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ON THE NESTEROV-TODD DIRECTION IN SEMIDEFINITE
PROGRAMMING ∗

M. J. TODD † , K. C. TOH ‡ , AND R. H. TÜTÜNCÜ §

Abstract. We study different choices of search direction for primal-dual interior-point methods
for semidefinite programming problems. One particular choice we consider comes from a special-
ization of a class of algorithms developed by Nesterov and Todd for certain convex programming
problems. We discuss how the search directions for the Nesterov-Todd (NT) method can be com-
puted efficiently and demonstrate how they can be viewed as Newton directions. This last observation
also leads to convenient computation of accelerated steps, using the Mehrotra predictor-corrector ap-
proach, in the NT framework. We also provide an analytical and numerical comparison of several
methods using different search directions, and suggest that the method using the NT direction is
more robust than alternative methods.

Key words. semidefinite programming, Newton direction, predictor-corrector interior-point
method.

AMS subject classifications. 90C05

1. Introduction. This paper studies interior-point methods for semidefinite
programming (SDP) problems based on the search direction described by Nesterov
and Todd [17, 18]. For simplicity, we call this direction the Nesterov-Todd (NT)
direction. We consider the SDP given in the following standard form:

(SDP ) minX C • X
Ai • X = bi, i = 1, . . . , m

X � 0,
(1)

where each Ai ∈ SIR
n×n, b ∈ IR

m, C ∈ SIR
n×n are given, and X ∈ SIR

n×n. Here
SIR

n×n denotes the space of n × n symmetric matrices, and X � 0 indicates that X
is positive semidefinite. We assume that the set {Ai} is linearly independent. The
dual problem associated with (SDP) is:

(SDD) max
y,S

bT y

m
∑

i=1

yiAi +S = C

S � 0,(2)

where y ∈ IR
m and S ∈ SIR

n×n.
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SDPs have a wide range of applications in both continuous and combinatorial op-
timization (we refer the reader to [22] for an extensive list of applications). Interior-
point methods for their solution were pioneered by Alizadeh [1] and Nesterov and
Nemirovsky [15, 16] independently. These methods were primal; more efficient algo-
rithms use a primal-dual approach. For a comprehensive list of publications concerned
with both algorithms and applications and related software, see the semidefinite pro-
gramming home pages maintained by Alizadeh [2] and Helmberg [6].

Our goal is to develop efficient algorithms (in terms of both number of iterations
and number of arithmetic operations per iteration) for a wide range of classes of SDP
problems. We will see that methods based on the NT direction compare favorably with
other interior-point methods. One issue that is not addressed here is the exploitation
of problem structure for large-scale problems. All the methods considered here use
direct methods that do not preserve sparsity to solve the linear systems that arise in
each iteration, while indirect methods may be preferable generally. However, if the
{Ai} and C have a common block-diagonal structure, then so do all feasible X and
S, and all the algorithms here preserve and exploit this structure. In particular, the
linear systems that arise can all be solved block-wise.

As in linear programming (LP), most interior-point algorithms for SDP can be
viewed as damped and centered Newton methods. At each iteration, the search di-
rection is computed by applying Newton’s method to a system of nonlinear equations
defining the so-called central path. However, unlike the case for LP, even for primal-
dual methods, there are several ways to write these nonlinear equations. Indeed,
for some choices, the direction that results from the Newton equation does not give
symmetric matrices as the search directions for X and S, and hence cannot be im-
plemented without further modification. One way to proceed is to symmetrize the
complementarity equation in the system defining the central path with respect to an
invertible matrix P , as was done by Monteiro [14] and Y. Zhang [23]. The resulting
Newton system gives rise to different search directions for different matrices P . We
give a simple proof that the symmetrized Newton system has a unique solution un-
der certain conditions related to those appearing in the work of Shida, Shindoh and
Kojima [19]. Based on this uniqueness result, we show that the NT direction can be
expressed as the solution of a symmetrized Newton system. (We note that recently,
independently of our work, Sturm and S. Zhang [20] described how to generate the
NT direction as a Newton search direction for primal-dual path-following algorithms
for SDP using a symmetric primal-dual transformation, similar to Section 6 in [17].)

In LP, the most computationally successful interior-point methods for LP have
been primal-dual methods using Mehrotra’s [12] predictor-corrector steps. These
methods obtain higher-order directions from the nonlinear equations formed at each
iteration. Because of our interpretation of the NT direction as a Newton direction,
we can follow this approach also. In contrast, from the equation defining the NT
direction in [17, 18], it is not clear how we can incorporate higher-order (quadratic)
terms into the NT direction.

One of the main contributions of this paper is the implementation of such a
predictor-corrector algorithm based on the NT direction, where the direction is com-
puted from the solution of a linear least-squares problem via a QR factorization. For
simplicity, we will refer to this method as Algorithm NT-PC-QR. We discuss issues
related to efficient implementation, which are briefly described next. Firstly, in solv-
ing for the NT direction of an SDP, one needs to compute a certain scaling matrix
W . A direct computation would involve two different matrix square roots. Here
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we show that W can be computed with two Cholesky factorizations and one singu-
lar value decomposition (SVD). Secondly, we show how to use these to compute the
search direction efficiently. Finally, computation of the quadratic correction requires
the solution of a Lyapunov equation, but this can be solved explicitly and simply by
re-using the Cholesky factors and SVD already generated.

For the purpose of comparison, we also implemented three other methods using
exactly the same algorithmic framework as Algorithm NT-PC-QR, but computing
the search direction from a Schur complement equation via a Cholesky or an LU
factorization. (This approach is like solving the normal equations of the linear least-
squares problem mentioned above.) The first is based on the direction of Alizadeh,
Haeberly, and Overton [3]; the second on one of the H..K..M directions; and the last
on the NT direction. The second direction has a convoluted history: it apparently
first appeared in a preprint of Helmberg, Rendl, Vanderbei, and Wolkowicz [7] in
late 1993; was rediscovered independently as one member of a family of directions
introduced in early 1994 by Kojima, Shindoh, and Hara [10]; and was most recently
derived (as well as a “dual” direction, also a member of the KSH family) in a different
way by Monteiro [14] in 1995. This last derivation fits most conveniently with our
discussions, but we have chosen a name that suggests all those who obtained it. These
three methods are referred to as Algorithm AHO-PC-Sch, H..K..M-PC-Sch and NT-
PC-Sch, respectively.

After the release of the first version of this paper, we observed that with careful
implementations, the three algorithms that are based on the Schur complement ap-
proach can perform much better than we initially expected, obtaining duality gaps
below 10−10 in the problems we tested.

Our numerical results indicate that the methods (both the QR and Schur comple-
ment approaches) based on the NT direction are fast and robust. For most problems,
the Schur complement approach is as stable as the QR approach. However, it is known
that the latter approach can be much better conditioned than the former. Conceiv-
ably, there may be problems where the QR approach can perform much better than
the Schur complement approach because of this.

A brief summary of how the NT methods compare to the methods based on the
AHO and H..K..M directions is as follows. The NT methods are almost as efficient
as Algorithm AHO-PC-Sch in terms of the number of iterations required to attain a
given accuracy, typically taking only two or three more iterations. Algorithm H..K..M-
PC-Sch usually takes almost the same number of iterations as the NT methods, but
occasionally it stagnates, taking very small steps, and then it requires several more
steps. On the other hand, each iteration of the NT methods is about 50% cheaper
than those for Algorithm AHO-PC-Sch and only slightly more expensive than those
of Algorithm H..K..M-PC-Sch. Overall, the NT methods seem to be more robust than
the other two algorithms in the sense that problems of stagnation appear less likely to
occur. Finally, we must mention that Algorithm AHO-PC-Sch seems to be the best
of the tested methods in terms of reducing the duality gap, which is typically 10 to
100 times smaller than that obtained from methods based on the H..K..M and NT
directions.

