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Summary. All astronomers know that when a star or a star cluster loses
energy its temperature will increase in accordance with the virial theorem.
Beckenstein & Hawking have demonstrated that black holes display the same
phenomenon. Thus astronomical systems display negative specific heat.
However, there is a simple proof in statistical mechanics that specific heats
are positive. This paradox, first resolved by Thirring, is further explored with
a simple model which obeys the virial theorem. The great differences that
can arise between Gibbs’s canonical ensembles and microcanonical ensembles
are thereby further illustrated. If the model is treated canonically it shows
a remarkable giant phase transition which replaces a wide zone of negative
specific heat found by microcanonical approach.

This behaviour suggested to us that the origin of all normal phase transi-
tions may lie in negative-specific-heat elements that only arise at a micro-
scopic level. A simple model of a chemical reaction or ionization demonstrates
that this is a correct interpretation of these transitions.

1 Introduction

Negative specific heats are well-known to astronomers [1] but still cause controversy.
Following Antonov’s demonstration of a system with no entropy maximum [2], Lynden-
Bell & Wood [3] showed that bounded self-gravitating gas spheres in thermodynamic equili-
brium could show negative specific heats. Thirring [4, 5] realized that this was paradoxical
and showed, with Hertel [6—8], that the difficulty was removed once a clear distinction was
made between canonical and microcanonical ensembles. They proposed a model system
which has a negative specific heat for a range of energy values in the microcanonical
ensemble, and a phase transition in the corresponding canonical ensemble. Beckenstein [9]
and Hawking [10, 11] have shown that the thermodynamics of black holes involve negative
specific heats and many people have first met the idea in that esoteric context. To re-
emphasize that self-gravitating systems naturally have negative specific heats [12] we outline
the conditions under which they occur and given an exactly calculable self-gravitating model.
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1.1 WHEN NEGATIVE SPECIFIC HEAT IS IMPOSSIBLE

In this section we review the reasons why a system in stable thermodynamic equilibrium
cannot have a negative specific heat if it is either extensive or in contact with a heat bath.

Consider first a uniform extensive system and divide it into parts by a boundary through
which heat may pass. A small quantity of heat dQ flowing through the partition generates
a temperature difference and hence a flow of heat from the hotter to the cooler part. The
specific heat of each part is the same as that of the whole; if this were negative the flow of
heat would enhance the temperature difference, leading to an increased flow of heat. Such a
system would not be in thermodynamic equilibrium.

Secondly, consider a system in contact with a heat bath. The relative probabilities of
possible states of the system are the same as those of a Gibbs canonical ensemble and the
thermodynamics is specified by the partition function

Z= ZCXP (—BE)

where the sum extends over quantum states, 7, of the system and §' = k7. The mean energy
(E) and the fluctuations in energy can be determined from Z. The specific heat C,, is related
to the mean square fluctuation by [13]

C, = kBH(E — (EM.

This shows that the specific heat of a system in contact with a heat bath must be positive.
This also shows that any system with particles moving independently in a fixed potential
must have a positive specific heat as it may be considered as an ensemble of particles. In a
r’! potential orbits of greater energy have less kinetic energy, but even such a system of
particles will fail to have negative specific heat. A system which can show negative heat
capacity can not be divided into equal weakly coupled parts.

Imagine a system of negative heat capacity C; = — |C;| connected to a system of positive
heat capacity C,. If an amount of heat 4Q is transferred from system 1 to system 2, then the
first will increase its temperature from T, to Ty +dQ/|C;| and the second will increase to
To+dQ/C,. These new temperatures will cause a reversed heat flow if and only if
|CiI™! <C3'. Thus the system is only stable provided C,<|C;|. This result which has often
been discussed [3, 4, 11] demonstrates that a system of negative heat capacity can only be in
equilibrium with a system of positive heat capacity provided that the sum of the heat
capacities remains negative. Thus to measure temperature in this context one must take care
to use a small thermometer.

