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Abstract

With the Boltzmann-radiation-hydrodynamics code, which we have developed to solve numerically the Boltzmann
equations for neutrino transfer, the Newtonian hydrodynamics equations, and the Newtonian self-gravity
simultaneously and consistently, we simulate the collapse of a rotating core of the progenitor with a zero-age-
main-sequence mass of 11.2Me and a shellular rotation of -1 rad s 1 at the center. We pay particular attention in
this paper to the neutrino distribution in phase space, which is affected by the rotation. By solving the Boltzmann
equations directly, we can assess the rotation-induced distortion of the angular distribution in momentum space,
which gives rise to the rotational component of the neutrino flux. We compare the Eddington tensors calculated
both from the raw data and from the M1-closure approximation. We demonstrate that the Eddington tensor is
determined by complicated interplays of the fluid velocity and the neutrino interactions and that the M1-closure,
which assumes that the Eddington factor is determined by the flux factor, fails to fully capture this aspect,
especially in the vicinity of the shock. We find that the error in the Eddington factor reaches ∼20% in our
simulation. This is due not to the resolution but to the different dependence of the Eddington and flux factors on the
angular profile of the neutrino distribution function, and hence modification to the closure relation is needed.

Key words: methods: numerical – neutrinos – radiative transfer – shock waves – supernovae: general

1. Introduction

The explosion mechanism of core-collapse supernovae
(CCSNe) is one of the big issues in astrophysics (Janka 2012,
for a review.). The CCSNe are thought to be the explosive
death of massive stars and one of the missing pieces of stellar
evolution theory. The explosion mechanism is addressed only
by numerical simulations, since hydrodynamics is coupled with
several complicated physical processes like weak interactions
with neutrinos, strong interactions among an ensemble of
nuclei, general relativistic gravity, and so on. The CCSNe are
the birthplaces of neutron stars, whose merger is currently
supposed to be the most promising site for the production of
some of the r-process elements (Abbott et al. 2017; Tanaka
et al. 2017), one of the important unknowns in nucleosynthesis
theory. In order to understand the history of matter in the
universe in a coherent way, unveiling the explosion mechanism
of CCSNe is indispensable.

The leading hypothesis for the explosion mechanism is the
neutrino heating mechanism (Wilson 1985). In this mechanism,
the shock wave generated at the core bounce but that stalled
thereafter inside the core is re-energized by the absorption of
neutrinos emitted from the proto–neutron star (PNS) formed at
the center. While spherically symmetric simulations have
shown consistently the failure of this mechanism (Liebendörfer
et al. 2001; Sumiyoshi et al. 2005), multidimensional
simulations have emphasized the importance of fluid instabil-
ities such as convection and standing accretion shock instability
(SASI; Müller et al. 2012a). These instabilities eventually

develop turbulence, which helps the neutrino heating in several
ways (Yamasaki & Yamada 2006; Takiwaki et al. 2012;
Murphy et al. 2013). In addition, other physical processes, such
as the preexisting turbulence in the outer part of the progenitor
(Couch & Ott 2013, 2015; Couch et al. 2015; Müller & Janka
2015), and seemingly minor microphysics like the inelastic
scattering off nucleons, many-body corrections (Burrows et al.
2018), muonic effects (Bollig et al. 2017), and so on (Kotake
et al. 2018), have been considered by more recent supernova
modelers. The essential ingredient of the explosion mechanism
has not been fully understood, though.
In fact, despite a lot of effort devoted to these realistic

modelings, there are some puzzles remaining in numerical
simulations. First, the explosion energies obtained in the
simulations are commonly smaller, just ∼1/10 the typical
observed values (Marek & Janka 2009; Müller et al. 2012b;
Takiwaki et al. 2014; Lentz et al. 2015; Melson et al.
2015; Müller 2015; Summa et al. 2016; Burrows et al. 2018;
O’Connor & Couch 2018; Vartanyan et al. 2019). Longer
simulations exceeding several seconds may resolve this
problem (Bruenn et al. 2013, 2016), but it remains to be
demonstrated. Second, the results of simulations are sometimes
qualitatively different among groups. This may be partially
because these multidimensional simulations employ approx-
imate neutrino transport solvers one way or another, being
different from group to group. Since neutrinos are not in
equilibrium with matter, their transport should be treated with
the Boltzmann equations. Since their numerical solution
without imposing spherical symmetry is still highly costly
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computationally at present, it has been avoided so far (but see
Ott et al. 2008, in which the authors employed a Boltzmann
solver except near the core center, where they adopted an
approximation). Recently, several works to compare the
numerical methods for supernova simulations and to check
the influence of the employed approximate methods have been
conducted (Skinner et al. 2016; Cabezón et al. 2018; Just et al.
2018; Glas et al. 2018; O’Connor et al. 2018; Pan et al. 2019).
Such comparisons have just been started, and more works and
efforts are required to understand their impact on the CCSN
simulations fully. Especially, in order to calibrate the difference
in the approximations, simulations that solve the Boltzmann
equations without artificial approximations (other than manda-
tory finite-differencing of the differential equations) are
indispensable.