This paper is organized as follows. In Section 2, we introduce the NT direction
for SDP and study some of its symmetry and invariance properties. In Section 3,
we describe the symmetrized Newton system and prove that it has a unique solution
under a certain positive semidefiniteness condition. Then we apply this uniqueness
result to show that the NT direction can be viewed as the search direction of a certain
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symmetrized Newton system. We address implementation issues in Section 4: we give
an efficient way to compute the scaling matrix W , show how the Schur complement
equation can be expressed as a linear least-squares problem, and derive the Mehrotra-
type corrector [12] for the NT direction. Results of numerical experiments are given
in Section 5. Finally, we give an appendix containing some frequently used properties
of the standard and symmetrized Kronecker products in the context of SDP.

Throughout this paper, IR
n denotes the n-dimensional Euclidean space and ‖ · ‖

denotes the Euclidean norm. The standard inner product between two real n × n
matrices G and K is the number G • K := TrGT K, the trace of the matrix GT K.
A matrix G ∈ IR

n×n (not necessarily symmetric) is said to be positive definite (resp.,
positive semidefinite) if vT Gv > 0, (vT Gv ≥ 0, resp.) for all v 6= 0. However, all pos-
itive (semi)definite matrices considered here are symmetric except in the statement
and proof of Theorem 3.1, so we shall assume that positive (semi)definiteness implies
symmetry unless explicitly stated otherwise. We write G ≻ 0 (G � 0) if G is positive
definite (positive semidefinite). For G � 0, G1/2 denotes the unique symmetric pos-
itive semidefinite square root of G. Finally, N (G) and R(G) denote the null space
and range space of the matrix G, respectively.

2. The Nesterov-Todd direction and some symmetry and invariance
issues. In two recent papers [17, 18], Nesterov and Todd study interior-point methods
for convex programming problems expressed in conic form. They develop efficient
primal-dual algorithms for a class of problems for which the cone and its associated
barrier are self-scaled. This class includes semidefinite programming. All the primal-
dual methods in [17, 18] use a direction that, for the case of SDP, is (up to a scalar
multiple) the solution for some σ to the following system of equations:

Ai • ∆X = 0, i = 1, . . . , m,
∑m

i=1 ∆yiAi + ∆S = 0,
W−1∆XW−1 + ∆S = σµX−1 − S,

(3)

where W is the scaling matrix defined below and µ := X • S/n. The unique solution
to (3) is an affine-scaling direction for σ = 0, and a centering direction for σ = 1 —
see [18].

We start by describing how (3) arises. In fact, it is a special case for semidefinite
programming of a system of equations defined for convex programming problems in
conical form, where the cone, say K, has a self-scaled barrier function F . In our case,
the cone K is the set of positive semidefinite matrices of order n, and the barrier
function is defined by

F (X) := − ln det(X).(4)

We will not give the definition of self-scaled barriers here (for details, see [17]), but
note that a key consequence is that, for every X in the interior of the primal cone
K and every S in the interior of the corresponding dual cone K∗ there is a unique
scaling point W in the interior of K with

F ′′(W )X = S.(5)

The theory also implies that, with T := −F ′(W ), the dual function F∗, which is a self-
scaled barrier for the dual cone K∗, satisfies F ′′

∗
(T ) = [F ′′(W )]−1 and F ′′

∗
(T )S = X ,

and we therefore have a dual scaling point. Further, we have F ′′(W )F ′

∗
(S) = F ′(X).
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In the case of semidefinite programming, F∗(S) = − ln det(S)−n, F ′(X) = −X−1

and similarly F ′

∗
(S) = −S−1, and F ′′(W ) is the operator taking X to W−1XW−1

and similarly for F ′′

∗
(T ). The equation (5) then becomes

W−1XW−1 = S,(6)

or equivalently WSW = X , from which we easily see that

W = X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2.(7)

The scaling matrix W is related to various notions of geometric mean for sym-
metric positive definite matrices. Indeed, (6) shows that W is the metric geometric
mean of X and S−1 (and W−1 that of S and X−1), and

W−1/2XW−1/2 = W 1/2SW 1/2(8)

is the spectral geometric mean of X and S [4, 8].
Thus system (3) amounts to feasibility equations for the primal and dual direc-

tions, together with the equation

F ′′(W )∆X + ∆S = −S − σµF ′(X).(9)

From the results above, this is equivalent to

∆X + F ′′

∗
(T )∆S = −X − σµF ′

∗
(S).(10)

One nice feature of the Nesterov-Todd approach is that it provides general meth-
ods applying to any convex programming problem in conic form, as long as the cone
is self-scaled; such cones include the nonnegative orthant and the second-order cone
in addition to the cone of positive semidefinite matrices. Thus the convergence proofs
and complexity estimates apply to this general class of problems. In contrast, the other
methods considered here are specific to SDP, and require new convergence proofs.
(However, the algorithms we implement here employ second-order directions and long
steps for which the Nesterov-Todd convergence proofs do not apply.)

In the literature on interior-point methods for semidefinite programming, one key
point is the need for well-defined search directions, with ∆X and ∆S symmetric.
This will be discussed further in the next section. We point out that the general
development of [17, 18] leads to nonsingular linear systems defined on the appropriate
linear spaces, namely the set of symmetric matrices of order n for ∆X and ∆S in our
case, so that (3) has a unique solution with the directions lying in the correct spaces.

There is also an issue of primal-dual symmetry. Since (SDP) can be converted
into (SDD) and vice versa, there is a natural symmetry between primal and dual.
We would like our algorithms also to be symmetric between primal and dual. The
equations (9) and (10) above show that (apart from the lack of symmetry in the
feasibility equations, which follows from the way in which the constraints are written)
the Nesterov-Todd direction does possess this primal-dual symmetry. Some of the
methods we discuss below do not share this property.

There is a third property which we believe is desirable for interior-point methods:
scale invariance. For linear programming, it is well known that, if the primal variables
are measured in different units, then the search direction scales appropriately. That
is, if x is replaced by D−1x where D is diagonal and positive definite, and correspond-
ingly A becomes AD, c becomes Dc, and s becomes Ds, then the search direction
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for any algorithm at the scaled trial point (D−1x, y, Ds) in the scaled problem is
(D−1∆x, ∆y, D∆s), where (∆x, ∆y, ∆s) is the search direction at the unscaled point
(x, y, s) in the original problem.

We will say that a search direction for semidefinite programming enjoys scale in-
variance if a similar property holds. Now we let U be any invertible n × n matrix,
and consider the “scaling” where X is replaced by X̄ := U−1XU−T and correspond-
ingly each Ai by Āi := UT AiU , C by C̄ := UT CU and S by S̄ := UT SU . This
defines a new, scaled problem: if (X, y, S) is feasible in the original problem and its
dual, (X̄, y, S̄) is feasible in the scaled problem with the same objective function val-
ues. If the search direction at the unscaled point (X, y, S) in the original problem
is (∆X, ∆y, ∆S), we require the search direction at the scaled point (X̄, y, S̄) in the
scaled problem to be (∆X, ∆y, ∆S) := (U−1∆XU−T , ∆y, UT ∆SU).

It is not hard to show that the Nesterov-Todd direction is scale-invariant. In fact,
this follows from the coordinate-free representation of the directions, but a direct proof
is easy and instructive. From equation (6), it is easy to check that the scaling point
corresponding to U−1XU−T and UT SU is U−1WU−T where W is that corresponding
to X and S. Now it is merely a matter of substituting the scaled values of {Ai}, ∆X ,
∆S and W into (3) to confirm that the solutions scale appropriately.

Note that if we choose U above to be W 1/2, then both X and S are scaled to
the same point by (8). This is parallel to the situation in linear programming. In
this scaled space, the search directions for X and S are just Euclidean projections of
the scaled right-hand side onto the appropriate orthogonal subspaces; see Section 6 of
[17] for a general view of this. This scaling is the starting point for the development
in Sturm and S. Zhang [20].

