5. The appendix contains proofs of certain

statements in sections 2 and 3.
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2 Scattering of discrete superpositions

In this and the next section we generalize the results of [4] to the case of incoming su-

perpositions of momentum eigenstates. We begin in this section by studying discrete

superpositions |ψ〉 = |α1〉+ · · ·+ |αN 〉 of states with various momenta α = p1,p2, . . .. We

will see that the dressed and inclusive formalisms give vastly different predictions for the

probability distribution of the outgoing momenta: dressed states will exhibit interference

between the αi whereas undressed states do not.

2.1 Inclusive formalism

Consider scattering of an incoming superposition of charged momentum eigenstates

|in〉 =
N
∑

i

fi |αi〉 , (2.1)

with
∑

i |fi|2 = 1. The outgoing density matrix vanishes due to IR divergences in virtual

photon loops. However, we can obtain a finite result if we trace over outgoing radia-

tion [1–4]. The resulting reduced density matrix of the hard particles takes the form

ρ =
∑

b

N
∑

i,j

∫∫

dβ dβ′fif
∗
j Sβb,αi

S∗
β′b,αj

|β〉 〈β′| , (2.2)

where β and β′ are lists of the momenta of hard particles in the outgoing state, and the

sum over b denotes the trace over soft bosons. We will be interested in the effect of infrared

divergences on this expression.

The sum over external soft boson states b produces IR divergences which cancel those

coming from virtual boson loops. We can regulate these divergences by introducing an IR

cutoff (e.g. a soft boson mass λ). Let us review how this works. In order to find the effect

of the IR divergences we follow the standard soft photon resummation techniques [3] and

use the soft-photon theorem to factorize the S-matrix elements Sβb,α into a hard piece Sβ,α
and a soft pieces coming from the emission of soft photons with individual energies less

than E and total energy below some threshold ET ,

Sβb,α =
∑

n∈α,β

∑

±

∏

i∈b

enηn

(2π)3/2|ki|1/2
pn · ǫ∗±(ki)
pn · ki − iηnǫ

Sβ,α. (2.3)

The factor ηn is defined as +1 (−1) if particle n is incoming (outgoing), en and pn are the

charge and momentum of the n-th particle and ǫ±(k) are polarization vectors for a photon

with three-momentum k. A similar expression that holds if soft gravitons are emitted

can be found in [3]. In the case where we have different incoming momentum states a

summation over soft bosons yields

∑

b

Sβb,αi
S∗
β′b,αj

= Sβ,αi
S∗
β′,αj

(

E

λ

)Ãββ′,αiαj
+B̃ββ′,αiαj

f

(

E

ET
, Ãββ′,αiαj

, B̃ββ′,αiαj

)

. (2.4)
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The exponents Ã and B̃ come from contributions of soft photons and gravitons, respectively.

They are generalized versions of the ones known from the standard treatment of plane-wave

scattering and only in the limit where αi = αj reduce to the known expressions [3]. They

are given by

Ãββ′,αα′ = −
∑

n∈α,β
n′∈α′,β′

enen′ηnηn′

8π2
β−1
nn′ ln

[

1 + βnn′

1− βnn′

]

,

B̃ββ′,αα′ =
∑

n∈α,β
n′∈α′,β′

mnmn′ηnηn′

16π2M2
p

1 + β2nn′

βnn′

√

1− β2nn′

ln

[

1 + βnn′

1− βnn′

]

.

(2.5)

The quantities βnn′ =

√

1− m2
nm

2

n′

(pn·pn′ )2
are the relative velocities between pairs of particles

and a bar interchanges incoming states for outgoing and vice versa.

To separate the IR divergence coming from virtual loops we introduce an intermediate

scale Λ which is bigger than λ but much smaller than all other scales,

Sλβα = SΛ
βα

(

λ

Λ

)Aα,β/2+Bα,β/2

. (2.6)

Here, SΛ is the S-matrix with IR-divergent loop integrals cut off at Λ. The exponent is

given by

Aβ,α = −
∑

n,n′∈α,β

enen′ηnηn′

8π2
β−1
nn′ ln

[

1 + βnn′

1− βnn′

]

,

Bβ,α =
∑

n,n′∈α,β

mnmn′ηnηn′

16π2M2
p

1 + β2nn′

βnn′

√

1− β2nn′

ln

[

1 + βnn′

1− βnn′

]

.

(2.7)

Combining all the extra λ-independent terms into Fββ′,αiαj
(E,ET ,Λ) we find for the re-

duced density matrix

ρββ′ =
N
∑

i,j

fif
∗
j S

Λ
βαi

SΛ∗
β′αj

λ
∆Aββ′,αiαj

+∆Bββ′,αiαjFββ′,αiαj
(E,ET ,Λ). (2.8)

The explicit form of the Sudakov rescaling function F can be found in [4]. The overall

dependence on λ is given by λ
∆Aββ′,αiαj

+∆Bββ′,αiαj where

∆Aββ′,αα′ =
1

2
Aβ,α +

1

2
Aβ′,α′ − Ãββ′,αα′ . (2.9)

and similarly for ∆B. What concerns us here is the behavior of this expression in the limit

where we remove the IR regulator λ→ 0, which is controlled by the exponents

∆Aββ′,αα′ = −1

2

∑

n,n′∈α,ᾱ′,β,β̄′

enen′ηnηn′

8π2
β−1
nn′ ln

[

1 + βnn′

1− βnn′

]

,

∆Bββ′,αα′ = −1

2

∑

n,n′∈α,ᾱ′,β,β̄′

mnmn′ηnηn′

16π2M2
p

β−1
nn′

1 + β2nn′
√

1− β2nn′

ln

[

1 + βnn′

1− βnn′

]

.