We have hence developed a Boltzmann-radiation-
hydrodynamics code, which solves the Boltzmann equations
for neutrino transfer directly by the finite difference without
employing any further artificial approximation. This code can
not only allow us to perform accurate simulations but also play
a significant role in the code comparison works. The basic test
of this code was done in Sumiyoshi & Yamada (2012), and
then Nagakura et al. (2014) tested the special relativistic
extension utilizing the two-grid approach, which is indispen-
sable to treat neutrino trapping in the optically thick region
correctly. Finally, Nagakura et al. (2017) presented the code
that incorporated the capability of tracking the proper motion of
PNSs and was ready for productive runs of realistic CCSN
simulations. The comparison with a Boltzmann solver by the
Monte Carlo method was reported in Richers et al. (2017). The
first result produced with this code was reported in Nagakura
et al. (2018), in which the effect of different equations of state
(EOSs) was discussed. Note that the severe limitation of
computational resources forces us to impose axisymmetry in
our simulations at the moment, although we have already
implemented the capability of 3D computations in the code.

In this paper we pay attention to rotation. As demonstrated in
Nagakura et al. (2018), only the Boltzmann solver like ours can
provide the angular distribution function in momentum space.
Note that in the spatially axisymmetric, nonrotating case, the
angular distribution in momentum space still has a reflective
symmetry with respect to the meridional plane. This symmetry
is broken for the rotating system even in the spatial
axisymmetry. Detailed examination of such systems will give
us a new and deeper insight into the neutrino distributions in
the CCSNe. In this paper we assume a modest rotation with
which not the dynamics of fluid but the neutrino distributions
are affected. It may be true that more exotic features will show
up for more rapid rotations, but the dynamics of core collapse
and bounce themselves will also be severely modified then,
leading, for instance, to the centrifugal bounce. (e.g., Ott et al.
2004).

This paper is organized as follows: we briefly describe the
numerical modeling such as the basic equations to be solved
and the progenitor model in Section 2; the shock evolution and
other hydrodynamic features are displayed in Section 3; the
neutrino distributions are discussed in Section 4; finally, our
findings are summarized in Section 5. In the Appendix, we
provide additional information on some diagnostics related to
the effects of the rotation. Unless otherwise stated, we use in
equations the unit with = = =c G 1, with c, G, and ÿ being
the light speed, the gravitational constant, and the reduced

Planck constant, respectively. The metric signature is −+++.
Greek and Latin indices run over 0–3 and 1–3, respectively.

2. Numerical Modeling

We adopt the Boltzmann-radiation-hydrodynamics code
based on the discrete-ordinate (SN) method, in which the
Boltzmann equation given in the seven-dimensional (one for
time, three for space, and another three for momentum)

extended phase space is directly discretized. Since the details of
the code are explained in Sumiyoshi & Yamada (2012) and
Nagakura et al. (2014, 2017), we briefly review only some
fundamentals.
The Boltzmann equation is cast into the conservative form in

the (3+ 1)-decomposed spacetime (see Shibata et al. 2014, for
details):
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where xα and ò, θν, fν are the coordinates in the spacetime and

momentum space, respectively, and f is the neutrino distribu-

tion function; g, m =m
a ( )( )e 0, 1, 2, 3 , and ℓ(i) are the determi-

nant of the spacetime metric, a set of the local orthonormal

tetrad bases, and the directional cosines for the neutrino-

propagation direction with respect to a
( )e i , respectively. The direct-

ional cosines are expressed as q= n( )ℓ cos1 , q f= n n( )ℓ sin cos2 ,

and q f= n n( )ℓ sin sin3 . The neutrino energy is written as  ≔

- a
a
( )p e 0 with the tetrad and the four-momentum of the neutrino pα.
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where γij is the spatial metric for polar coordinates (r, θ, f).

The coordinate bases are denoted by ¶r , ¶q, and ¶f as usual. In
this paper, neutrinos are assumed to be massless. The factors

ω(0), w qn( ), and w fn( ) are given as
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The collision term on the right-hand side is written as Srad.

Although we use this general relativistic expression for the

Boltzmann equation and the code has the capability to solve

them, we take into account in this paper only the special

relativistic effects: the spatial hypersurface is assumed to be

flat, i.e., g q= ( )r rdiag 1, , sin ;ij
2 2 2 the lapse function α is set

to unity and the shift vector chosen to track the proper motion

of the PNS. Note that in this approximation q- =g r sin2 . In

order to evaluate the advection terms, we use a combination of

the upwind and central difference schemes according to the

mean free path. The equations are solved semi-implicitly, and

the Bi-CGSTAB method (Saad 2003) with the point-Jacobi

preconditioner is used for the matrix inversion.
For the hydrodynamics part, we solve the Newtonian

equations on the spherical coordinates:
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Here ρ, v i, p, e, Ye, ψ, and βi are the density, the velocity, the

pressure, the internal energy, the electron fraction, the

gravitational potential, and the shift vector, respectively.