3. The central path and the Newton equation.

3.1. The Newton equation and symmetric search directions. For the
SDP problem, the central path is defined as the set of solutions to the following
equations:

Ai • X = bi, for i = 1, . . . , m,
∑m

i=1 yiAi + S = C,
XS = νI,

(11)

for all ν > 0 (together with the requirement that X ≻ 0, S ≻ 0). Given an iterate
(X, y, S) (not necessarily feasible) for the primal and dual semidefinite programming
problems, many interior-point algorithms generate the next iterate by taking a single
Newton step applied to the nonlinear system of equations (11) or a related system.
Much of the recent debate on interior-point methods for SDP has focused on the
issue of the linearization of the third equation in this system. Suppose we try to
approximate the point on the central path corresponding to a value ν = σµ, where
µ := X • S/n and σ ∈ [0, 1]. If the solution is (X + ∆X, y + ∆y, S + ∆S), then we
have

Ai • ∆X = bi − Ai • X, for i = 1, . . . , m,(12-a)
m

∑

i=1

∆yiAi + ∆S = C − S −
m

∑

i=1

yiAi,(12-b)

∆XS + X∆S = σµI − (XS + ∆X∆S).(12-c)

The linearization of (12-c) gives:

∆X S + X ∆S = σµI − XS.(12-d)
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A key requirement for interior-point methods for semidefinite programming is to gen-
erate symmetric ∆X and ∆S matrices. By virtue of the equation (12-b), any ∆S that
satisfies the above system has to be symmetric. However, this is not true in general
for ∆X . Even when the system (12-a), (12-b), and (12-d) is feasible, there may not
be any solutions with symmetric ∆X (see [10] for an example). Different recipes have
been suggested to symmetrize equations (12-c) and (12-d). We follow Y. Zhang’s
approach [23], that unifies these symmetrizations by viewing them as parametrized
transformations of (12-c) and (12-d).

In [23], Zhang defines the following linear transformation for a given invertible
matrix P :

HP (M) :=
1

2

[

PMP−1 + P−T MT PT
]

,(12-e)

and observes that if P is invertible and M is similar to a (symmetric) positive definite
matrix, then

HP (M) = νI ⇔ M = νI.

This observation indicates that the last equation in (11) can be replaced by

HP (XS) = νI(12-f)

without affecting the definition of the central path, since XS is similar to the positive
definite matrix S1/2XS1/2. Using this characterization of the central path, (12-c) and
(12-d) are replaced by

HP (∆X S + X ∆S) = σµI − HP (XS + ∆X∆S)(12-c′)

and

HP (∆X S + X ∆S) = σµI − HP (XS).(12-d′)

The resulting system (12-a), (12-b), and (12-d′) can be viewed as defined by a linear
transformation from IR

m × SIR
n×n × SIR

n×n to itself, and thus under suitable con-
ditions will produce a unique solution (∆y, ∆X, ∆S) with symmetric ∆X and ∆S.
Therefore, we will restrict ∆X to be symmetric in the rest of our discussion. Note
that the equation (12-d′) can then be written in full detail as

P (∆X S + X ∆S)P−1 +

P−T (S ∆X + ∆S X)P T = 2σµI − PXSP−1 − P−T SXP T .(13)

Alizadeh, Haeberly, and Overton’s linearization [3] corresponds to P = I, and Mon-
teiro’s two linearizations to P = X−1/2 and P = S1/2 [14]. In fact, the second of
Monteiro’s linearizations gives the same direction as that introduced by Helmberg,
Rendl, Vanderbei, and Wolkowicz [7], and both are included in a class developed by
Kojima, Shindoh, and Hara [10]; see also Lin and Saigal [11]. However, the motiva-
tion of [7, 10] is very different, and to view all these directions in a unified way, we
follow Monteiro’s approach. We denote these the AHO direction and the H..K..M
directions. In Subsection 3.4, we shall see that the NT direction also results from
such a linearization for a suitable P .
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3.2. Symmetrized Kronecker product notation. To compute the Newton
step (∆X, ∆y, ∆S), it is easier to express the linear systems of equations (12-a), (12-
b) and (12-d′) in the standard matrix-vector form by using symmetrized Kronecker
products. First we define an operator taking symmetric matrices into vectors: if U is
an n × n symmetric matrix, svec(U) is defined by

svec(U) := (u11,
√

2u21, . . . ,
√

2un1, u22,
√

2u32, . . . ,
√

2un2, . . . , unn)T .(14)

The factor
√

2 is introduced so that svec is an isometry between SIR
n×n and IR

n(n+1)/2

with their respective standard inner products. We denote the inverse map of svec by
smat.

The symmetrized Kronecker product of any two n × n matrices G and K (not
necessarily symmetric) is a square matrix of order n(n + 1)/2; its action on a vector
u := svec(U), where U ∈ SIR

n×n, is given by

(G ⊗s K) svec(U) :=
1

2
svec(KUGT + GUKT ).(15)

The operator svec and the symmetrized Kronecker product were first used by Al-
izadeh et al. [3], but with the latter restricted to the case where G and K were
both symmetric. We refer the reader to the appendix for some properties of the sym-
metrized Kronecker product, as well as corresponding properties for, and relations to,
the standard Kronecker product.

Using (14) and (15), we now can write the system (12-a), (12-b) and (12-d′) in a
3 × 3 block equation





0 A 0
AT 0 I
0 E F









∆y
svec(∆X)
svec(∆S)



 =





rp

svec(Rd)
svec(Rc)



 ,(16)

where I is the identity matrix of order n(n + 1)/2,

E := P ⊗s P−T S, F := PX ⊗s P−T ,(17)

rp := b −A svec(X), Rd := C − S −
m

∑

i=1

yiAi, Rc := σµI − HP (XS).(18)

Here, A is a matrix of dimension m × n(n + 1)/2 defined by

AT := [svec(A1) · · · svec(Am)] .(19)

The assumption that the {Ai} are linearly independent implies that A has full row
rank.

3.3. Uniqueness of symmetric search directions. For the rest of our pre-
sentation it is essential to understand the conditions under which the system (16) has
a unique solution with symmetric ∆X and ∆S. In their recent paper [19], Shida,
Shindoh, and Kojima established the existence and uniqueness of the solutions of
(16) for some choices of the matrix P , as well as some other systems that may not
be expressible in the form (16). They show that when P = X−1/2, the system (16)
always has a unique solution as long as X ≻ 0 and S ≻ 0, but that this is not true
for P = I: in this case the additional the condition that XS + SX � 0 is derived
as a sufficient condition for (16) to have a unique solution. This last condition turns
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out to be sufficient but not necessary. Before generalizing their result to arbitrary
invertible matrices P , we observe that the matrices E and F are nonsingular when X
and S are positive definite. Indeed,

E = P ⊗s P−T S = (I ⊗s P−T S P−1) (P ⊗s P ),(20)

and

F = PX ⊗s P−T = (P X P T ⊗s I) (P−T ⊗s P−T ),(21)

where the equalities follow from the properties of the symmetrized Kronecker product
listed in the appendix. Now, E and F are nonsingular since both factors in (20) and
(21) are nonsingular (see the appendix).

Theorem 3.1. Suppose X and S are positive definite. Then the system of
equations (16) has a unique solution (∆y, ∆X, ∆S) ∈ IR

m × SIR
n×n × SIR

n×n if
E−1F is positive definite (not necessarily symmetric). In particular, this condition
holds when X, S, and HP (XS) are positive semidefinite.

Proof. For this proof, positive definiteness does not imply symmetry; if matrices
are symmetric, we will explicitly say so.

It suffices to show that the 3 × 3 block system (with a square matrix)





0 A 0
AT 0 I
0 E F









∆y
svec(∆X)
svec(∆S)



 = 0(22)

only has the trivial solution.
Since E is invertible by (20), we can use block Gaussian elimination to reduce

(22) to a Schur complement equation:

(AE−1FAT )∆y = 0.(23)

Since E−1F is assumed to be positive definite and A has full row rank, this implies
that AE−1FAT is positive definite and thus ∆y = 0 is the only solution to (23).

Now the second block equation in (22) gives ∆S = −smat(AT ∆y) = 0, and the
third block equation gives ∆X = −E−1F ∆S = 0. This shows that the solution to
(16) exists and is unique.