(2.10)
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The question now is which terms survive. The special case of no superposition, αi =

αj = α, was discussed in [4]. There it was shown that ∆Aββ′,αα ≥ 0 and ∆Bββ′,αα ≥ 0, so

that in the limit λ → 0, all of the terms in the sum except those with ∆A = ∆B = 0 will

vanish. The equality holds if and only if the out-states β and β′ contain particles such that

the amount of electrical charge and mass carried with any choice of velocity agrees for β

and β′. This can be phrased in terms of an infinite set of operators which measure charges

flowing along a velocity v. These are defined as

ĵemv =
∑

i

eia
†

i,pi(v)
ai,pi(v),

ĵgrv =
∑

i

Ei(v)a
†

i,pi(v)
ai,pi(v),

ĵgr,0v =
∑

i

∫

dω ωa†i,vωai,vω,

(2.11)

for charged particles, massive particles and hard massless particles, respectively. The sum

runs over all particle species. Clearly, momentum eigenstates are also eigenstates of these

operators. Using these operators, the equality of currents can be expressed as

ĵv |β〉 ∼ ĵv |β′〉 , (2.12)

where the tilde means that the eigenvalues of the states are the same on both sides for all

velocities. That in the case of no superposition α = α′ the condition for decoherence is

independent of the incoming state α is easy to see. n ∈ α and n ∈ ᾱ′ contribute the same

term to the sum in equation (2.10) but with an η replaced by −η. On the other hand, it

is then clear that this cancellation does not survive if α 6= α′ and we should expect that in

the case of superpositions the decoherence condition depends on α and α′. In appendix A,

we show that the more general exponents ∆Aββ′,αα′ and ∆Bββ′,αα′ are positive. Similarly

to the argument in [19], one can show that ∆A and ∆B are non-zero if and only if

ĵv |αi〉+ ĵv |β′〉 ∼ ĵv |αj〉+ ĵv |β〉 , (2.13)

that is if the list of hard currents in states |α〉 and |β′〉 is the same as the list of hard

currents in states |α′〉 and |β〉. An easy way to understand the form of equation (2.13) is

by looking at equation (2.10). There, the bar over α′ (which corresponds to αj) indicates

that it should be treated as an outgoing particle, i.e. similarly to β. On the other hand

β̄′ should be treated similarly to α. Hence, we obtain equation (2.13) from (2.12) by

replacing αi → αi + β′ and αj → αj + β. On the other hand it is clear that in the case of

|αi〉 = |αj〉 = |α〉 equation (2.13) reduces to equation (2.12).

Armed with these results, we can calculate the cross-sections given an incoming su-

perposition. These are proportional to the diagonal elements β = β′ of the density matrix;

for simplicity we ignore forward scattering terms. The diagonal terms of the density ma-

trix (2.8) are proportional to λ∆A+∆B. This factor reduces to unity if ĵv |αi〉 ∼ ĵv |αj〉 for
all of the currents (2.11) and is zero otherwise. For a generic superposition, this implies

– 7 –
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that only terms with i = j contribute and we find

σin→β ∝ ρββ =

N
∑

i,j

fif
∗
j Fββ,αiαj

SΛ
βαi

SΛ∗
βαj

δαiαj
=

N
∑

i

|fi|2|SΛ
β,αi

|2Fββ,αiαi
. (2.14)

As we see, no interference terms between incoming states are present. Instead, the total

cross-section is calculated as if the incoming states were part of a classical ensemble with

probabilities |fi|2. The reason is that in the inclusive approach the information about

the interference is carried away by unobservable soft radiation. To define the scattering

cross-section, however, we need to trace out the soft radiation and we obtain the above

prediction, which is at odds with the naive expectation, equation (1.2).

2.2 Dressed formalism

The calculation above was done using the usual, undressed Fock states of hard charges,

which required to calculate inclusive cross-sections. The alternative approach we will now

turn to is to consider transitions between dressed states. For concreteness, we will follow

the dressing approach of Chung and Faddeev-Kulish,3 which contains charged particles

accompanied by a cloud of real bosons which radiate out to lightlike infinity [10, 15, 17].

For a given set of momenta α = p1,p2, . . ., we write the dressed state as4

‖α〉〉 ≡Wα |α〉 . (2.15)

The operator Wα equips the state |α〉 with a cloud of photons/gravitons. For QED, Wα is

the unitary operator (with a finite IR cutoff λ)

Wα ≡ exp

{

e
2
∑

l=1

∫ E

λ

d3k√
2k0

(

Fl(k, α)a
l†
k − F ∗

l (k, α)a
l
k

)

}

, (2.16)

where al†k creates a photon in the polarization state l and the soft factor

Fl(k, α) =
∑

p∈α

ǫl · p
k · p φ(k,p) (2.17)

depends on the polarization vectors ǫl and some smooth, real function φ(k,p) which goes

to 1 as |k| → 0. Letting W act on Fock space states for λ = 0 gives states with vanishing

normalization, hence in the strict λ→ 0 limit W is no good operator on Fock space. Thus,

as before, we will do calculations with finite λ and only at the end we will take λ→ 0.5

The Faddeev-Kulish construction was adapted to perturbative quantum gravity in [17].