The energy–momentum transfer between neutrinos and matter

is given as

ò=m m ( )G p S dV , 15prad

where dVp is the invariant volume element in the momentum

space. The variation of the electron fraction per unit time that is

induced by the emission or absorption of νe or n̄e is denoted by

Γi (i= νe for electron-type neutrinos and n= ¯i e for anti-

electron-type neutrinos) and given as

òG = ( )m S dV , 16i i pu rad,

with mu and S irad, being the atomic mass unit and the

corresponding collision term for neutrino species i, respec-

tively. The numerical flux is calculated in the HLL scheme

(Harten et al. 1983) with the piecewise-parabolic interpolation

(Colella & Woodward 1984), and the time integration is

performed with the second-order Runge–Kutta method. For the

gravitational potential ψ, we solve the Poisson equation

y prD = ( )4 17

directly. The inverse matrix is constructed by the MICCG

method (Nagakura et al. 2011).
For the comparison of our rotating model with the

nonrotating model presented in Nagakura et al. (2018), we
employ the same progenitor model, i.e., the nonrotating

M11.2 model taken from Woosley et al. (2002). We adopt
Furusawa’s (Furusawa-Shen: FS) multi-nuclear-species EOS
(Furusawa et al. 2011, 2013), which is based on the relativistic
mean field theory and also incorporates light nuclei. The
neutrino reactions considered are the same as those in
Nagakura et al. (2018), being based on the standard set of
Bruenn (1985) but updated in the electron-capture rate by
heavy nuclei according to Juodagalvis et al. (2010), Langanke
& Martínez-Pinedo (2000), and Langanke et al. (2003); the
nonelastic scattering off electrons and the nucleon–nucleon
bremsstrahlung are also incorporated. Since the neutrino
reactions involving νμ, nm¯ , ντ, and nt¯ are almost the same
(but see Bollig et al. 2017), these heavy-lepton-type neutrinos
are collectively treated and denoted as νx. We hence consider
three neutrino species of νe, n̄e, and νx. Although the progenitor
is nonrotating originally, we add rotation by hand at the onset
of the collapse. The functional form of the rotational velocity is
shellular,

=
+

f
-

( )
( )v

r

1 rad s

1 10 cm
, 18

1

8 2

where r is the distance not from the rotational axis but from the

center. According to Yokozawa et al. (2015), who claim that

the progenitor rotation can be detected if the arrival of

gravitational waves is observed earlier than the neutronization

burst, the rotational velocity in Equation (18) is basically too

slow to be detected.
The radial mesh covers the region extending from the center

to 5000 km and divided into 384 bins. The entire meridian
section is initially divided into 64 angular bins. When a
negative entropy gradient starts to develop after core bounce,
the θ-grid number is doubled to 128 and we perturb the radial
velocity randomly by 0.1% in the region of  r30 50 km
artificially as a seed of fluid instabilities. Note that this is the
same prescription as in Nagakura et al. (2018). As for
momentum space, we divide the energy range up to
300MeV into 20 grid points and the whole solid angle into
q f´n n( ) ( )10 6 angular bins. By using K-computer in Riken,

whose computational performance is 128GFLOPS per node,
the simulation of the post-bounce dynamics presented in the
following required 1,300,000 node-hours with 1536 nodes and
eight cores per node.

3. The Time Evolution

In this section, we give an overview of our simulation by
showing several diagnostics for the post-bounce dynamics.
First, we display the snapshots of the entropy distributions in
Figure 1. They are obtained in the acceleration frame, which
moves with the center of PNSs. As shown in the Appendix,
however, the difference between the laboratory frame and the
acceleration frame is very small in this particular model. Thus,

3
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we ignore it and call the acceleration frame “the laboratory
frame” hereafter unless otherwise stated.

Right after bounce, the shock expands preferentially in the
equatorial direction and takes an oblate shape (top left panel),
due to centrifugal force. The radially directed accretion flow is
then refracted by the oblate shock in the polar direction. Since
axisymmetry is imposed, the refracted flow converges to the
rotation axis and is redirected outward, pushing the shock. The
shock becomes prolate (bottom left panel). The accretion flow
refracted by the prolate shock converges to the equator,
pushing the shock equatorially. By repeating this motion, the
shock oscillates between the oblate and prolate shapes, with the
average shock radius being gradually increased (top and bottom
middle panels, respectively). Note that the ℓ=2 mode
deformation of the shock is also observed in Suwa et al.
(2010). In the stalled-shock phase, this oscillation is replaced
by the development of convective bubbles. These bubbles have
large scales comparable to the scale height and are roughly
divided into the northern and southern parts (top right panel).
These features are eventually mixed, and a complicated
turbulent pattern emerges (bottom right panel).

The flow pattern in the nonrotating model in Nagakura et al.
(2018) is different, on the other hand. Since the centrifugal
force is absent in the nonrotating model, the oblate–prolate
oscillation seen in Figure 1 does not exist. Instead, a rather
stochastic pattern presents. Finally, a stochastic turbulent
pattern that originated from the convection develops.