To show that the condition HP (XS) is positive semidefinite implies that E−1F is
positive definite, consider an arbitrary n(n + 1)/2-dimensional nonzero vector g. We
shall prove that gT E−1Fg > 0. Let k := E−T g and K := smat(k), so that k is also
nonzero. We have

gT E−1Fg = kT FET k = kT (PX ⊗s P−T )(P T ⊗s SP−1) k

=
1

2
kT (PXP T ⊗s P−T SP−1) k +

1

2
kT (PXSP−1 ⊗s I) k

>
1

2
kT (PXSP−1 ⊗s I) k

=
1

4
(svecK)T svec(PXSP−1K + KP−T SXP T )

=
1

4
Tr

[

K(PXSP−1 + P−T SXP T )K
]

=
1

2
Tr [K HP (XS)K] ≥ 0.
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The strict inequality above holds because PXP T ⊗s P−T SP−1 is positive definite, a
consequence of the fact that PXP T and P−T SP−1 are symmetric positive definite
(see the appendix). The last inequality follows from the assumption that HP (XS) is
positive semidefinite. This completes the proof.

We note that, if P = X−1/2 or, more generally, P = (X1/2SX1/2)αX−1/2 for some
α, then HP (XS) = X1/2SX1/2, which is positive definite whenever X and S are
positive definite. Similarly, when P = S1/2, or P = (S1/2XS1/2)αS1/2, we have
HP (XS) = S1/2XS1/2, which again is positive definite whenever X and S are. When
P = I, the sufficient condition given in Theorem 3.1 (i.e. that HP (XS) is positive
semidefinite) coincides with the condition in [19]. So, as in [19], we see that the
system (16) always has a unique solution with symmetric ∆X and ∆S for Monteiro’s
choices of P . This also holds for Alizadeh et al.’s choice of P if XS + SX is positive
semidefinite, but there are examples where the coefficient matrix in (16) is singular.
One such example is given by

A = [−1 2 0], X =

[

1
√

2√
2 3

]

, S =

[

1 0
0 11

]

.

Indeed, in this case the Schur complement matrix in (23) is the 1 × 1 zero matrix.
The following theorem describes a class of matrices P that satisfy the sufficient

condition of Theorem 3.1.
Theorem 3.2. Suppose X and S are positive definite matrices and P is an in-

vertible matrix. Let E and F be as defined in (17). Then the following are equivalent:
(a) PXP T and P−T SP−1 commute;
(b) PXSP−1 is symmetric;
(c) FET is symmetric; and
(d) E−1F is symmetric.

Condition (a) implies that HP (XS) is positive definite. Consequently, any of the
conditions above imply that E−1F and FET are both positive definite.

Proof. The equivalence of (a) and (b) is immediate: PXP T and P−T SP−1

commute if and only if

PXSP−1 = (PXP T )(P−T SP−1) = (P−T SP−1)(PXP T ) = P−T SXP T .(24)

On the other hand,

FET = (PX ⊗s P−T )(P T ⊗s SP−1) =
1

2
(PXP T ⊗s P−T SP−1 + PXSP−1 ⊗s I).

The first term in the last equality above is symmetric, since PXP T and P−T SP−1

are. Therefore FET is symmetric if and only if the second term is. But this holds if
and only if PXSP−1 is symmetric. This shows the equivalence of (b) and (c). Finally,
the equivalence of (c) and (d) is obvious: E−1F = E−1(FET )E−T is symmetric if
and only if FET is.

Now suppose (a) holds (thus (b) holds). Then

HP (XS) = PXSP−1 = (PXP T )(P−T SP−1),

which is the product of two commuting positive definite matrices. This implies that
HP (XS) is positive definite. Consequently, by Theorem 3.1, E−1F and hence FET

are positive definite.
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Primal-dual Scale Directions
Direction symmetry invariance uniquely defined

AHO (P = I) [3] yes no no

H..K..M (P = X−1/2 or S1/2) [7, 10, 14] no yes yes

NT (P = W−1/2) [17, 18] yes yes yes

Table 1

Properties of the AHO, H..K..M, and NT directions

The first of the equivalent conditions of Theorem 3.2 holds for the two Monteiro
choices for P (one of the two matrices is the identity), and also for P = W−1/2 (the
two matrices are equal from (8)); we will see much more of this choice in the rest of
the paper.

Of the two H..K..M directions and the AHO direction, only the latter is primal-
dual symmetric. Turning now to scale invariance, we see that the AHO direction is
not scale-invariant; XS transforms to U−1XSU while SX transforms to UT SXU−T ,
and similarly for products involving directions.

To see that the other two directions are scale-invariant, we note first that the
solution to (16) corresponding to P is the same as that corresponding to QP for any
orthogonal Q; indeed, the direction depends only on P T P , as is easily seen by pre-
and post-multiplying (13) by P T and P−T respectively. Next we use the following
result:

Lemma 3.3. Suppose B = CCT is positive definite. Then Q := C−1B1/2 is
orthogonal.

Proof. We see that QQT = C−1BC−T = C−1CCT C−T = I.

Theorem 3.4. Suppose P is defined from X and S in such a way that, if X and
S are transformed into X̄ := U−1XU−T and S̄ := UT SU , then P is transformed into
P̄ with P̄T P̄ = UT PT PU . Suppose also that HP (XS) is positive definite. Then the
direction that solves (16) is scale-invariant. In particular this is true for the directions
defined by P = X−1/2, P = S1/2, and P = W−1/2.

Proof. By letting B := P̄T P̄ = UT PT PU and applying the lemma twice, we find
that P̄ = QPU for some orthogonal Q. It is also easy to see that HP̄ (X̄S̄) is positive
definite too, so that the original and the scaled system both have unique solutions by
Theorem 3.1. From our remarks above, the resulting search direction in the scaled
problem is the same as if we used P̄ = PU ; but it is easy to check that the scaled
direction (∆X, ∆y, ∆S) := (U−1∆XU−T , ∆y, UT ∆SU) satisfies the resulting system
(16). As noted above the three choices of P given satisfy condition (a) of Theorem
3.2, and therefore the condition that HP (XS) is positive definite.

This theorem implies that the two H..K..M directions as well as the direction corre-
sponding to P = W−1/2 are scale-invariant. In the next subsection we will show that
this last direction is actually the Nesterov-Todd direction. Table 1 summarizes the
symmetry properties of the aforementioned directions.

3.4. The Nesterov-Todd direction as a Newton direction. In this subsec-
tion, we show that the system (3) defining the NT direction is actually equivalent to
(16) for some choices of P . These systems are not quite comparable: (16) allows for
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infeasible iterates, while (3) assumes that feasibility is maintained. Let us denote by
(3’) the system (3) where the two zeroes on the right-hand side are replaced by rp and
Rd respectively. We note that, independently of our work, Sturm and S. Zhang [20]
recently derived the Nesterov-Todd direction as a Newton direction for path-following
algorithms using the symmetric transformation given in (8).

We first note that if an invertible matrix P satisfies P T P = W−1, then

PT PXSP−1P−T = W−1XSW = SW SW = SWW−1X = SX.(25)

Above we used the fact that

W−1X = SW,(26)

which follows from (6). Now, (25) indicates that

PXSP−1 = P−T SXP T .

Hence, using Theorem 3.2, we conclude that HP (XS) is positive definite.
There are several matrices P that satisfy P T P = W−1, for example P = W−1/2

and P = (X1/2SX1/2)1/4X−1/2. We will give another useful choice in the next
subsection. We are now ready to show that the NT direction is a Newton direction.

Theorem 3.5. Let P be an invertible matrix such that P T P = W−1. Then the
solutions to (16) and (3’) are identical.

Proof. It suffices to show the equivalence of (13) and the last equation in (3). We
observe that (13) can be rewritten as

W−1(X ∆S + ∆X S)W + ∆S X + S ∆X = 2σµI − 2SX(27)

by premultiplying it with P T , postmultiplying it with P−T , and using P T P = W−1.
On the other hand, the last equation of (3) is equivalent to each of the following two
equations:

W−1 ∆X W−1 X + ∆S X = σµI − SX,(28)

S ∆X + S W ∆S W = σµS W X−1 W − S W S W.(29)

For the first equality above, we postmultiplied the last equation of (3) by X , and for
the second, we premultiplied it with SW , and postmultiplied it with W . Now adding
up these two equations, and using (26) as well as its equivalent variants SWX−1W =
I, WSW = X , we get (27). This proves that the solution to (3’) will also satisfy (16).
However, (16) has a unique solution as indicated by the remarks above and Theorem
3.1, and therefore these two systems are equivalent.