1.2 ATTRACTIVE FORCES GENERATE NEGATIVE SPECIFIC HEATS

An isolated self-gravitating system such as a star obeys the virial theorem 2.7 + ¥~ = 0 where
g is the kinetic and ¥ the potential energy. For a perfect gas the kinetic energy is propor-
tional to temperature and J =3%NkT. From the virial theorem we therefore find
E=J+ ¥ =—.9 =—3,NkT. Thus the heat capacity is —32/Nk. The argument is over-
simplified since isothermal spheres cannot be confined by their own gravity and therefore
a confining spherical box is required. When such a box is present the virial theorem is
modified by surface terms to read 27 + ¥ =3pV where p is the surface pressure and V is
its volume. Lynden-Bell & Wood showed that this modification does not remove the negative
heat capacity, however they only considered the self-consistent mean field, they did not
allow for the entropy of fluctuations and they only briefly dismissed the singularities that
occur in the gravitational potential energy when two particles are at the same point.
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In Thirring’s model [4, 5] the particles interact with each other via a square well potential
which is only present when both particles are within a particular region of space. Hertel &
Thirring [6] extended this model to allow the possibility of several condensation regions.
These models are exactly soluble but are not dominated by gravity. Here we propose a
simple self-gravitating model which although somewhat contrived is exactly calculable in
both ensembles and in both classical and quantum mechanics (Sections 2 and 3). Having seen
that large-scale attractive forces cause negative specific heats in the microcanonical ensemble
and a giant phase transition in the canonical one, we ask whether all normal phase
transitions may not be generated by negative specific heat elements at a microscopic level.
To investigate this we consider in Section 4 a simple model of a chemical dissociation. We
isolate microscopic negative specific heat elements which cause the transition.

2 Definition of our model
2.1 INTRODUCTION

Consider a set of particles confined to the surface of a sphere of variable radius. We shall give
the sphere a gravitational mass part or all of which we may consider to be made up of the
sum of the masses of the particles on its surface. The individual particles move freely around
the sphere and interact weakly with each other, so weakly that the interaction energy is
negligible at any one time but nevertheless strongly enough to set up an equilibrium distribu-
tion. We shall leave out the gravitational interactions of the particles as individuals and
instead transfer their gravity to the symmetrical sphere. Under these approximations the
Lagrangian for the system is

N . .
P=UM*+WBCM*r ™ + y Bmr*(67 + sin® 0;07)
i=1

where r is the sphere’s radius and (r, 6;, ¢;) is the position of the ith particle. Although this is
only an approximate Lagrangian for real gravitating particles on a sphere, nevertheless it is an
exact Lagrangian function. Thus as far as the mathematics is concerned the system is well
defined by this Lagrangian and the ranges of the variables. We shall allow the sphere to range
freely in radius between ry and 7, these being rigid spherical boundaries near the centre and
at the edge.

2.2 STATISTICAL MECHANICS OF A MICROCANONICAL ENSEMBLE OF FIXED
ENERGY

The model has 2V + 1 coordinates 6;, ¢;, r and corresponding to these the 2NV + 1 momenta
Po; = mr26;, pg; = mr?sin® 0,6, p,=Mr.
The condition of fixed total energy is
N
WpIM T+ Y Ym T [pg, + pg, (in 6,) ] = E+ BGM . 2.1)
i=1

The volume of phase space for which r lies in a range dr while the p run over all values for
which the total energy is less than £ is
dr(E

,7) N
—dr = erJ‘ oo dp, IT dpgi dp¢i de, d¢z (22)
dr <E i=1
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Let
=WpiM™', x3=%pdmr? x3=%pd (mr’sin®6,)", xi=Y%p§ m'r?,
x}=%p} (mr*sin®0,)" etc.
then the condition that the energy should be less than £ becomes

2N+1
Y x}<E+BGMW'=E-¥" (2.3)
j=1

Notice that the xf are the kinetic energies associated with the different components of
momentum in the system. With this notation our expression becomes

2N+1
jj f( II dx,) (Mm)'"? II 2mr?sin 0; d6; de;

i=1
<E-v

2N+1

= 2M)2Brmr?)N f f I a
<E—-v

where the final integration is to be carried out over the interior of the 2/V +1 dimensional
hypersphere of radius (£ —¥")!'%. Now this hypervolume is well known to be

VAN + BITHE - PR

Differentiating our final expression for d7/dr with respect to £ we obtain the hypervolume
of phase space with energy between E and E + dE and sphere radius between r and r + dr

d*r glVt¥

dE dr =——— (2M)"*8am)" r*M(E ~¥ YW =" dE dr. 24
Edr (N_%)!(M) (Sam)" r2NE ¥ r 24)

We now consider a microcanonical ensemble of systems distributed uniformly within this
shell of energy. For such an ensemble the distribution of r is given by the above expression
suitably normalized. Thus the probability of finding the radius of a system in the range
[r,r+dr]is

N+ N-%
r 2a—r dr r
P(rydr= [ ] , for ro<r<{® (2.5)

e . v d and 2a
f rN+/2[2a . r]N—/z r
¥

0

where a = %GM*—E) ™ =%r ¥JE is very close to the most probable value of r. We have
inserted the value of ¥"=—1%GM?% ! and the restriction r < 24 is implied by expression
(2.3).