In this case the dressing has the same form as equation (2.16), the only difference being

3Recently, a generalization of Faddeev-Kulish states was suggested [33]. We will extend our discussion

to those states in section 4.
4The double bracket notation is due to [42]. The previous paper of the authors [19] used |α̃〉 to denote

dressed states. The authors regret this life decision.
5Note that as argued in [15], a proper definition of W in the limit λ → 0 should be possible on a von

Neumann space.
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that a (a†) is now a graviton annihilation (creation) operator and the functions F depend

on the polarization tensor ǫµν [17],

F grl (k, α) =
∑

p∈α

pµǫ
µν
l pν
k · p φ(k,p). (2.18)

S-matrix elements taken between dressed states

Sβα ≡ 〈〈β‖S‖α〉〉 = 〈β|W †
βSWα |α〉 (2.19)

are independent of λ and thus finite as λ → 0. The Sudakov factor F is contained in the

dressed S-matrix elements.6

Consider now an incoming state consisting of a discrete superposition of such dressed

states,

‖in〉〉 =
∑

i

fi‖αi〉〉. (2.20)

The outgoing density matrix is then

ρ =
∑

i,j

∫∫

dβdβ′fif
∗
j Sβαi

S
∗
β′αj

‖β〉〉〈〈β′‖. (2.21)

This density matrix is formally unitary, however, every experiment should be able to ignore

soft radiation. Following [4], we treat the soft modes as unobservable and trace them out.

This yields the reduced density matrix for the outgoing hard particles,

ρhardββ′ =
∑

i,j

fif
∗
j Sβαi

S
∗
β′αj

〈0|W †
βWβ′ |0〉 . (2.22)

The last term is the photon vacuum expectation value of the out-state dressing operators.

This factor reduces to one or zero as shown in [4]; one if ĵ(β) ∼ ĵ(β′) and zero otherwise.

This is responsible for the decay of most off-diagonal elements in (2.22). However, if we

are interested in the cross-section for a particular outgoing state β, this is again given by

a diagonal density matrix element,

σin→β ∝ ρββ =
∑

i,j

fif
∗
j Sβαi

S
∗
βαj

. (2.23)

In stark contrast to the result obtained in the inclusive formalism, equation (2.14), this

cross-section exhibits the usual interference between the various incoming states, cf. equa-

tion (1.2). The reason for this is that in the dressed formalism, the outgoing radiation is

described by the dressing which only depends on the out-state and not on the in-state.

We will discuss this in more detail in section 4. This establishes that the inclusive and

dressed formalism are not equivalent but yield different predictions for cross-sections of

finite superpositions.

6The actual definition of the S-matrix should also contain a term to cancel the infinite Coulomb phase

factor. Since this is immaterial to the current discussion we neglect this subtlety.
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3 Wavepackets

We will now proceed to look at scattering of wavepackets and find that the result is even

more disturbing. After tracing out infrared radiation in the undressed formalism, no indi-

cation of scattering is left in the hard system. On the contrary, once again we will see that

with dressed states, one gets the expected scattering out-state.

3.1 Inclusive formalism

We consider incoming wavepackets of the form

|in〉 =
∫

dαf(α) |α〉 , (3.1)

normalized such that
∫

dα|f(α)|2 = 1. The full analysis of the preceding section still

applies, provided we replace
∑

αi
→
∫

dα, αi → α, fi → f(α) and similarly for aj → α′.

The only notable exception is the calculation of single matrix elements as in equation (2.14),

which now reads

ρββ =

∫∫

dαdα′f(α)f∗(α′)SΛ
β,αS

Λ∗
β,α′δαα′Fββ,αα′(E,ET ,Λ). (3.2)

Note that here, by the same argument as before, the λ-dependent factor is turned into a

Kronecker delta, which now reduces the integrand to a measure zero subset on the domain

of integration. The only term that survives the integration is the initial state, which is

acted on with the usual Dirac delta δ(α − β), i.e. the “1” term in S = 1 − 2πiM. The

detailed argument can be found in appendix B. Thus we conclude that

ρoutββ′ = f(β)f∗(β′) = ρinββ′ . (3.3)

The hard particles show no sign of a scattering event.

3.2 Dressed wavepackets

The dressed formalism has perfectly reasonable scattering behavior. Consider wavepackets

built from dressed states

‖in〉〉 =
∫

dα f(α)‖α〉〉, (3.4)

with ‖α〉〉 a dressed state in the same notation as in equation (2.15). The S-matrix applied

on dressed states is infrared-finite and the outgoing density matrix can be expressed as

ρ =

∫∫

dβdβ′

∫∫

dαdα′f(α)f∗(α′)SβαS
∗
β′α′‖β〉〉〈〈β′‖. (3.5)

Tracing over soft modes, we find

ρββ′ =

∫∫

dαdα′f(α)f∗(α′)SβαS
∗
β′α′ 〈W †

βWβ′〉 . (3.6)

Again the expectation value is taken in the photon vacuum. The crucial point here is that

this factor is independent of the initial states α. Upon sending the IR cutoff λ to zero,
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the expectation value for W †W takes only the values 1 or 0, leading to decoherence in

the outgoing state, but the cross-sections still exhibit all the usual interference between

components of the incoming wavefunction,

ρββ =

∫∫

dαdα′f(α)f∗(α′)SβαS
∗
βα′ , (3.7)

unlike in the inclusive formalism.

4 Implications

In this section we will discuss the implications of our results and generalize and re-interpret

our findings in particular in view of asymptotic gauge symmetries in QED and perturbative

quantum gravity.

4.1 Physical interpretation

The reason for the different predictions of the inclusive and dressed formalism is the IR

radiation produced in the scattering process. The key idea is that accelerated charges

produce radiation fields made from soft bosons. In the far infrared, the radiation spectrum

has poles as the photon frequency k0 → 0 of the form pi/pi · k, where pi are the hard

momenta. These poles reflect the fact that the radiation states are essentially classical and

are completely distinguishable for different sets of asymptotic currents ĵv.