4. Implementation. This section describes in detail how to perform the neces-
sary computations at each iteration, and how to define and compute a second-order
corrector modification (based on Mehrotra’s corrector for LP [12]) of the Nesterov-
Todd direction.

4.1. Computation of W . The main purpose here is to show that W can be
computed using two Cholesky factorizations and one singular value decomposition
(SVD).

Let the Cholesky factorizations of the positive definite matrices X and S be

X = LLT , S = RRT ,(30)
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and let UDV T = RT L be the SVD of RT L. Define Q := L−1X1/2. By Lemma 3.3,
Q is an orthogonal matrix. It is easily seen that

X1/2SX1/2 = QT (LT R) (RT L)Q = (QT V )D2 (V T Q).

Note that V D2V T is the eigenvalue decomposition of LT RRT L = LT SL, so we could
use this instead of the SVD. But the condition number of this matrix is the square of
that of RT L, so this may lead to a less stable algorithm. Since QT V is orthogonal,
we have

(X1/2SX1/2)−1/2 = (QT V )D−1(V T Q).(31)

From (31), W can be computed easily:

W = LV D−1V T LT = GGT ,(32)

where

G := LV D−1/2.(33)

We will use the matrix G in the computation of the direction (∆X, ∆y, ∆S). If we wish
to use the second-order corrector modification, we will also need G−1 = D1/2V T L−1,
but this is easy to compute. For later use, note the following equation:

GT SG = G−1XG−T = D,(34)

i.e., G scales X and S to the same diagonal matrix, cf. (8).
We remark that G−T G−1 = W−1 from (32), so that P := G−1 satisfies P T P =

W−1 and hence is yet another choice for P that yields the NT direction. In this case,
not only do P−T SP−1 and PXP T commute (see Theorem 3.2), they are actually the
same diagonal matrix.

Note that, if we use the “reverse” Cholesky factorization of S, so that L is lower
but R upper triangular in (30), then we save work in computing the lower triangular
matrix RT L. Also, we do not need to keep the orthogonal matrix U ; V and D are all
we need.

4.2. Computation of the NT direction. Using Theorem 3.5 and the choice
P = G−1, we can obtain the NT direction as the solution to





0 A 0
AT 0 I
0 E F









∆y
svec(∆X)
svec(∆S)



 =





rp

svec(Rd)
svec(Rc)



 ,(35)

where

E = G−1 ⊗s GT S, F = G−1X ⊗s GT ,

rp := b −A svec(X), Rd := C − S −
m

∑

i=1

yiAi, Rc := σµI − D2.

(We used HG−1(XS) = (G−1XSG + GT SXG−T )/2 = D2 from (34).) Here, A is the
matrix defined by (19).
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The system (35) involves m + n(n + 1) linear equations. A standard method to
solve this large system efficiently is to use block Gaussian elimination to reduce it to
a Schur complement equation involving only ∆y:

(AE−1FAT )∆y = rp + AE−1F svec(Rd) − AE−1 svec(Rc).(36)

In our case, E−1 is not easy to obtain, but we only need E−1F and E−1 svec(Rc).
It is easy to check directly, by premultiplying by E, that

E−1F = W ⊗s W,E−1 svec(Rc) = svec(σµS−1 − X).(37)

So E−1F is symmetric and positive definite, and it can be factorized as E−1F = KKT ,
where K = G ⊗s G, obtained from the identity W ⊗s W = (G ⊗s G)(G ⊗s G)T . We
will call such a factorization of E−1F a Cholesky-like factorization since the factors
are transposes of one another, although they may not be triangular.

Using the Cholesky-like factorization of E−1F , we have

AE−1FAT = B BT ,

and the equation (36) can be rewritten as

B BT ∆y = rp + B h,(38)

where

BT := KTAT =
[

svec(GT A1G) · · · svec(GT AmG)
]

(39)

and

h = KT svec(Rd) − K−1 E−1 svec(Rc),

= svec(GT RdG − σµD−1 + D).(40)

For the last expression, we used (37) and (34) to obtain

K−1E−1 svec(Rc) = (G−1 ⊗s G−1) svec(σµS−1 − X) = svec(σµD−1 − D).

Note that the equation (38) actually consists of the normal equations of a linear least-
squares problem. To see this, choose a matrix Xr ∈ SIR

n×n such that A svec(Xr) = rp

(such a matrix exists because A has full row rank). By using rp = BK−1svec(Xr),
we can rewrite (38) as

BBT∆y = B (K−1 svec(Xr) + h),

the normal equations of the following least-squares problem:

min
∆y

‖BT ∆y − K−1 svec(Xr) − h‖.

There are two ways to compute ∆y. One is to compute ∆y from the Schur
complement equation (36) via a Cholesky factorization of AE−1FAT . The other
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is to compute ∆y from (38) via a QR factorization of BT [5]. In exact arithmetic,
these two methods are the same. But in finite precision arithmetic, they may have
different numerical stability. Let κ be the condition number of AE−1FAT . It is well
known from linear perturbation theory that solving (36) via a Cholesky factorization of
AE−1FAT produces a computed ∆y whose relative error is dependent on κ; whereas
solving (38) via a QR factorization of BT produces a computed ∆y whose relative
error is dependent on a number that is between

√
κ and κ. Thus, solving (38) via the

QR approach is conveivably better than using the Schur complement approach. In
our experiments later, we consider both approaches.

Assuming that the step ∆y has been computed from (38) via either QR or
Cholesky factorization, we can compute ∆S simply from the second block equation
of (35), namely,

∆S = Rd − smat(AT ∆y).(41)

and ∆X from the third block equation in (35):

∆X = smat[E−1 svec(Rc) − E−1F svec(∆S)].(42)

We have shown that ∆y in the NT direction can be computed via a QR fac-
torization of BT . The same can be done for the H..K..M direction corresponding to
P = S1/2, where now E−1F = X ⊗s S−1. To show this, as before, the main task is
getting a Cholesky-like factorization of E−1F . By using (34), we have

E−1F = X ⊗s S−1 = GDGT ⊗s GD−1GT

= (G ⊗s G) (D ⊗s D−1) (GT ⊗s GT ).(43)

The middle term D ⊗s D−1 in (43) is a diagonal matrix with positive entries of the
form (did

−1
j + djd

−1
i )/2, where the di’s are the diagonal entries of the matrix D.

So the square root of D ⊗s D−1, say M , exists and can be computed trivially. It is
now easy to see that we have the Cholesky-like factorization E−1F = KKT , where
K := (G ⊗s G)M . Y. Zhang [24] also observed the same Cholesky-like factorization
of E−1F for the H..K..M direction, and Kojima [9] noted this for the linear sys-
tem involving Kronecker (rather than symmetric Kronecker) products where ∆X is
explicitly symmetrized afterwards.

In fact, the QR approach can be applied almost as easily to the direction that
solves (16) whenever E−1F is symmetric. This is because E−1F can be expressed in
the form

E−1F = (P−1Q ⊗s P−1Q) D̃ (P−1Q ⊗s P−1Q)T ,

where D̃ is a positive definite diagonal matrix and Q is an orthogonal matrix whose
columns form an orthonormal basis that simultaneously diagonalizes PXP T and
P−T SP−1. Note that such a basis exists because by Theorem 3.2, the latter two
matrices commute if E−1F is symmetric. (If P = G−1, so that we have the NT
direction, then Q and D̃ are identity matrices.)

Finally, we note that ∆y in the AHO direction cannot be computed via the QR
approach because the corresponding matrix E−1F is not symmetric.