Expression (2.5) is worthy of study. P(r) has a very strong maximum at r = a(N + %)/N = a
provided that a is in the range (ro, 7, ) and very few exceptions occur with |r — a| > 3(2N)™'/2a.
For N large we have a very strong tight maximum. However, if a is less than rq then P(r) is
strongly concentrated towards r, while if @ is greater than r, then P(r) is strongly concen-
trated towards r.. The latter is also true if £ is positive. When a is between ry and r, and away
from either end of that range then the average value of 7 ™!is ™! and thus (¥")= 2 in exact
agreement with the virial theorem.
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It is instructive to calculate the distribution of one of the x; (they each have the same
distribution). To do this we calculate [d*7(E, r,x;)/dr dx;] dr dxj; the volume of phase
space in which 7 and x; are allowed small ranges and the energy is <E. This calculation is
especially simple when one realizes that it may be made following the derivation of equation
(24) by replacing £ by E — x} and integrating over a 2N dimensional hypersphere rather
than a 2V + 1 dimensional one. Thus in place of (2.4) one obtains

&t aN—%
————dEdrdx;=——— QM)""*@mm)" r*N(E — x} — ¥ N =32 4E dr dx;.
dE dr dx; (N =3)
The probability distribution for  and x; follows from this

PNE - ¥ = x}N 3 dr ax;

P(r, X]') dr dxj = (26)
rNE— V- x?N-32 gy dx;
from this it follows that the mean xf at fixed r is given by
E-V
2= 2.7
N @7)

since each x; has the same distribution the average energies associated with each of the

2N +1 components of momentum are all equal. If further we average over r we have
(¥)=2FE
(x})=—E[QN+1) provided ro<a<re. (2.8)
If we take this average energy per quadratic degree of freedom in the Hamiltonian to be our
measure for %kT then

=—QN+1)%kT provided ro<a<re. (2.9)
Thus for a wide range of negative energies we have a negative specific heat. The greatest
achievable binding energy is when everything is at rest on the inner sphere thus
— E = %GM?ry".
When the binding energy is between this value and half of it, 7 is confined to a region very
close to ro. The kinetic energy per momentum component is still given by the equipartition
theorem (2—7) but now ¥~ takes the value —AGM%y' = xo. Thus £ = (2N +1) %kT — x,
and over this range of energy the specific heat is positive and equal in modulus to its former
negative value.

When a > r, a similar argument holds
E=QN+1) kT —x, (2.10)
where
Xe = — BGM?r!
and we again have a positive specific heat. Thus the graph of T as a function of E is as shown
in Fig. 1 which also shows a(F) and the multivalued E(B).

The definition of temperature used above may not be universally agreed for such strange
systems. However, use of the temperature T =(dS/dE)”!, defined through the entropy,
S =k log (d7/dE) of a microcanonical ensemble only differs to order 1/N of the leading
terms. It gives £'= — (2/V + 3) 14k T in place of (2.9) and approximately
E=QN—1)%kT — X,
in place of (2.10).
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-

Figure 1. (a) The relationship between temperature and energy in the classical model. The full line is for
the isolated system. The inverse of the gradient gives the specific heat. Note the negative Cy, portion of the
curve, this would be still broader but to get convenient dimensions for the figure we have taken 7, only
12% times r, instead of 7, >r,. For the canonical ensemble the negative specific heat region is absent and
the average over the ensemble undergoes the dotted phase transition from A to C. (b) Gives 8 against E.
The entropy change is the same whether a subset of systems makes the phase transition by traversing the
curve for an individual system or by behaving like an ensemble. Thus AS = (kB dF is zero taken around
the curve that sets out along the phase transition path AC or returns via the individual 8(E) curve to A.
Thus the two shaded areas are equal. (c) a(E) the harmonic mean radius of the sphere as a function of
energy. For large NV the radius has a very strong probability of being very close to this. Notice that when
the sphere is not touching a wall the graph of ¢(E) is the same B(E)-