In the inclusive formalism, we imagine pure incoming states with no radiation, and so

the outgoing radiation state has poles from both the incoming hard particles α and the

outgoing hard particles β. In the dressed formalism, the incoming part of the radiation is

instead folded into the dressed state ‖α〉〉, which in the Faddeev-Kulish approach is designed

precisely so that the outgoing radiation field only includes the poles from the outgoing hard

particles. Thus if we scatter undressed Fock space states, a measurement of the radiation

field at late times would completely determine the entire dynamical history of the process

α → β, leading to the classical answer (2.14). If we instead scatter dressed states, the

outgoing radiation has incomplete information about the incoming charged state, which is

why the various incoming states still interfere in (2.23). Given that this type of interference

is observed all the time in nature, this seems to strongly suggest that the dressed formalism

is correct for any problem involving incoming superpositions of momenta.

Based on the result of section 2, one might argue that equation (2.14) perhaps is the

correct answer and one would have to test experimentally whether or not interference terms

appear if we give a scattering process enough time so that the decoherence becomes siz-

able. After all, the inclusive and dressed approach to calculating cross-sections are at least

in principle distinguishable, although maybe not in practice due to very long decoherence

times. However, we have demonstrated in section 3 that the inclusive formalism predicts

an even more problematic result for continuous superpositions, namely that no scattering

is observed at all. We thus propose that using the dressed formalism is the most conserva-

tive and physically sensible solution to the problem of vanishing interference presented in

this paper.

– 11 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
1

4.2 Comment on the Kinoshita-Lee-Nauenberg theorem

The conclusion that summing over outgoing radiation does not reproduce the expeced

form of the scattering probability might come as a surprise. Usually the Kinoshita-Lee-

Nauenberg (KLN) theorem guarantees that all IR divergences cancel in a powerseries ex-

pansion in the coupling of inclusive scattering probabilities [44, 45]. On the other hand,

the pathologies discussed in this paper come from uncanceled and exponentiated IR diver-

gences, despite summing over outgoing radiation as is standard in QED and perturbative

quantum gravity [1, 3].7 This apparent contradiction can be resolved however, by noting

that the KLN theorem requires in general to also sum over incoming states. Let us be a

bit more explicit.

Consider a Hamiltonian H0 + gH1 which describes a theory with a massless particle

whose existence gives rise to IR divergences. As in our discussion above, we introduce an

IR cutoff λ to regulate the IR divergence. The Hamiltonian is diagonalized by some unitary

transformation U , i.e.

U †(H0 + gH1)U = E. (4.1)

In the case of incoming/outgoing waves, we have U = U+/− and the S-matrix is given by

S = U †
−U+. (4.2)

In the limit λ → 0 in general neither the S-matrix, nor transition probabilities between

energy eigenstates α and β,

p(α→ β) =
∑

ρ,σ

[

(U−)
∗
ρβ(U−)σβ

]

[(U+)ρα(U+)
∗
σα] , (4.3)

have a good series expansion in the coupling g. The KLN theorem states that

∑

D(Eα)

UραU
∗
σα = Tρσ(Eα) (4.4)

is free of IR divergences and thus finite, where the sum denotes a trace over a neighborhood

of states which degenerate with α once the cutoff λ is removed. Thus the inclusive scattering

probability

pincl(α→ β) =
∑

D(Eβ),D(Eα)

p(α→ β) =
∑

ρ,σ

(T−)ρσ(Eβ)(T+)ρσ(Eα) (4.5)

can be perturbatively expanded in the coupling g.

The question which concerns us is what happens if the state α is a superposition,

i.e. generally not an energy eigenstate. Let us consider a finite superposition where |α〉 =
7This is sufficient for plane-wave scattering in massive QED and perturbative quantum gravity. The sum

over initial states is usually only needed if the electron becomes massless or for non-abelian gauge theories,

where the gauge bosons are also charged under the gauge group.
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|α1〉+ |α2〉, analogous to the situation in section 2. Then, the transition probability to an

energy eigenstate β,

p(α→ β) =
∑

ρ,σ

[

(U−)
∗
ρβ(U−)σβ

] [

((U+)ρα1
+ (U+)ρα2

)((U+)
∗
σα1

+ (U+)
∗
σα2

)
]

, (4.6)

has again a divergent series expansion. This time however, the KLN theorem does not tell

us how to make the expression

Tρσ(|α〉) ≡
∑

?

[

((U+)ρα1
+ (U+)ρα2

)((U+)
∗
σα1

+ (U+)
∗
σα2

)
]

(4.7)

finite, since α is generally not an energy eigenstate anymore. If we expand the sum we

see that we get terms of the form (U+)ραi
(U+)

∗
σαi

with the same αi for which the KLN

theorem can be applied, as well as expressions of the form (U+)ραi
(U+)

∗
σαj

with i 6= j,

pincl(α→ β) =
∑

ρ,σ

∑

?

Tρσ(Eβ)
[

((U+)ρα1
(U+)

∗
σα1

+ (U+)ρα2
(U+)

∗
σα2

+(U+)ρα1
(U+)

∗
σα2

+ (U+)ρα2
(U+)

∗
σα1

)
]

.