4.3. A second-order correction to the NT direction. To derive a second-
order correction to the NT direction, we suppose that we have approximations δX
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and δS to the search directions, and substitute them on the right-hand side of (12-c′).
Then, we get

E svec(∆X) + F svec(∆S) = svec(Rs),

where E = P ⊗s P−T S, F = PX ⊗s P−T and

Rs = σµI − HP (XS + δX δS)

(subscript s for second-order). Then

Rs = Rc + Rq,

where Rq is the “quadratic correction” −HP (δX δS). It is easily seen that ∆X and
∆S depend on P only through the product P T P . For the NT direction we can
therefore again choose P = G−1.

If we then proceed exactly as in the previous subsection, we see that we only
have to replace E−1svec(Rc) by E−1svec(Rs) in (40) and (42). Thus in the second
expression for h in (40), −σµD−1 + D must be replaced by −σµD−1 + D − RNT ,
where the correction RNT for the NT direction is given by

svec(RNT ) := K−1E−1 svec[−HG−1(δXδS)].

Thus RNT is the solution to EK svec(RNT ) = svec[−HG−1(δXδS)]. But K = G⊗sG
and E = G−1 ⊗s GT S, so this simplifies to the Lyapunov equation

(GT SG)RNT + RNT (GT SG) = −G−1(δX δS)G − GT (δS δX)G−T .

But by (34), GT SG is the diagonal matrix D, and we can therefore write down the
solution explicitly:

RNT = − (G−1(δ XδS)G + GT (δS δX)G−T )./(deT + edT ),(44)

where “./” means entrywise division, d := diag(D), and e := (1, . . . , 1)T . If we wished
to use the Schur complement equation (36), the term E−1svec(Rc) on the right-hand
side would be replaced by

E−1svec(Rs) = svec(σµS−1 − X) + (G ⊗s G)svec(RNT ).(45)

We also make this replacement in (42).

Note that the derivation of a second-order correction for the NT direction was
possible only after the observation that the NT direction can be viewed as a Newton
direction (cf. Section 3.4); neither the original description (3) of the NT direction
in [17, 18], nor the derivation by Sturm and S. Zhang [20] directly lead to a such a
correction.

4.4. A Mehrotra predictor-corrector algorithm based on the NT di-
rection. The results derived in the previous subsections are the pieces involved in
various steps of a Mehrotra-type predictor-corrector algorithm. Now we are ready to
describe such a method based on the NT direction.
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Algorithm NT-PC-QR. Suppose given an initial iterate (X0, y0, S0) with X0, S0 positive
definite. Choose τ ∈ (0, 1) and expon ∈ {1, 2, 3}.
For k = 0, 1, . . . ,

let the current and the next iterate be (X, y, S) and (X+, y+, S+) respectively. Let µ :=
X • S/n.

• (Predictor step)
Compute the Newton step (δX, δy, δS) from (38), (41) and (42), with σ := 0 in (40).

• Determine the parameter σ:

σ :=

[

(X + αδX) • (S + βδS)

X • S

]expon

.(46)

Here

α := min

(

1,
−τ

λmin(X−1δX)

)

, β := min

(

1,
−τ

λmin(S−1δS)

)

(47)

are step lengths chosen to ensure that X + αδX and S + βδS are positive definite (if
the minimum eigenvalue in either expression is positive, we ignore the corresponding
term).

• (Corrector step)
With σ and µ determined as above, compute the Newton step (∆X, ∆y, ∆S) from
(38), (41) and (42) with the matrix −σµD−1 + D in (40) replaced by the matrix
−σµD−1 + D−RNT , and the vector E−1svec(Rc) in (42) replaced by E−1svec(Rs)
in (45), where RNT is given by (44).

• Update (X, y, S) to (X+, y+, S+) by

X+ = X + α ∆X, y+ = y + β ∆y, S+ = S + β ∆S,

where α and β are determined from (47) with δX , δS replaced by ∆X , ∆S, so that
X+ and S+ are positive definite.

Remarks.
• In LP, the step-length parameter τ is fixed at a value very close to one, typi-

cally .99995. This choice seems to be too aggressive for Algorithm NT-PC-QR
and experiments have shown that τ = 0.98 is usually a good parameter value.
In our experiments, we also allow the step-length parameter τ to be chosen
adaptively based on the step-lengths taken in the previous iteration, i.e., by
setting

τ (k+1) = 0.9 + 0.09 min(α(k), β(k)),(48)

where α(k) and β(k) are the primal and dual step-lengths in the kth corrector
step respectively.

• In our experiments with Algorithm NT-PC-QR, the parameter expon used
for choosing σ in (46) is chosen to be one. This is more conservative than
using an exponent of three as in LP.

• When solving (38) in the predictor step by Householder QR factorization,
the Householder vectors are saved for later use in the corrector step, as is
normally done for the LU factorization of the Schur complement matrix. In
this way, the corrector step can be computed with just O(mn2) flops.
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• In computing α in (47), it is cheaper to compute the minimum eigenvalue of
the symmetric matrix L−1δXL−T , where X = LLT is the Cholesky factoriza-
tion of X . This matrix has the same spectrum as that of the nonsymmetric
matrix X−1δX . We do the same when computing β.

• Actually, it is more efficient to do most of the computations with “G”-scaled
quantities. At the beginning of the iteration, we compute G and hence B and
R̄d := GT RdG. Hence we calculate h from (40) and thus δy from (38). We
then obtain

δS := GT δS G = R̄d − smat(BT δy)

and

δX := G−1 δX G−T = smat(K−1E−1svec(Rc)) − δS

= σµD−1 − D − R̄d + smat(BT δy).

Next we compute α and β from (47), but using λmin(D−1/2 δX D−1/2) and
similarly for S; note that in transformed space we want D + α δX ≻ 0, since
X and S both transform to X̄ = S̄ = D. Then we obtain σ from (46),
but using barred quantities. For the corrector step, −σµD−1 + D in (40) is
replaced by

−σµD−1 + D + (δX δS + δS δX)./(deT + edT ).

Then proceed as above to obtain ∆y, ∆X , and ∆S. Calculate new step
lengths α and β. Finally we set

X+ = G(D + α ∆X)GT , y+ = y + β ∆y, S+ = S + β ∆S,

where ∆S is computed from (41) to maintain dual feasibility.
• The stopping criterion we use in our algorithm is as follows: we stop the

iteration if σ > 1. This usually happens when the duality gap is in the range
of the achievable accuracy of the algorithm. However, we note that more
precise stopping criteria need to be devised. We also stop the iteration if the
step lengths α and β in the corrector step are smaller than 10−6.

• Assuming that the Householder vectors are saved when solving (38) in the
predictor step, the complexity of each iteration of this algorithm is 3mn3 +
1
2m2n2 + O(n3 + mn2) floating point operations.

5. Numerical experiments. Our purpose here is to compare Algorithm NT-
PC-QR with methods using the same algorithmic framework, but computing the
directions from the Schur complement equation (36) via a Cholesky or an LU fac-
torization of AE−1FAT . In the latter methods, we consider three different search
directions (we only consider one of the H..K..M directions, the one that coincides
with the direction of Helmberg, Rendl, Vanderbei, and Wolkowicz [7] and the one
that is easier to compute — see Y. Zhang [23]):

1. AHO direction (P = I);

2. H..K..M direction (P = S
1

2 );
3. NT direction (P = G−1).

These three algorithms will be referred to as Algorithm AHO-PC-Sch, H..K..M-PC-
Sch and NT-PC-Sch, respectively.
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Our code is based on one of Alizadeh, Haeberly, and Overton for feasible iterates;
we are grateful to them for making it available to us. We also mention here that they
have had success with the larger step-length parameter value of 0.999.