2.3 WHAT HAPPENS WHEN THIS SYSTEM IS PUT IN A HEAT BATH?

It is of interest to consider more precisely what will happen when our negative heat capacity
system is placed in contact with a heat bath. Fluctuations will lead it to become momen-
tarily hotter or colder than the bath and it will then evolve in whatever direction it started
off. If that were a fluctuation to lower energy then the system will give out more and more
heat getting hotter and hotter meanwhile, until it reaches the maximum in the T(E) curve
of Fig. 1. It will then be much hotter than the bath so it will continue to give out heat and
will evolve down the positive C, branch of the curve giving out still more heat but now
getting cooler. Eventually it will reach a stable equilibrium on the positive specific heat
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branch of the T(£) curve. A similar evolution towards higher energy would occur if the
fluctuation were to higher energy initially. Thus a system of negative specific heat will evolve
out of that state before achieving equilibrium with a heat bath. This reflects the behaviour
that we find in the canonical ensemble.

24 STATISTICAL MECHANICS OF A CLASSICAL CANONICAL ENSEMBLE

The Hamiltonian of the system is

+
2M 2r i=1

2 GM2 N 2. 2'
H=2r (p"l s Po )=E. (2.11)

2mr*  2mr?sin?6;

The Zustandsumme is classically

N
Z= f . f exp (—BE) dp, dr T dpe; d0; dpe; ddi
1

i=

= ffexp (—B) (2%34 —%ﬂi—z) IA{I Z(r)dp, dr (2.12)

i=

where

Zi(n= Jfffexp (—%Bm ™' r ) [ p§, + 3 (sin ;) %] do; dpg,; d6; dpe;

oo

= 4n(2mmp~1)!/2 rj exp (—%B°p5,m™'r?) dpe, = 87mr*. (2.13)
0

Inserting this into our expression for Z and performing the integration over p, we find

Z = (2aM/8) 2 (8n*m/B)Y f © N exp (BBGM?/r) dr. (2.14)

We notice that the integrand is large when r is large and is also large when r is small. Thus
almost all the systems in the ensemble are close to either radius 7o or radius .. Contrast this
with our microcanonical ensemble at fixed energy in which these extremes are only reached
when £ is either small or large. The contributions from the two regions where the integral is
large may be evaluated roughly as follows. Since most of the contribution comes close to the
end point we logarithmically differentiate the integrand f(r) there and replace the integrand
by f(ro) exp [— ar — ro)] where —« is the derivative of log f at 7 = ry. We then add the con-
tributions from the two end points. The integral is approximately /; + I, where

L= 13N [exp (Bxo)] 06 {1 — exp — [ao(re — 7o)}

and o = 15" (Bxo — 2NV) and
L= r3" [exp (Bxe)] 02* {1 — exp — [ee(re — o)1}

and o, = 3 (2N — Bxe).
Of great interest is the ratio /,/I; as this gives the ratio of the numbers of systems in the
excited states near r, to the numbers of systems in the states close to the ground state 7.
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L (re\*! 1—exp [~ 2N = Bxe)(1 —ro/re)]
I—_ r— exp [B(xe — Xo)] AN — By

1 0 e

y { Bxo— 2N }
1 —exp [— (Bxo — 2N)(e/ro — D)

When Bxo > 2N > fx. we may approximate to the much simpler form which holds near the
phase transition

; 8
5L_ (k)” " (exp [B0xe — x0)] 5’5—\,
I Fo

At the phase transition /,=1; and B1(Xo — Xe) = (2N + 1) log re/ro + log (log re/ro). Near
that temperature of transition which we call Bt a change in @8 given by AB/8= (2N +1)!
suffices to change the phase almost completely. Thus the phase transition is extremely sharp.
At temperatures below the phase transition we need only consider /; while above it we need
only consider /,. Thus away from the phase transition the average energy of a system (E) is
given by

(N+¥%)B™" —xo for B>Br+Ap

- —dl =
(E) dlog Z/dB {(N+%)B_1_Xe for B <pBr— AB.

Putting §7' = kT we see that away from the phase transition the ensemble has the positive
specific heat (V + %) k. In the phase transition itself the specific heat is very large. It reaches
values as high as %kB%(xe — Xo)? at maximum. Thus at the phase transition the fluctuation in
energy is of the same order of size as the energy itself. In accordance with the theorem the
specific heat of the ensemble never becomes negative. Perdang has previously demonstrated
these giant energy fluctuations [15].