Next, we compare the evolutions of the shock radii rshock, the
PNS radii rPNS, the neutrino luminosities Lν, and the mean
energy of neutrinos Eν between the rotating and nonrotating
models in Figure 2. The nonrotating model is taken from
Nagakura et al. (2018). The shock radius is defined as the

outermost radius where the absolute value of the velocity is less
than 30% of the freefall velocity. The PNS radius is defined as
the radius at which the angle-averaged density is -10 g cm11 3.
The luminosities and mean energies of neutrinos are measured
at a radius of 500 km from the center.
Although the morphology of the shock in the rotating model

is affected by the centrifugal force as shown in Figure 1, the
evolution of the average shock radius does not much differ
from that in the nonrotating model in Nagakura et al. (2018).
The luminosities and mean energies of neutrinos also have very
similar evolutions in the two models. Note that the luminosity
of νe and the mean energies of νe and n̄e are slightly smaller for
the rotating model. This trend is consistent with Summa et al.
(2018), whose fast-rotating models show smaller neutrino
luminosities and mean energies. It is likely that whether
the shock successfully revives or not is determined when the
density discontinuity of the progenitor passes through the
shock since the ram pressure of the accretion suddenly drops at
that time (e.g., Suwa et al. 2016; Vartanyan et al. 2018). Since
the shock of the nonrotating model with the FS EOS in
Nagakura et al. (2018) does not revive when the density
discontinuity passes through the shock, it seems that the shock
revival of the nonrotating model shown in Figure 2 fails.
Although the rotating model in this paper is not simulated until
the density discontinuity passes, the similarity illustrated in
Figure 2 suggests that the rotating model probably fails
explosion as well. Some recent works show much later shock
revivals (Summa et al. 2016; O’Connor & Couch 2018), but
limited computational resources prevent us from running such a
long time simulation. This is the reason why we terminated our
simulation at ∼200 ms after bounce. Note that the dynamics is
not the focus of this paper. Dynamics and properties of neutrino

Figure 1. Entropy distributions in the meridional section at the post-bounce times of tpb=9 (top left), 12 (top middle), 54 (top right), 62 (bottom left), 150 (bottom
middle), and 210 ms (bottom right). The colors show the specific entropy whose scale is displayed on the right of each panel. The shock is located at the boundary of
the bluish and greenish colors. Note that the ranges of x and z coordinates are different as presented in each figure, indicating the expansion of the shock.
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emissions for more rapidly rotating models will be reported in

the forthcoming paper.
The similarities in the neutrino luminosities and mean energies

are originated from the fact that PNS radii are essentially identical

as seen in the top panel of Figure 2. Due to the centrifugal force,

the equatorial radius of the PNS is larger than the polar radius by

∼5%. This is too small to affect the shock evolution in our model.

Figure 3 presents the evolution of the specific angular
momentum defined for radial shells as

ò

ò

r q

r

f

≔ ( )j
r v dV

dV

sin
, 19z

x

x

shell

2 2

shell

where dVx is the invariant volume element in the configuration

space and the integration is done over each bin in the radial

mesh employed in the simulation. Note that the specific angular

momentum inside the shock decreases with time on average.

This is because neutrinos carry away some angular momentum

(see Section 4 for a detailed discussion). Although the neutrino

emission during the collapse also reduces the angular

momentum, it is negligibly small. In the outer part, where

neutrino reactions rarely occur, the angular momentum is

essentially conserved. Note that the specific angular momentum

distribution in our model lies between the two models

(~ -10 cm s14 2 1 for the slower model named “rot” and

~ -10 cm s16 2 1 for the faster model named “artrot”) computed

in Summa et al. (2018), although the rotational velocities are

higher in our model. This is due to the different progenitor

model they employed. The fact that both their “rot” model and

ours have no influence on the PNS radius whereas their “artrot”

model did have non-negligible effects may indicate that the

border between slow and fast rotations lies between 1015

and -10 cm s16 2 1.

4. Neutrino Distribution

One of the novel aspects of our code is to treat not the
angular moments but the distribution functions of neutrinos
directly. In this section we provide detailed analyses of the
neutrino distributions.

4.1. Angular Distribution

Figures 4–6 show the angular distributions in momentum
space of the electron-type neutrinos with three different
energies at 12 ms after bounce in the laboratory frame. The
spatial locations are chosen from the optically thick (Figure 4),

Figure 2. Evolutions of some radii and neutrino quantities. For all panels, red
and blue lines represent the rotational and nonrotational models, respectively.
The top panel shows the shock radii and the PNS radii. The thick solid and thin
dotted lines show the average and maximum/minimum shock radii,
respectively. The thick dashed lines indicate the PNS radii. The PNS radii
are smoothed by the running average over 5 ms. The middle panel displays the
neutrino luminosities. The solid, dashed, and dotted lines correspond to the
luminosities of the electron-type neutrinos, anti-electron-type neutrinos, and
heavy-lepton-type neutrinos, respectively. Note that the vertical scales of the
upper and lower halves of the panel are different, in order both to indicate the
peak luminosities at the neutronization bursts and to compare the luminosities
of different species at later times. The bottom panel presents the mean energies
of neutrinos. The line types are the same as those in the middle panel. Note that
the nonrotating model is taken from Nagakura et al. (2018).