(4.8)

If we only sum over outgoing states, i.e. we drop the sum over “?”, as is standard in the

Bloch-Nordsieck-Weinberg method, we obtain

pincl(α→ β) = pincl(α1 → β) + pincl(α2 → β)

+
∑

ρ,σ

Tρσ(Eβ)
[

(U+)ρα1
(U+)

∗
σα2

+ (U+)ρα2
(U+)

∗
σα1

)
]

. (4.9)

We have explicitly shown in section 2 that the terms in the second line vanish and thus

that the prescription of tracing over only outgoing radiation is not sufficient to reproduce

all interference terms. Since dressed states use incoming radiation to make the reduced

density matrices well defined, one might hope that reintroducing the sum over soft bosons

in the initial state might also make terms well-defined. The previous discussion suggests

two options how the standard prescription can be altered such that the IR divergences of

the latter two terms are also removed. Either, we also sum over an ensemble of incoming

states, or we give up the whole structure of the KLN theorem which splits scattering

probabilities into IR finite quantities T (Eα), T (Eβ) which depend on incoming and outgoing

particles separately and instead sum over an outgoing ensemble which depends on the

incoming states. It would be interesting to work out whether a modification of KLN

can be found which makes scattering probabilities of wavepackets well-defined. We will

leave this question for further work and instead point out that both of these solutions

are problematic: if we are forced to sum over an incoming ensemble, we might never

ask questions about pure incoming states. This makes some questions about unitarity in

theories with long range forces impossible to answer. This also shows that a feature of

the dressed state formalism, namely that incoming superpositions are always accompanied

by radiation, also is the case in such a modified inclusive formalism. If the ensemble we

integrate over depends on which state is incoming, the complete physical picture which lies

at the heart of the inclusive formalism breaks down, namely that we always trace over a

flat outgoing distribution which reflects the ignorance of our detector irrespective of the

incoming state.
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4.3 Allowed dressings

Dressing operators weakly commute with the S-matrix. It was conjectured in [33]

and proven in [34] that the far IR part of the dressing weakly commutes with the S-matrix

to leading order in the energy of the bosons contained in the dressing. In particular, this

means that the amplitudes

〈β|W †
βSWα |α〉 ∼ 〈β|W †

βWαS |α〉 ∼ 〈β|SW †
βWα |α〉 (4.10)

are all IR finite, while they might differ by a finite amount. A short proof of this in QED,

complementary to [34], can be given as follows (the gravitational case follows analogously).

Recall that Weinberg’s soft theorem for QED states that to lowest order in the soft photon

momentum q of outgoing soft photons

〈ǫl1al1q1
. . . ǫlNa

lN
qN
S〉 ∼

N
∏

i=1





M
∑

j

ηjej
ǫli · pj
qi · pj



 〈S〉 . (4.11)

A similar argument holds for incoming photons. For incoming photons with momentum q

we find that

〈Sǫ∗l1al1†q1
. . . ǫ∗lNa

lN †
qN

〉 ∼
N
∏

i=1



−
M
∑

j

ηjej
ǫ∗li · pj
qi · pj



 〈S〉 . (4.12)

The reason for the relative minus sign is that incoming photons add energy-momentum

to lines in the diagram instead of removing it. That means that the momentum in the

denominator of the propagator changes (p− q)2 +m2 → (p+ q) +m2 and vice versa. For

small momentum, the denominator becomes −2pq → 2pq. From this it directly follows

that for general dressings at leading order in the IR divergences,

〈SW 〉 = 〈Se
∫
d3k(Fl(k)a

l†
k
−F ∗

l
(k)al

k
)〉 ∼ N 〈Se

∫
d3kFl(k)a

l†
k 〉

∼ N 〈e−
∫
d3kF ∗

l
(k)al

kS〉
∼ 〈e

∫
d3k(Fl(k)a

l†
k
−F ∗

l
(k)al

k
)S〉 = 〈WS〉 .

(4.13)

In the first and third step we have split the exponential using the Baker-Campbell-Hausdorff

formula (N is the normalization which is finite for finite λ) and in the second equality we

have used Weinberg’s soft theorem for outgoing and incoming particles.

Dressings cannot be arbitrarily moved between in- and out-states. This opens

up the question about the most general structure of a consistent Faddeev-Kulish-like dress-

ing. For example, one could ask whether one can consistently define S-matrix elements with

the dressing only acting on the out-state. To answer this question, we assume that the

dressing of the out-state has the same IR structure as equation (2.16), but is more general in

that it may also include the momenta of (some) particles of the in-state, i.e. Wβ →WβWα̃

or any other momenta which might not even appear in the process, WβWα̃ → WβWα̃Wζ .

The IR structure of the in-dressing is then fixed by the requirement that the S-matrix
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element is finite. In addition to the requirement of IR-finiteness we ask that the so defined

S-matrix elements give rise to the correct rules for superposition and the correct scattering

for wavepackets, even after tracing out soft radiation.

Applying the logic of the previous sections and [19], one finds that tracing over the

soft bosons yields for a diagonal matrix element ρββ

ρhardββ =
∑

i,j

fif
∗
j Sβαi

S
∗
β′α′

j
〈0|W †

α̃′Wα̃|0〉 (4.14)

and

ρhardββ =

∫∫

dαdα′f(α)f∗(α′)SβαS
∗
β′α′ 〈0|W †

α̃′Wα̃|0〉 (4.15)

for finite and continuous superpositions, respectively. Here, we have used that

〈W †
α̃′W

†
β′WβWα̃〉

∣

∣

∣

β=β′
= 〈W †

α̃′Wα̃〉 . (4.16)

The expectation value is taken in the soft boson Fock space. The expression in the case of

α̃ = α and α̃′ = α′ was already encountered in sections 2 and 3 in the context of inclusive

calculations, where it was responsible for the unphysical form of the cross-sections. By

the same logic it follows that even in the case where α̃ is a proper subset of α, we will

obtain a Kronecker delta which sets α̃ = α̃′ and we again do not obtain the expected form

of the cross-section. Instead, particles from the subset α̃ will cease to interfere. We thus

conclude that the dressing of the out-states must be independent of the in-states and it is

not consistent to build superposition of states which are dressed differently. This means

that building superpositions from hard and charged Fock space states is not meaningful.