3 Quantized system
3.1 INTRODUCTION

The quantum mechanics of our system is quite interesting, as its energy levels are related to
those of the hydrogen atom and its statistical mechanics has interesting analogies to the
properties of white dwarf stars provided that the particles are taken to be fermions. A
further bonus of non-relativistic quantum systems is that the zero point vibrations are suffi-
ciently strong to prevent collapse to 7 = 0; thus the artificial inner sphere of radius ro may be
dispensed with. The outer sphere is still necessary to restrain the system at large energies. We
show in this section that fermion systems show a region of negative specific heat in the
microcanonical ensemble and a phase transition for the canonical system in a heat bath.
The Quantum Mechanical Hamiltonian of the system is

h? (2 ) 82) n (N 1 9 ) 1 32} GM?
H=——|-—-+—] - i —
or? {

——sing; —+ - 3.1
M i=1 Sin 0,’ 66, ! 80, sin? 0,- 3¢,2 2r ( )

ror 2mr?

where M is the total mass of the shell, m is the mass of one of the N particles and r, 0;, ¢; are
the coordinates of the ith particle.

r’H is separable: the solution of the angular part for each particle is a spherical harmonic
with eigenvalue %m ™ 'h¥%,(J; + 1) where /; is an integer. If the particles are fermions of spin %
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not more than 2(2/; +1) of them may have the same /; value; there is no restriction for
bosons.

The equation for the radial part R(r) is

W 29 92

{ ( + )+ i YL+ 1) G R=ER (3.2)
M \ror ) 2mr T 2r '

which is similar to the hydrogen atom radial equation.
Using standard methods [16], solutions can be found of the form

R(r) = exp (—=r) PP, (r) (3.3)

where P, is an nth order polynomial in 7; s (which is not necessarily an integer) is given by
M M

s+ 1) =—> l(l; + ) =— N +1)). (3.4)
m ; m

The constant ¢ is

C=WBEMPH (s +1+n)! (3.5)
and the energies of the bound states are

E=—G*M3[8h%(s +n +1)2]"L. (3.6)

The lowest states of the system are those in which no particle has angular momentum
(s = 0). These hydrogenic states have energies

E=- XB> %XB’ - 1/9XB (3 7)
where
Xp =~ G*M5(81%)

but are inaccessible if the particles are spin % fermions. The lowest fermion state has the
minimum value of s consistent with double occupancy of (/, m;) states. For large N we find

Imax = (AN)!"? (3.8)
and
Il +1)=%N> (3.9)

This gives a minimum value for s of 4N(M/m)'’? and the ground state of the fermion system
has energy — xf

Xr = G*M*m(2N?n?)! (3.10)
and radius
re =< =2N* W (GM*m)™. 3.11)

3.2 STATISTICAL MECHANICS OF A MICROCANONICAL ENSEMBLE OF
QUANTIZED SYSTEMS

In order to calculate the entropy associated with a given energy in the microcanonical
ensemble we need W(E), the number of ways in which a given value of £ may be obtained.
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To do this we use the formula for the occupation numbers of the states with [ =1;
n =gl +Dfexp [vi( +1) —a] +1}

where g is the degeneracy due to spin and « and v are Lagrange multipliers which are fixed
by

zZn =N
Snd( +1)=L.

(3.12)

3.2.1 The non-degenerate case

Consider first values of L which are considerably greater than the limiting value of L, = N?/4
for Fermi—Dirac particles, when the occupation numbers are small and

ny=2(21 +1) exp [a — vl +1)] (3.13)
N= ,Y—lea
(3.14)
L=v"N.
This gives
_ @M
W(L) = v (3.15)

Thus a bound state with energy £ > — xr and radial quantum number » has degeneracy

W(E, n) = (276:) [(_LZ)M— (n +1)] ) (3.16)

To obtain the degeneracy associated with a particular value of £ one must sum W(E, n) over
all values of n. As these levels are close the sum may be replaced by integration giving

1 e\ N [ xp \ N
W(E) =~ —) (—) 2N+1)T N2 3.17
®==(5) (5 v (3.17)
The entropy associated with the system at energy F is k log W which gives for N > 1

E
S‘—lNk(Z—log2)—(N+%)klog(—) for —xp<E<0. (3.18)
XF

If the energy is changed by a small amount a temperature, T, can be defined

T=(dE/dS),= — E[(N +%) k] ™. (3.19)
This is positive, but decreases as the energy increases so that the specific heat, C, is negative
C, =(dE/T),=— (N + %) k. (3.20)

Two such systems in contact have a minimum entropy if their energies are equal
(9%S/dE* is positive); they will exchange energy until one reaches degeneracy.