Figure 3. Specific angular momentum of each radial bin as a function of the
enclosed mass. Different colors correspond to different times (red: at the onset
of the collapse; blue: ∼10 ms after bounce; green: ∼150 ms after bounce;
magenta: ∼210 ms after bounce). The spikes in the profiles indicate the
positions of the shock at their times.
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semitransparent (Figure 5), and optically thin (Figure 6)
regions, and they are all sitting on the equator (θ= π/2).

In the optically thick region (Figure 4), neutrinos are in
equilibrium with matter and have an isotropic distribution in
the fluid rest frame. Since the matter velocity at this point is
negligible ( ~ ´ -v c 2 10 2), the distributions are nearly
isotropic even in the laboratory frame for all three energies.

On the other hand, the distributions in the semitransparent
region (Figure 5) are obviously not isotropic and are different
among three neutrino energies. It is forward-peaked for the
lowest-energy neutrinos, while for the middle-energy neutrinos
the forward peak is less remarkable. For the highest-energy
neutrinos, the distribution is more or less isotropic but slightly
elongated in the f-direction because of the relativistic beaming
by the matter rotation. These behaviors are just as expected.
Roughly speaking, the neutrino reaction rates are proportional
to the squared neutrino energy (Bruenn 1985; Bethe 1990;
Janka 2001). Since the reaction rates are smaller for lower-
energy neutrinos, they decouple from matter deeper in the core
at higher densities (Kotake et al. 2006), leading to larger
deviations from isotropic angular distributions.

Then in the optically thin region (Figure 6), neutrinos with
the three energies all have forward-peaked distributions. This
can be easily understood since all neutrinos have already been
decoupled from the matter and are streaming freely. The
streaming directions are slightly different, though. The
principal axes in the distributions of the lowest- and middle-
energy neutrinos are almost aligned with the radial direction
(er), whereas for the highest-energy neutrinos the distribution is
visibly tilted to the rotational direction ( fe ). This is again
understood from the dependence of the reaction rates on the
neutrino energy as follows.

The situation is sketched in Figure 7. When neutrinos are
trapped by matter, they are dragged by matter and the
relativistic beaming occurs, albeit slightly, in the rotational
direction as shown with the blue surface in Figure 5. This
tilting remains even after neutrinos are decoupled with matter
(see the dashed lines in Figure 7). As neutrinos stream freely to
large radii, the angle between the radial and the propagation
directions q̄ gets smaller as q =¯ b rsin , where b is the impact
parameter with respect to the center. Since the neutrinosphere
for higher-energy neutrinos is larger than that for lower-energy
neutrinos as discussed by Kotake et al. (2006; compare the blue

and red circles in Figure 7), the impact parameter is larger for
the former. As a consequence, the higher the neutrino energy is,
the more tilted the distribution is to the f-direction as shown
with the arrows in Figure 7.

4.2. Rotational Flux

Since the neutrino distribution is no longer symmetric with
respect to the plane spanned by er and qe in the presence of
rotation, the neutrino flux has a nonzero f-component in
general. This “rotational” component is displayed for the
electron-type neutrino number flux at 100 ms after bounce in
Figure 8. In the left panel, the rotational component measured
in the laboratory frame is shown. Since the component is
always positive, i.e., neutrinos rotate in the same direction with
matter, the log scale is employed in the color bar. This figure
demonstrates that the rotational component decreases rapidly
with the radius, which is compatible with the above discussion
on q̄.
In the right panel the rotational component in the fluid rest

frame is shown. Contrary to the left panel, the color bar is given
in the linear scale, since the rotational component can be
positive or negative. After the decoupling with matter, the
“rotational velocity” of neutrinos, which is defined as the
f-component of the number flux divided by the number density
of neutrinos, in the laboratory frame declines faster than the
rotational velocity of matter. This situation is shown in
Figure 9, in which radial profiles of the number flux and
rotational velocities of matter and neutrinos on the equator are
displayed. The f-component of the fluxes in the fluid rest frame
and laboratory frame are again negative and positive,
respectively. The rotational velocities of matter and neutrinos
in the laboratory frame are almost identical at r<50 km,
whereas the matter velocity is larger at larger radii. These
results demonstrate that our simulation successfully captures
the neutrino transport in the moving matter.

4.3. Eddington Tensor

In the often-used Ray-by-Ray(-plus) approximation (Buras
et al. 2006), the neutrino distributions are assumed to be
axisymmetric with respect to the radial direction. As a
consequence, the lateral component of the flux, such as those
shown in Figure 8, is completely neglected. On the other hand,

Figure 4. Angular distributions in momentum space of the electron-type neutrino at 12 ms after bounce in the laboratory frame. The spatial point is =r 10 km in the
optically thick region on the equator. Each panel represents different neutrino energies measured in the laboratory frame: 1 MeV (red), 4 MeV (green), and 19 MeV
(blue). Arrows with er , qe , and fe represent the spatial bases of the tetrad (Equations (2)–(4)). All distributions are normalized so that the maximum value is the same,

say, unity. In order to make the surfaces smooth, angular interpolation is applied.
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other approximations such as the M1-closure method can treat

the nonradially directed flux (Levermore 1984; Shibata et al.