We have already discussed how (∆X, ∆y, ∆S) is computed for Algorithm NT-
PC-QR. Now we briefly describe how it is computed for the other three methods. For
simplicity, we only discuss the predictor step. The step δy is first computed from the
Schur complement equation (36) via a Cholesky or LU factorization of the m × m
Schur complement matrix AE−1FAT , according to whether the matrix is known to
be symmetric positive definite or not. Once δy is obtained, δS is computed from
(41) and δX from (42). It is clear that the main work involved in these methods
is the computation of the coefficient matrix and the right-hand side vector of the
Schur complement equation. In Table 5, we summarize some of the formulae that are
needed in this computation. The complexity of each iteration of these methods is also
included, ignoring lower order terms like O(n3 + mn2).

directions AHO (P = I) H..K..M (P = S
1

2 ) NT (P = G−1)

E I ⊗s S S
1

2 ⊗s S
1

2 G−1
⊗s GT S

F X ⊗s I S
1

2 X ⊗s S− 1

2 G−1X ⊗s GT

E−1F (I ⊗s S)−1(X ⊗s I) X ⊗s S−1 W ⊗s W

Rc σµI − (XS + SX)/2 σµI − S
1

2 XS
1

2 σµI − D2

Rq −(δX δS + δS δX)/2 −H
S

1

2

(δX δS) see (45)

complexity 8mn3 + m2n2 4mn3 + 0.5m2n2 3mn3 + 0.5m2n2

Table 2

Summary of the formulae involved in the computation of the coefficient matrix and the right-hand side
of the Schur complement equation for the AHO, H..K..M, and NT directions. We count one addition and
one multiplication each as one flop.

For all the problems below, the starting points are feasible and so feasibility is
maintained throughout in exact arithmetic. Our formulae for ∆S guarantee that
dual feasibility is preserved to high accuracy, but the same is not true for primal
feasibility. Hence we adjust svec(∆X) (before updating to X+) in each iteration to
regain feasibility by projection onto the null space of A, i.e, replacing svec(∆X) by
[I −AT (AAT )−1A]svec(∆X). This step is inexpensive. To compute the projection,
we only need to compute the Cholesky factorization of the m×m matrix AAT once at
the beginning of the algorithm. (We use the Cholesky factorization here instead of a
QR factorization to avoid using the smat and svec operations, which are expensive in
Matlab, in the Schur complement methods; for Algorithm NT-PC-QR an alternative
would be to use the QR factorization of KTAT obtained in the first iteration to do
the primal feasibility correction in all iterations.)

We compare the performance of Algorithm NT-PC-QR and the three methods
just mentioned on the following classes of semidefinite programming problems.

(1) Random SDP. The starting point does not necessarily lie on the central path.
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(2) Norm minimization problem:

min
x∈IRm

‖A0 +

m
∑

k=1

xkAk‖,(49)

where the Ak, k = 0, . . . , m, are real N × N matrices and the norm is the matrix
2-norm. It is well known that this problem can be expressed as an SDP involving
m + 2 symmetric matrices of dimension n × n, where n = 2N [22]. For this problem,
a feasible starting point is readily available, and we choose (X0, y0, S0) to be feasible,
but not necessarily lying on the central path.

(3) Chebyshev approximation problem for a matrix:

min
p

‖p(A)‖,(50)

where the minimization is over the class of monic polynomials of degree m and the
norm is the matrix 2-norm. Here A is a real N ×N matrix. The Chebyshev problem
(50) is a special case of the norm minimization problem and thus can be expressed as
an SDP.

We should note that since the power basis {I, A, . . . , Am} is highly ill-conditioned
in general, it should be replaced by a better conditioned alternative for numerical
stability. In our actual computation, we use the orthonormal basis {Q1, . . . , Qm+1},
with respect to the inner product G•K, obtained from the power basis via a modified
Gram-Schmidt procedure. For details on how this change of basis transforms the
original problem, see [21]. Again, we choose a feasible starting point for this problem.

(4) Max-Cut problem:

min L • X

s.t. diag(X) = e/4, X � 0,(51)

where L = A − Diag(Ae), e is the vector of all ones and A is the weighted adjacency
matrix of a graph [7]. In our experiments, we only consider unweighted graphs where
each edge is present independently with probability one half. We choose the following
feasible starting point, where abs(L) denotes the matrix of absolute values of the
entries of L:

X0 = diag(e/4), y0 = −1.1 abs(L) e, S0 = L − diag(y0).

(5) ETP (Educational testing problem):

max eT d

s.t. A − Diag(d) � 0, d ≥ 0,(52)

where A is an N ×N positive definite matrix. This problem can readily be expressed
as an SDP of the form (2), involving symmetric matrices of dimension n × n, where
n = 2N . Again, a feasible starting point is chosen for this problem.

In our experiments, all the computations were performed in Matlab [13]. For
each class of the SDPs mentioned above, we solved ten instances with random data.
That is, the given matrices are random, with entries chosen from the normal distri-
bution with zero mean and unit variance. For the ETP problem, A is the matrix
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product of such a random matrix and its transpose so that the resulting matrix is
symmetric positive definite.

For each set of 10 instances, we compare the algorithms using the adaptive step-
length strategy given in (48) and also using a fixed step-length parameter with τ =
0.98. The parameter expon used in our experiments is as follows:

expon =







3 for the AHO method,
1 for the H..K..M method,
1 for the NT methods.

For each class, we plot the convergence curves of the duality gap of one of the
instances. The plots are shown in Figures 1–5. The dashed curve corresponds to
the AHO direction, the dotted curve corresponds to the H..K..M direction, and the
solid curves correspond to the NT direction. For the most part, the two solid curves
coincide with one another, indicating that the performances of Algorithm NT-PC-QR
and NT-PC-Sch are about the same on most problems. This also shows that for the
NT direction, solving the Schur complement equation by Cholesky factorization is
as good as solving by QR factorization. Since the behavior of these two algorithms
depends mainly on the properties of the NT direction rather than on how the direction
is computed, we will not distinguish them in the subsequent discussion, but refer to
them collectively as the NT methods.

In Tables 3 and 4, corresponding to the adaptive step-length parameter given in
(48) and the fixed step-length parameter of 0.98, respectively, we give the average
number of iterations and CPU time for each method to reduce the duality gap by a

factor of 1010. (Note that this is much better than a factor of ǫ
−1/2
mach, which informal

reasoning might suggest as the limit for methods based on the Schur complement
approach.) The times given exhibit mild fluctuations due to other jobs being present
on the machines being used, but the trends are clear.

A summary of our observations is given below.
1. For Algorithm AHO-PC-Sch, the achievable accuracy in the duality gap is

typically 10 to 100 times smaller than that obtained from methods based on
the H..K..M and NT directions. For the first four classes of SDPs we consider
here, the duality gap can usually reach a level smaller than 10−10 to 10−12 for
Algorithm AHO-PC-Sch. It is surprising that AHO-PC-Sch can achieve such
an accuracy in the duality gap despite the fact that the condition number of
the Schur complement matrix involved is of the order of the reciprocal of the
duality gap.

2. Besides being the most accurate, Algorithm AHO-PC-Sch is also the most
efficient (in terms of the number of iterations) on the sets of problems we
consider here, but the NT methods are almost as efficient, typically requiring
only 2 or 3 more iterations to achieve a given precision in the duality gap.
The H..K..M method is also almost as efficient as the AHO method, except
on the ETP problems.

3. However, each iteration of Algorithm AHO-PC-Sch is about twice as expen-
sive as each iteration of the H..K..M or the NT methods. Among the latter
three methods, each iteration of NT-PC-QR is slightly more expensive than
those of NT-PC-Sch (but not always), which in turn is slightly more ex-
pensive than those of H..K..M-PC-Sch. Consequently, overall the H..K..M
method takes the least average amount of CPU time to reduce the duality
gap by 1010, the NT methods follow closely, and the AHO method is the
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slowest.
4. Though the NT methods are not the best in achieving high accuracy, they may

be the most robust in the sense that problems of stagnation such as using very
small step lengths seem less likely to occur. We have not observed stagnation
problems with the NT methods in our numerical experiments, while the AHO
method occasionally stagnates on the Chebyshev approximation problems
for matrices, and the H..K..M method often encounters such difficulties on
the ETP problems. This difficulty does not seem to be due to the Schur
complement approach; using a QR implementation of the H..K..M method
yields similar results.