In particular, we cannot use undressed states to span the in-state space by simply moving

all dressings to the out-state.

Generalized Faddeev-Kulish states. However, it would be consistent to define dressed

states by acting with a constant dressing operator Wζ for fixed ζ on states ‖α〉〉,

‖α〉〉ζ ≡W †
ζWα |α〉 . (4.17)

Physically this corresponds to defining all asymptotic states on a fixed, coherent soft boson

background, defined by some momenta ζ. This state does not affect the physics since soft

modes decouple from Faddeev-Kulish amplitudes [42] and thus this additional cloud of soft

photons will just pass through the scattering process. The difference between the Faddeev-

Kulish dressed state ‖α〉〉 and the generalized states of the form ‖α〉〉ζ is that the state

‖ζ〉〉ζ =W †
ζWζ |ζ〉 = |ζ〉 does not contain additional photons. This also explains why QED

calculations using momentum eigenstates without any additional dressing give the correct

cross-sections once we trace over soft radiation. Such a calculation can be interpreted as

happening in a set of dressed states defined by

‖α〉〉in =W †
inWα |α〉 , (4.18)

such that the in-state ‖in〉〉in does not contain photons and looks like a standard Fock-

space state.
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(a)

Σ

(b) (c)

Figure 1. (a) A plane wave goes through a single slit and emerges as a localized wavepacket. The

scattering of the incoming wavepacket results in the production of Bremsstrahlung. (b) We can also

define some Cauchy slice Σ and create the state by an appropriate initial condition. (c) Evolving

this state backwards in time while forgetting about the slit results in an incoming localized particle

which is accompanied by a radiation shockwave.

Localized particles are accompanied by radiation. We also conclude from the previ-

ous sections that there are no charged, normalizable states which do not contain radiation.

The reason is that within each selection sector there is only one non-normalizable state

which does not contain radiation. Thus building a superposition to obtain a normalizable

state will necessarily include dressed states which by definition contain soft bosons. A nice

argument which makes this behavior plausible was given by Gervais and Zwanziger [46],

see figure 1.

4.4 Selection sectors

Everything said so far has a nice interpretation in terms of the charges Q±
ε of large gauge

transformations (LGT) for QED and supertranslation for perturbative quantum gravity.

For a review see [31]. Large gauge transformations in QED are gauge transformations which

do not die off at infinity. They are generated by an angle-dependent function ε(φ, θ). Simi-

larly, supertranslations in perturbative quantum gravity are diffeomorphisms which do not

vanish at infinity. They are constrained by certain falloff conditions. The transformations

are generated by an infinite family of charges Q±
ε at future and past lightlike infinity,

parametrized by a functions ε(φ, θ) on the celestial sphere. The charges split into a hard

and a soft part

Q±
ε = Q±

H,ε +Q±
S,ε. (4.19)

The soft charge generates the transformation on zero frequency photons or gravitons and

leaves undressed particles invariant, while the hard charge generates LGT or supertransla-

tions of charged particles, i.e. electrons in QED and all particles in perturbative quantum

gravity. The action on particles can be found in [27, 28, 32, 35].

The chargesQ±
ε are conserved during time evolution (and in particular in any scattering

process) and thus give rise to selection sectors of QED and gravity. These selection sectors

give a different perspective on the IR catastrophe: Fock states of different momenta are
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differently charged under Q±
ε and thus cannot scatter into each other. For dressed states,

the situation is different: it was shown in [32–34] that for QED and gravity, Faddeev-Kulish

dressed states ‖α〉〉 are eigenstates of Q±
ε with an eigenvalue independent of α.

It turns out that also our generalized version of Faddeev-Kulish states ‖α〉〉ζ , equa-
tion (4.17), are eigenstates of the generators Q±

ε with eigenvalues which depend on ζ. To

see this note that [32]

[Q±
ε ,W

†
ζ ] = [Q±

S,ε,W
†
ζ ] ∝

∫

S2

dq̂
ζ2

ζ · q̂ ε(φ, θ), (4.20)

and similarly for gravity [34]. Thus the generalized Faddeev-Kulish states span a space of

states which splits into selection sectors parametrized by ζ. The statement that we can

build physically reasonable superpositions using generalized Faddeev-Kulish states trans-

lates into the statement that superpositions can be taken within a selection sector of the

LGT and supertranslation charges Q±
ε .

In the context of these charges, zero energy eigenstates of Q±
S,ε are often interpreted

as an infinite set of vacua. Note that the name vacuum might be misleading as states in

a single selection sector are in fact built on different vacua. Our results also raise doubt

on whether physical observables exist which can take a state from one selection sector into

another. If they did we could use them to create a superpositions of states from different

sectors. But as we have seen above, in this case interference would not happen, which is

in conflict with basic postulates of quantum mechanics.

5 Conclusions

Calculating cross-sections in standard QED and perturbative quantum gravity forces us to

deal with IR divergences. Tracing out unobservable soft modes seems to be a physically

well-motivated approach which has successfully been employed for plane-wave scattering.

However, as we have shown this approach fails in more generic examples. For finite super-

positions it does not reproduce interference terms which are expected; for wavepackets it

predicts that no scattering is observed. We have demonstrated in this paper that dressed

states à la Faddeev-Kulish (and certain generalizations) resolve this issue, although it is

not clear if the inclusive and dressed formalism are the only possible resolutions. Impor-

tantly, we have shown that predictions of different resolutions can disagree, making them

distinguishable.