2011; and see Kuroda et al. 2012; Just et al. 2015; Skinner et al.

2016 for its application to the simulation of CCSNe). As

discussed in Levermore (1984), the M1-closure method

assumes that the neutrino distributions are axisymmetric with

respect to the flux and the Eddington factor, which is the largest

eigenvalue of the Eddington tensor defined later, is given by a

certain prescription. Since our Boltzmann solver does not

impose any such artificial assumptions, we can evaluate the

validity of these assumptions quantitatively.
As such an attempt, we compare the Eddington tensor

calculated according to the definition and that obtained in the

M1-closure method. Note that both of them are based on the

same numerical data. The Eddington tensor is defined as

  ( ) ≔ ( ) ( )k P Eij ij , where

 g gs r
sr( ) ≔ ( ) ( )P M , 20ij i j

 s r
sr( ) ≔ ( ) ( )E n n M , 21

with srM being the second angular moment of the distribution

function given as

    



ò

ò

d -
¢

¢ ¢ ¢ ¢ W¢

= ¢ ¢ W¢

sr s r

s r

⎛

⎝
⎜

⎞

⎠
⎟( ) ≔

( )

M f p p d d

fp p d

3 3

1
. 22

p

p

3 3

In this definition, W¢p is the solid angle in the momentum space

measured in the fluid rest frame and  ¢ ¢ W¢ = ¢d d dVp p is the

Figure 5. Same as Figure 4, except that the spatial point is =r 57 km in the semitransparent region. The middle and bottom rows of figures are the distributions
projected to er– qe and er– fe planes, respectively.
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volume element in the same momentum space. Note that this

definition is slightly different from that in Shibata et al. (2011;

see their Equation (2.1)), where they use  d - ¢( ) instead of

 d - ¢( )3 33 3 .9 This difference does not affect the definition

of the Eddington tensor.
In the M1-closure method, on the other hand, the Eddington

tensor   ( ) ≔ ( ) ( )k P Eij ij
M1 M1 is given by the following

formula:

    z z-
+

-
( ) ≔

( )
( )

( ( ))
( ) ( )P P P

3 1

2

3 1

2
. 23ij ij ij

M1 thin thick

Here ζ(ò) is the Eddington factor approximated as (Lever-

more 1984)

 


z =

+

+ -
( )

¯ ( )

¯ ( )
( )

F

F

3 4

5 2 4 3
, 24

2

2

where ¯ ( )F is the flux factor. In this paper, the flux factor is

defined in the fluid rest frame as


 


= sr
s r

¯ ( )
( ) ( )

( )
( )F

h H H

J
, 25

2

where

+sr sr s r≔ ( )h g u u 26

is the spatial metric projecting onto the fluid rest frame, uσ is

the 4-velocity of matter, and

 
 -

s r
sr

s s
r l

sl

( ) ≔ ( )

( ) ≔ ( ) ( )

J u u M

H h u M

,

27

are the energy density and energy flux in the fluid rest frame,

respectively. In the M1-closure method the optically thin limit

( )Pijthin and thick limit ( )Pijthick are smoothly connected. They

are defined as

   


=( ) ( )
( ) ( )

( )
( )P E

F F

F
28ij

i j

thin 2

Figure 6. Same as Figure 5, except that the spatial point is =r 167 km in the optically thin region.

9
Shibata et al. (2011) consider the radiation field in a specific-intensity-like

way, and hence the neutrino energy is a natural integral measure. On the other
hand, we consider the radiation field as an ensemble of particles, and hence the
volume element in momentum space is a natural integral measure.
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and

   g
=

+
+ +( ) ( ) ( ) ( ) ( )P J

V V
H V V H

4

3
, 29ij

ij i j
i j i j

thick

respectively, where we further define

 g- s r
sr( ) ≔ ( ) ( )F n M 30i i

and ≔V u ui i t, which is the 3-velocity of matter. Hereafter we

refer to k ij(ò) and ( )k ijM1 as “the Boltzmann-Eddington tensor”

and “the M1-Eddington tensor,” respectively. Although one

may use the energy-integrated Eddington tensors, we only use

the Eddington tensors without energy integration. For the

neutrino energy, we adopt the mean energy at each point

throughout this section. Note that the M1-Eddington tensor is

the same as that used in Kuroda et al. (2016) except that a

Figure 7. Schematic picture for the understanding of the neutrino distributions
given in Figure 6. The colored circles represent the equatorial sections of the
neutrinospheres for three energies in Figure 6: 1, 4, and 19 MeV for red, green,
and blue, respectively. The central black circular arrow indicates the rotation of
the PNS. The dashed lines and solid arrows are the trajectory of neutrinos and
propagating directions, respectively, for three energies. The black dotted lines
are drawn along a radial ray in order to emphasize the inclination of the solid

arrows. The angle q̄ in the text is also indicated.

Figure 8. Rotational component of the number flux of νe at 100 ms after
bounce in the laboratory frame (left panel) and in the fluid rest frame (right
panel). Note that the log scale is used for the left, whereas the linear scale is
employed for the right.