These results agree with those obtained from classical arguments in the previous section
with an infinite volume. The imposition of a spherical box radius 7., raises the energies of
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those states with a significant amplitude at or above r.. Provided r, is much larger than the
Fermi radius (at least by a factor V) this only affects states where classical behaviour occurs
and the expressions of the previous section may be used. The qualitative effect of imposing a
box is to decrease the entropy at energies comparable to and greater than x.. This leads to
a point of inflexion on the [S(F)] curve, Fig. 2(a), and a minimum temperature at the corre-
sponding value of E, Fig. 2(b).

S(E

i

Figure 2. (a) The entropy of a system of Fermions on a gravitating sphere as a function of energy.
(b) The temperature as a function of energy. (c¢) Specific heat (heat capacity) as a function of energy for
the microcanonical system. The canonical ensemble has a very large positive C,, at the phase transition
just as the classical system does.
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A second point of inflexion in the S(E) curve is introduced at low energies as the number
of states available to the system is reduced by degeneracy effect. The entropy decreases to
zero as the energy approaches — xg. This point of inflexion gives a maximum temperature.
The specific heat, Fig. 2(c), is negative between these points. Below the lower energy both
canonical and micro-canonical ensembles have identical positive specific heats.

3.3 THE QUANTIZED CANONICAL ENSEMBLE

The thermodynamic behaviour of a canonical ensemble depends on the partition function
Z. As in the classical case there are two principal contributions to Z, Z; from low lying
states and Z, from states with energy near zero, a phase transition occurring when these are
equal. As the states near £ =0 do not show any degeneracy effects Z, is identical with that
for the classical system

1 2m N+¥s 1 M 1/2
SR
2N h%B 41 m 2
where I, is the classical integral defined in equation (2.15).
Under the conditions of Section 2

I = rZVTH2NY ™ exp (Bxe)

giving an expression for Z,
1 (4er3 N\ M
4 (r%xpﬁ) (

1/2
) exp (BXe)

em

The expressions for Z, can be obtained by considering the values of the Lagrange multi-
pliers (equation 3.14) when few particles are above the minimum energy. For spin %
Fermions the Lagrange multipliers @ and y (equation 3.12) can be expressed in terms of the
Fermi—Dirac integrals [14] F,(x)

F, - —Z‘n—di— 3.21
n(x)‘J‘O exp(z —x)+1 (3:21)
as

N =27Fo(— @)

L =27"%F (- a). (3.22)

For large positive values of x degeneracy effects appear. At sufficiently low temperatures
(large v) F can be expanded

F,(x)= - +—‘"2—nx"“1 +0(x"~3) (3.23)
n+l 6

giving

a=—%yYN

v=n[6(L — Lo)] Y2 (3.24)

where L, is the minimum value of L for the system. Substituting these quantities into the
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On the negative specific heat paradox 417

Fermi—Dirac expression for W(L), the number of ways in which a given value of L may be
achieved we obtain

2n
W(L) = exp [_6 (L - Lo)l’z]. (3.25)

NG

The partition function may now be calculated from

Z=Y exp[Bxg(n +1++/NLY*] W(L). (3.26)
n, L

At low temperatures only the states near the ground state will be populated. In the tempera-
ture range N™'xg » kT > N™3'?xy it is possible to replace the summations in equation (3.26)
by integrations and to use equation (3.25) for W(L). In this range the energy can be
expanded about the minimum Fermi energy — x to give

oo 00 277
z-= f f exp [Be(1l — 2n(NLo) ~ (L = Lo)/Lal exp —=(L ~ Lo} dnd(L = Lo)
0 0

NG

N2
= (aN3)3'? =5/2 ex { + } 3.27
(nN=)"“(BxF) e P Yaxe Bxr (3.27)
From this
5 m*N?
E+xp=— kT+( )szz. (3.28)
2 24XF

In the temperature range where this treatment is valid within the term in T?is always greater
than the linear term

kNZ 2 A 1/2
C, == kN (X—) 61/ (3.29)
¥

where A =E +xp is the energy difference of the system from its ground state. The specific
heat of the microcanonical ensemble is given by this formula at low energies as shown in
Fig. 2(c).