If we insist on incoming pure states, superpositions must be taken within a set of states

with most of the states dressed by soft bosons. The corresponding dressing operators are

only well-defined on Fock space if we use an IR-regulator which we only remove at the end

of the day. In the strict λ→ 0 limit, the states are not in Fock space but rather in the much

larger von Neumann space which allows for any photon content, including uncountable sets

of photons [11, 16]. This suggests an interesting picture which seems worth investigating.

The Hilbert space of QED is non-separable but has separable subspaces which are stable

under action of the S-matrix and form selection sectors. These subspaces are not the usual

Fock spaces but look like the state spaces defined by Faddeev and Kulish [15], in which

– 17 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
1

almost all charged states are accompanied by soft radiation. It would be an interesting

task to make these statements more precise.

Our results may have implications for the black hole information loss problem. Vir-

tually all discussions of information loss in the black hole context rely on the possibility

of localizing particles — from throwing a particle into a black hole to keeping information

localized. We argued above that normalizable (and in particular localized) states are nec-

essarily accompanied by soft radiation. It is well known that the absorption cross-section

of radiation with frequency ω vanishes as ω → 0 and therefore it seems plausible that,

whenever a localized particle is thrown into a black hole, the soft part of its state which

is strongly correlated with the hard part remains outside the black hole. If this is true a

black hole geometry is always in a mixed state which is purified by radiation outside the

horizon.
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A Proof of positivity of ∆A,∆B

The exponent that is responsible for the decoherence of the system is defined as

∆Aββ′,αα′ =
1

2
Aβ,α +

1

2
Aβ′,α′ − Ãββ′,αα′ . (A.1)

The factor in the first two terms, Aβ,α, is defined as in [3]

Aβ,α =
1

2(2π)3

∫

S2

dq̂





∑

n∈β

enηnp
µ
n

pn · q̂



 gµν

(

∑

m∈α

emηmp
µ
m

pm · q̂

)

. (A.2)

Performing the integral over q̂ yields

Aβ,α = −
∑

n,n′∈α,β

enen′ηnηn′

8π2
βnn′ ln

[

1 + βnn′

1− βnn′

]

. (A.3)

Similarly Ãββ′,αα′ can be written as

Ãββ′,αα′ = −
∑

n∈α,β
n′∈α′,β′

enen′ηnηn′

8π2
βnn′ ln

[

1 + βnn′

1− βnn′

]

. (A.4)

– 18 –



J
H
E
P
0
9
(
2
0
1
8
)
1
2
1

We rearrange the terms such that ∆A can be written as

∆Aββ′,αα′ = −1

2

∑

n,n′∈α,ᾱ′,β,β̄′

enen′ηnηn′

8π2
β−1
nn′ ln

[

1 + βnn′

1− βnn′

]

, (A.5)

where a bar means incoming particles are taken to be outgoing and vice versa (or equiv-

alently, ηᾱ′ = −ηα′). From equation (A.5), it is clear that incoming particles are found

within the set {α, β′} while the outgoing particles are part of {α′, β}. Let us rename those

sets σ and σ′ respectively. ∆A now takes the form

∆Aββ′,αα′ = −1

2

∑

n,n′∈σ,σ′

enen′ηnηn′

8π2
β−1
nn′ ln

[

1 + βnn′

1− βnn′

]

=
1

2
Aσσ′ ≥ 0, (A.6)

as was proven in [4]. This shows that ∆Aββ′,αα′ ≥ 0. The same proof goes through for

∆Bββ′,αα′ .

B The out-density matrix of wavepacket scattering

In this part of the appendix we flesh out the argument in section 3, namely that after

tracing out soft radiation, the only contribution to the out-density matrix is coming from

the identity term in the S-matrix. We will focus on the case of QED, since perturbative

quantum gravity is similar.

B.1 Contributions to the out-density matrix

First, let us decompose the IR regulated S-matrix into its trivial part and the M-matrix

element. For simplicity we ignore partially disconnected terms, where only a subset of

particles interact. Then,

SΛ
αβ = δ(α− β)− 2πiMΛ

αβδ
(4)(pµα − pµβ), (B.1)

where the first term is the trivial LSZ constribution to forward scattering. This trivial part

does not involve any divergent loops and therefore exhibits no Λ-dependence. However,

the factorization of the S-matrix into a cutoff dependent term times some power of λ/Λ

remains valid since all exponents of the form Aα,β vanish identically for forward scattering.

This decomposition of the S-matrix gives rise to three different terms for the outgoing

density matrix, containing different powers of M.

“No scattering”-term. The case where both S-matrices contribute the delta function

term results — unsurprisingly — in the well-defined outgoing density matrix

ρ
(I)
ββ′ =

∫

dαdα′f(α)f(α′)∗δ(α− β)δ(α′ − β′)δαα′ = f(β)f∗(β′). (B.2)
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Contribution from forward scattering. We would now expect to find an additional

contribution to the density matrix reflecting the non-trivial scattering processes, coming

from the cross-terms

−2πi
(

δ(α− β)MΛ
α′βδ

(4)(pµα′ − pµβ)− δ(α′ − β)M†Λ
αβδ

(4)(pµα − pµβ)
)

. (B.3)

For simplicity, let us focus solely on the case in which S∗ contributes the delta function

and S contributes the connected part

ρ
(II)
ββ′ = −2πif∗(β′)

∫

dαf(α)MΛ
βαδ

(4)(pµα − pµβ)λ
∆Aα,βF(E,ET ,Λ)β,α + . . . , (B.4)

where the ellipsis denotes the contribution coming from the omitted term of (B.3). The

exponent of λ only vanishes if the currents in α and β agree. We will show in appendix B.2

that we can take the limit λ→ 0 before doing the integrals. Taking this limit, λ∆Aα,β gets

replaced by

δαβ =

{

1, if charged particles in α and β have the same velocities

0, otherwise,
(B.5)

which is zero almost everywhere. If the integrand was regular, we could conclude that the

integrand is a zero measure subset and integrates to zero and thus

ρ
(II)
ββ′ = 0. (B.6)

However, the integrand is not well-behaved. Singular behavior can come from the delta

function or the matrix element, so let us consider the two possibilities.