Figure 9. Radial profiles of the rotational component of the number flux of νe
in the fluid rest frame (top), that in the laboratory frame (middle), and the
rotational velocities of matter (bottom, red line) and neutrinos (bottom, blue
line), both in the laboratory frame. Note that the middle panel is displayed in
the log scale.
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different analytic Eddington factor is adopted. Just et al. (2015)

and Skinner et al. (2016) employ a similar analytic Eddington

tensor while it is defined in the fluid rest frame.

4.3.1. Physical Interpretation of the Eddington Tensor

In Figure 10, we compare the spatial distributions of the
individual components between the Boltzmann- and M1-
Eddington tensors for νe with the mean energy in the laboratory
frame at 12 ms. The edge of the oval shape seen in each panel
roughly corresponds to the shock surface (see the top middle
panel of Figure 1). All the diagonal components approach 1/3

at the center for both the Boltzmann- and M1-Eddington

tensors. This is consistent with the optically thick limit. The

values of the rr-components then rise with radius to unity,

whereas those of the θθ- and ff-components decline to zero,

which is again as expected in the optically thin limit. In

between the transition from one limit to the other occurs in

both cases, but it happens at a bit smaller radius for the

M1-Eddington tensor as illustrated in the top two and middle

left panels for the diagonal components.
Although the values of the off-diagonal components are not

very large, being typically ∼1/10–1/100 the diagonal

Figure 10. Comparison of individual components of the Boltzmann- and M1-Eddington tensors, ( )k ij and ( )k ijM1 , for ne values in the meridial section at 12 ms in the
laboratory frame (rr: top left; θθ: top right; ff: middle left; rθ: middle right; rf: bottom left; θf: bottom right). The neutrino energy ò is chosen to be the mean energy
at each point. The plotted ranges are  x0 km 150 km and  - z150 km 150 km. In each panel, the left and middle portions show the Boltzmann- and

M1-Eddington tensors, respectively, whereas the right panels are the differences between the two,  -( ) ( )k kij ij
M1 . The off-diagonal components are multiplied by a

factor of 10 or 100 as indicated at the bottom of each panel, in order to show them in similar color scales, which are different from panel to panel in fact.
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components, their presence implies that the principal axes of
this tensor do not coincide with the r-, θ-, and f-directions. The
behavior of the off-diagonal components is determined by
complex combinations of matter motions and neutrino reac-
tions. In order to show this, the profiles along some arbitrarily
chosen radial rays are shown for several quantities of relevance
in Figures 11–13.

Since the Eddington tensor is the second angular moment of
the distribution function, it is nothing but the amplitude of the
ℓ=2 mode in the spherical harmonics expansion, while the
flux is the first angular moment and ℓ=1 mode amplitude.
Although the two modes are independent of each other in
principle, they are correlated one way or another in reality. In
the simplest case, for example, where a single bunch of
neutrinos flies in one direction having, say, positive r- and
θ-components of flux, then the rθ-component of the Eddington

tensor should be positive. This is not true in general for
multibunch cases, though. Keeping this simple fact in mind, we
will look into the details of these figures.
In the optically thick region (optical depth, say, τ 50),

neutrinos are trapped by matter and they move in tandem. The
relativistic aberration tilts the neutrino distribution so that the
neutrino flux should be aligned with the matter velocity. From
the inspection of the second to fifth panels of Figures 11–13,
one finds that the signs of the r- and θ-components of the
neutrino flux coincide with those of the matter velocity
counterparts. The sign of qkr is identical to that of the product
of qv vr or qF Fr , since neutrinos are comoving with matter in
unison in the optically thick region.
In the semitransparent (optical depth  t2 3 50) region,

the sign of qkr still coincides with that of the product qF Fr ,
again indicating that the Eddington tensor is correlated with the
flux. On the other hand, the r-components of the neutrino flux
and the matter velocity have opposite signs, whereas their θ-
components have the same sign. This is because interactions
between neutrinos and matter are no longer strong enough to
enforce the comoving of neutrinos with matter in the radial
direction.
In the optically thin (optical depth τ  2/3) region, the

correlation between the flux and the Eddington tensor is not

Figure 11. Radial profiles of the rθ-component of the Eddington tensor qkr ,
the r- and θ-components of the energy flux F

i
, and the matter velocity

v
i along the orange solid line drawn in the middle right panel of Figure 10.

For the Eddington tensor and the flux, the neutrino energy is the mean
energy at each point. The definitions of symbols are as follows: ≔Fr40

- -( )F 10 erg cm sr 40 2 1 , q q - -≔ ( )F F 10 erg cm s40
40 2 1 , -≔ ( )v v 10 cm sr r

9
9 1 ,

and q q -≔ ( )v v 10 rad s3
3 1 . In each panel, the portions of lines whose values

are positive (negative) are colored red (blue) as indicated in the legend. The
vertical dot-dashed lines correspond to the radii at which the optical depths
for the average neutrino energy along the specified radial ray are 50 and 2/3
as indicated near the lines.