5. Using an adaptive step-length parameter choice can alleviate stagnation prob-
lems that are encountered from using a fixed step-length parameter. The im-
provement is especially noticable for the H..K..M method in solving the ETP
problems.

As we already mentioned in the introduction, the good performance of the meth-
ods that are based on the Schur complement approach was observed after the release
of the first version of this paper, in which NT-PC-QR had been observed to be su-
perior to the rest. We note that these improvements in the Schur-complement-based
methods come from careful implementations; for example, the code now symmetrizes
explicitly quantities that ought to be symmetric in exact arithmetic.
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Fig. 1. Convergence curves of the duality gaps of a random SDP problem for different methods. The
dashed curve corresponds to the AHO direction, the dotted curve corresponds to the H..K..M direction, and
the solid curves correspond to the NT direction.
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Fig. 2. Same as Figure 1 but for a norm-minimization problem.
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adaptive τ τ = 0.98
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Fig. 3. Same as Figure 1 but for a Chebyshev problem.
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Fig. 4. Same as Figure 1 but for a Max-Cut problem.
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adaptive τ τ = 0.98

0 5 10 15 20 25 30

10−8

10−6

10−4

10−2

100

102

104

0 5 10 15 20 25 30

10−8

10−6

10−4

10−2

100

102

104

Fig. 5. Same as Figure 1 but for an ETP problem. This class of SDP problems proves to be more
difficult for the H..K..M direction.
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adaptive τ
Average no. of iterations

to reduce the duality gap by 1010
Average CPU time (secs.)

to reduce the duality gap by 1010

examples AHO H..K..M NT NT(QR) AHO H..K..M NT NT(QR)

Random SDP
n = 100
m = 25

9.2 10.2 9.8 9.8 30.7 22.4 20.6 22.7

Norm
Minimization

n = 100
m = 25

9.0 11.0 11.2 11.2 90.8 59.8 67.1 71.5

Chebyshev
n = 100
m = 25

8.7 11.0 11.1 11.1 89.0 60.2 66.5 70.8

Max-Cut
n = 50
m = 50

9.3 11.0 11.0 11.0 22.7 13.9 14.0 20.1

ETP
n = 100
m = 50

13.4 20.2 15.8 15.8 70.8 45.3 38.7 44.2

Table 3

Computational results on different classes of SDPs. Ten instances with random data are considered for each class of the SDP. The computations
were done on a DEC AlphaStation 500 (300 MHz). An adaptive step-length parameter choice is used in the algorithms.



N
E

S
T

E
R

O
V

-T
O

D
D

D
IR

E
C

T
IO

N
IN

S
D

P
2
7

τ = 0.98
Average no. of iterations

to reduce the duality gap by 1010
Average CPU time (secs.)

to reduce the duality gap by 1010

examples AHO H..K..M NT NT(QR) AHO H..K..M NT NT(QR)

Random SDP
n = 100
m = 25

9.0 10.4 10.1 10.1 27.6 19.7 20.2 22.3

Norm
Minimization

n = 100
m = 25

9.3 11.0 11.5 11.4 90.4 58.2 66.1 72.9

Chebyshev
n = 100
m = 25

9.4∗ 13.0 11.4 11.5 90.3∗ 68.2 66.4 72.7

Max-Cut
n = 50
m = 50

9.4 11.1 11.1 11.1 22.3 13.2 14.0 19.3

ETP
n = 100
m = 50

13.7 25.5 17.2 17.1 65.7 57.1 41.6 51.0

Table 4

Same as Table 3 but for fixed step-length parameter with τ = 0.98.

* The AHO method fails on one of the instances due to step lengths going below 10−6. The number reported here does not
include this unsuccessful instance.
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Appendix. We present some useful properties of the standard and symmetrized
Kronecker products.

• Standard Kronecker product:
1. G ⊗ K = [gijK].
2. (G ⊗ K)vec(H) = vec(KHGT ) (where vec is defined below).
3. (G ⊗ K)T = GT ⊗ KT .
4. G ⊗ I is symmetric iff G is.
5. (G ⊗ K)−1 = G−1 ⊗ K−1.
6. (G ⊗ K)(H ⊗ L) = GH ⊗ KL.
7. If Λ(G) = {λi} and Λ(K) = {µj}, then Λ(G ⊗ K) = {λiµj}. If xi

and yj are the eigenvectors corresponding to the eigenvalues λi and µj

of G and K, then vec(yjx
T
i ) is the eigenvector corresponding to the

eigenvalue λiµj of G ⊗ K.
8. vec(G)T vec(K) = G • K.

• Symmetrized Kronecker product:
1. (G ⊗s K)svec(H) = 1

2svec(KHGT + GHKT ).
2. G ⊗s K = K ⊗s G.
3. (G ⊗s K)T = GT ⊗s KT .
4. G ⊗s I is symmetric iff G is.
5. (G ⊗s G)−1 = G−1 ⊗s G−1.
6. (G ⊗s K)(H ⊗s L) = 1

2 (GH ⊗s KL + GL ⊗s KH).
7. (G⊗sK)(H⊗sH) = (GH⊗sKH) and (H⊗sH)(G⊗sK) = (HG⊗sHK).
8. If Λ(G) = {λi}, then Λ(G⊗s G) = {λiλj}. If xi and xj are the eigenvec-

tors corresponding to the eigenvalues λi, λj of G, then svec( 1
2 (xix

T
j +

xjx
T
i )) is the eigenvector corresponding to the eigenvalue λiλj of G⊗sG.

9. Let G and K be commuting symmetric matrices with the common basis
of eigenvectors {xi} and corresponding eigenvalues λi and µi, respec-
tively. Then Λ(G⊗sK) = { 1

2 (λiµj +λjµi)}. Also, svec( 1
2 (xix

T
j +xjx

T
i ))

is an eigenvector corresponding to the eigenvalue 1
2 (λiµj+λjµi) of G⊗sK

[3].
10. svec(G)T svec(K) = G • K.
11. If G and K are symmetric and positive definite, then so is G ⊗s K.

The properties of the symmetrized Kronecker product can be verified by relating it to
the standard Kronecker product, and then using its properties. To this end, consider
the n(n + 1)/2 × n2 matrix U such that Uvec(H) = svec(H) and UT svec(H) =
vec(H) for all n × n symmetric matrices H . Here

vec(H) := (h11, h21, . . . , hn1, h12, . . . , hnn)T .

If we label the rows of U in the order (1, 1), (2, 1), . . . , (n, 1), (2, 2), (3, 2), . . . , (n, 2), (3, 3), . . .,
(n, n) and its columns in the order (1, 1), (2, 1), . . . , (n, 1), (1, 2), . . . , (n, 2), (1, 3), . . . , (n, n),
then

U(i,j),(k,l) =







1 if i = j = k = l,

1/
√

2 if i = k 6= j = l, or i = l 6= j = k,
0 otherwise.
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For example, for n = 3,

U =

















1 0 0 0 0 0 0 0 0

0 1/
√

2 0 1/
√

2 0 0 0 0 0

0 0 1/
√

2 0 0 0 1/
√

2 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 1/
√

2 0 1/
√

2 0
0 0 0 0 0 0 0 0 1

















.

Note that U UT = In(n+1)/2. Although UT U 6= In2 , we have that UT U vec(H) =
vec(H) for every n×n symmetric matrix H . In fact, UT U is the orthogonal projection
matrix onto the space of symmetric matrices.

With the matrix U , G⊗s K can be expressed in terms of the standard Kronecker
products of G and K as follows:

G ⊗s K =
1

2
U(G ⊗ K + K ⊗ G)UT .

Some properties of the symmetrized Kronecker product can also be derived di-
rectly from the definition (15), which is listed as Property 1 above. For example,
Property 6 holds because for any matrix M

(G ⊗s K)(H ⊗s L)svec(M) =
1

2
(G ⊗s K)svec(L M HT + H M LT )

=
1

4
svec(KL M HT GT + GH M LT KT

+KH M LT GT + GL M HT KT )

=
1

2
(GH ⊗s KL + GL ⊗s KH)svec(M).

Since M is arbitrary, the property follows.
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