The phase transition in the canonical ensemble occurs when Z, is equal to Z,. If NV is
large the temperature of the transition is given by § = f where

Br(XF — Xe) = 2V log (re/re).

This result is very similar to the classical result.

4 A simple model of ionization (or chemical) equilibrium

We consider two types of particles, A and B, which are in the ground state tied together in
pairs A -B. We take the forces between them to be saturated when such a pair exists and we
shall take the interaction potential to be a & function. This will of course lead to a single
bound state and we shall take its binding energy to be x. Let n4p be the number density of
pairs in some initial ground state. We shall model this system by a microcanonical ensemble
of boxes each of volume n Ay and each containing one particle of type A and one of type B.
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We shall show that each of these microsystems shows negative specific heat when the energy
of each box above its ground state is just greater than x so that dissociation has begun but
the energy per free particle is small compared with x. When many such systems are com-
bined into a canonical ensemble we get the usual transition and the associated latent heat x
per AB pair.

Let the box be a cube of side L. For an impenetrable box the energy levels of the bound
states AB are given by

h’K?

_2(mA+mB) X

Ey

where
K*=m*L"*(n2 +n2 +nl)

and ny, ny, n, are positive integers. The number of bound states with energies less than £ is

z(mA+mB)L2]3/2

1 4
ro(E) =5 5T |+ g

3
where we have assumed that n,, n,, and n, are large enough that the continuum approxima-
tion holds for the counting of the energy levels. For this we need the square bracket above
to be much greater than one. In a very similar way we may obtain the free state energy levels

WKL 1K
= +
2mp  2mgp

f

and these lead to a number of energy levels 7¢(< E) given by

lﬁ[z(mAmB)UzELz

3
y E>0
64 3! m*h? ] g

T8(<E) = .
0 E<O0.

The total number of energy levels with energy less than E'is

7(E) =74 + 71

The entropy of a microcanonical ensemble of systems with energy F is given by
S = — k log (d7/dE)

and the temperature by T = (0S/0E)". Thus we find

Y (E +x)"? + 34E?
' 7 E>0
7=TE) _{ WE+X)"*+64E
TE) {2E+y) E<0

where 4 = (7%/64)(2m*L*/7*h®)'2 and m* = mxmg/(ma + mp)

18A2EXE + %)%/ — 9AX(E +X) — PBAE?* + Ys(E + x)'"?
k _dkT _ (E +)'*[% + 6AE(E + x)'*]?

;0 E>0

2 ;. E<O.
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The complicated expression increases from —16A4x>'%+2 at £ =0+ to % for large E. Thus
just above E£'= 0 where there is just enough energy for dissociation the specific heat is nega-
tive provided that 8 4x>/? > 1 that is provided (n%/8)(2m*xL?/n*h?)3>2 > 1. This will always
be so if the volume of the box L = n7ly is sufficiently large compared with h3(8m*yx)™/2.

There is an inevitable doubt about applying statistical mechanics to systems with such
small numbers of particles, and on the definition of entropy usually employed for a micro-
canonical ensemble the energy of one free particle alone is %k T while for two it is 2kT by
contrast to the canonical results of 3%2kT and 3kT respectively. Gibbs pointed out that use of
k log 7 as the entropy removed these anomalies but, whether we use a definition of tempera-
ture based on 32kT being the mean energy of the motion of the centre of mass or on

T = [d(k log 7)/0E]™

or on T=k"!(r'/7") which we have used above, the negative specific heat at E = 0+ remains
with us.

S Conclusions

Negative heat capacities can only occur in isolated or nearly isolated systems. They are
impossible in truly extensive systems in canonical ensembles or for that matter in grand
canonical ensembles. However, far from being a strange phenomenon only found in the
thermodynamics of black holes they occur widely on a macroscopic scale in astrophysics and
with less precision on a microscopic scale throughout physics and chemistry. They are the
origin of the large fluctuations that occur at phase transitions and we speculate that they
cause those transitions. Indeed, the super-heated liquid and super-cooled gas must be joined
by a curve of the abnormal slope corresponding to negative specific heat.
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