The singular nature of the Dirac delta does not affect our conclusion: for n incom-

ing particles, the measure dα runs over 3n momentum variables while the delta function

constrains 4 of them, leaving us with 3n − 4 independent ones. If we managed to find a

configuration for which ∆Aβα = 0, any infinitesimal variation of the momenta in α along a

direction that conserves energy and momentum would modify the eigenvalue of the current

operator ĵv(α) − ĵv(β) and make ∆Aβα non-zero. Therefore, the integrand would still be

a zero-measure subset for the remaining integrals.8

What could still happen is that MΛ
βα is so singular that it gives a contribution. For

this to happen it would need to have contributions in the form of Dirac delta functions.

However, also this does not happen, for example for Compton scattering which scatters

into a continuum of states. Additional IR divergences also do not appear as guaranteed

by the Kinoshita-Lee-Nauenberg theorem. We will not give a general proof since for our

purposes it is problematic enough to know that no scattering is observed for some physical

process.

8This is only correct for QED. For theories with massless particles at most n particles could be collinear

such that we can vary the incoming configuration in not more than n− 1 directions in configuration space

while leaving the currents invariant. This still leaves us with 3n − 4 − (n − 1) = 2n − 3 direction along

which ∆B becomes non-zero and we still have a zero-measure subset.
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The scattering term. It is evident that a similar argument goes through for the M2

term. One finds

ρ
(III)
ββ′ =− 4π2

∫

dαdα′f(α)f∗(α′)MΛ
βαMΛ∗

α′β′λ∆Aαα′,ββ′ (B.7)

×F(E,ET ,Λ)ββ′,αα′δ(4)(pµα − pµβ)δ
(4)(pµα′ − pµβ′). (B.8)

The analysis boils down the the question whether the term
∫

dαdα′λ∆Aαα′,ββ′ δ(4)(pµα − pµβ)δ
(4)(pµα′ − pµβ′). (B.9)

vanishes. As soon as there is at least one particle with charge, we need to obey the condition

that the charged particles in α and β′ agree with those in β and α′ for the exponent of λ

to vanish. Infinitesimal variations of α and α′ that preserve the eigenvalue of the current

operator ĵv(α) − ĵv(α
′) form a zero-measure subset of the 6n − 8 directions that preserve

momentum and energy, forcing us to conclude that the integration runs over a zero measure

subset and the only contribution to the reduced density matrix comes from the trivial part

of the scattering process. This means that

ρout,red.ββ′ = f(β)f∗(β′) = ρinββ′ , (B.10)

or in other words it predicts that a measurement will not detect scattering for wavepackets.

This is clearly in contradiction with reality and suggests that the standard formulation of

QED and perturbative quantum gravity which relies on the existence of wavepackets is

invalid.

B.2 Taking the cutoff λ→ 0 vs. integration

One might be concerned that the limit λ → 0 and the integrals do not commute. In this

part of the appendix, we will check the claim made in the preceding subsection, i.e. we will

show that one can explicitly check that the integration and taking the IR regulator λ to

zero commute. We assume in the following that we talk about QED with electrons and

muons in the non-relativistic limit, which again is good enough as it is sufficient to show

that we can find a limit in which no sign of scattering exists in the outgoing hard state.

The wave packets are chosen to factorize for every particle and to be Gaussians in velocity

centered around v = 0,

f(v) =

(

2

πκ

)3/4

exp

(

−v
2

κ

)

. (B.11)

In order to stay in the non-relativistic limit, κ must be sufficiently small. They are nor-

malized such that
∫

d3v|f(v)|2 = 1. (B.12)

In the exponent of λ we set α′ = β′ for simplicity, i.e. we consider the case of forward

scattering. In the non-relativistic limit, we can expand the exponent of λ into

∆Aαβ =
e2

24π2

∑

n,m∈α,β

(vα − vβ)
2. (B.13)
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Thus, λ∆A has the form

λ∆A ∝ exp



−1

2
γ
∑

n,m∈α,β

(vα − vβ)
2



 , (B.14)

where taking the cutoff λ to zero corresponds to γ ∝ − log(λ) → ∞. The state α consists

of a muon with well defined momentum and one electron with momentum mv, where v is

centered around 0. The state β consists of the same muon (we assume it was not really

deflected) and one electron with momentum mv′. To obtain the contribution to forward

scattering, we have to perform the integral

∝
∫

d3v

(

2

πκ

)3/4

exp

(

−v
2

κ

)

exp
(

−γ(v − v′)2
)

· (other terms). (B.15)

Here, we assumed that the other terms which include the matrix element in the regime of

interest is finite and approximately independent of v. The integral yields

(

2πκ

(1 + γκ)2

)3/4

exp

(

− γv′2

1 + γκ

)

. (B.16)

Taking the limit γ → ∞, it is clear that this expression vanishes. If we want to con-

sider an outgoing wave packet we have to integrate this over f(v′ − vout). The result is

proportional to

(

2πκ

(1 + 2γκ)2

)3/4

exp

(

− γv2out
1 + 2γκ

)

(B.17)

and still vanishes if we remove the cutoff, γ → ∞.
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