Figure 12. Same as Figure 11, but along with the white dashed line shown in
Figure 10.
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simple. In fact, there are regions along the three radial rays in
Figures 11–13 where both the r- and θ-components of the flux
are positive while k rθ is negative. This implies that there are
multiple bunches of neutrinos that are moving differently,
which can be understood by looking at the distribution
function. Shown in Figure 14 is not only the angular
distribution of νe at the point in the optically thin region along
the purple line in Figure 10 but also its mirror image in order to
emphasize the nonaxisymmetric distortion.

It is evident from the figure that the neutrinos are mainly
flying in upper right direction. It should also be apparent that
there are some neutrinos moving in the lower right direction.
The former component is neutrinos coming from the PNS, bent
by matter in the semitransparent regions, whereas the latter
component is emitted from the neighborhood. They are beamed
by the matter motion. As a matter of fact, the matter velocity is
<v 0r and v θ>0 at r=82 km (see Figure 13), the same

direction as the latter component. Hereafter the former is called
the PNS component and the latter is called the neighborhood
component.

As for the corresponding component of the Eddington tensor
k rθ, the neighborhood component is dominant over the PNS
component along the purple dotted line in Figure 10. As a
result, its sign changes from that in the semitransparent region

and returns to it again outside the shock. Along the orange line,
on the other hand, v r>0 and v θ>0 in the optically thin
region (see Figure 11), which implies that the neighborhood
component gives a positive contribution to k rθ. The fact that the
actual value of k rθ is negative indicates that the PNS
component dominates it. There is yet another case along the
white line, in which k rθ is negative while both F r and F θ are
positive in the optically thin region (see Figure 12). This
happens because the PNS component gives a large positive
contribution to F r and a small negative contribution to F θ,
while the neighborhood component contributes in the opposite
sense to F

r and F
θ. As a result, k rθ<0, F r>0, and F

θ>0
are realized simultaneously.

4.3.2. Comparison between Boltzmann- and M1-Eddington Tensors

Now we shift our attention to the comparison of the
Boltzmann- and M1-Eddington tensors. Their off-diagonal
components are very similar in the optically thick and thin
limits. This is as expected because neutrinos are moving in
unison in these cases (dragged by matter in the former and
free streaming in the latter). Their behaviors are different in
the semitransparent regions, however. As a matter of fact, the
rθ-components are different even in the signature near the
shock whereas the values of the rf- and θf-components for
the M1-Eddington tensor are twice as large as those for the
Boltzmann-Eddington tensor in the same region.
We show in Figure 15 radial profiles of the rθ-components

for the Boltzmann-Eddington tensor k rθ (Equation (20)) and for

the M1-Eddington tensor qk rM1 (Equation (23)) together with the

optically thin limit q q≔k P Er r
thin thin (Equation (28)) and

optically thick limit q q≔k P Er r
thick thick (Equation (29)) used in

the prescription of the M1-Eddington tensor. In the figure, k rθ

is always negative, whereas qk rM1,
qk rthick, and

qk rthin are not. One

finds that both qk rM1 and qk rthick become positive at r 85 km

while qk rthin gets positive slightly farther out at r∼87 km. As
indicated in Figure 12, F r is consistently positive in these
regions, whereas F θ changes sign from positive to negative at

Figure 13. Same as Figures 11 and 12, but along with the purple dotted line
given in Figure 10.

Figure 14. Angular distribution of νe on the plane spanned by er and qe in
momentum space at =r 82 km on the radial ray given as the purple dotted line
in Figure 10. The neutrino energy is set to the mean energy (∼11 MeV) at this
point. Note that the energy and angle are measured in the laboratory frame. The
red solid and blue dashed curves are the original distribution and its mirror
image with respect to the er-axis, respectively.
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r∼87 km. As a consequence, the optically thin limit of the
M1-Eddington tensor mistakenly takes positive values at

r87 km. On the other hand, qk rthick takes positive values

inside this radius. This is because the sum +q qH V V Hr r in
Equation (29) is positive. It is worth noting that in
Equation (29) some correction terms whose order with respect
to the local mean free path is higher than zeroth are neglected.

The wrong sign of qk rthick indicates that higher-order corrections
cannot be neglected in this region. The M1-closure method
tries to correct such errors by interpolating the optically thick
and thin limits, however. The results shown in the figure
demonstrate that the attempt fails here. The errors in the off-
diagonal components of the Eddington tensor may affect the
lateral component of the neutrino flux as discussed in Nagakura
et al. (2018).

Since the Eddington tensor is a symmetric tensor, it can
always be diagonalized and its eigenvalues and eigenvectors
characterize the shape of the distribution function. The largest
eigenvalue, or the Eddington factor, represents how sharp the
distribution is along the principal direction, and the other two
eigenvalues indicate how flat it is in the perpendicular
directions. We hence show the eigenvalues of the Boltzmann-
and M1-Eddington tensors in Figure 16. One finds again that
the Eddington factor takes the optically thick limit of 1/3 deep
inside the core and increases toward the shock, and it reaches
the free-streaming limit outside it. Since the sum of three
eigenvalues of the Eddington tensor should be unity (see
Equation (14) in Levermore 1984), two other eigenvalues,
which are positive normally, decrease with radius.

As stated above, the M1-closure method assumes the
axisymmetric distribution with respect to the flux direction.
As a result, two eigenvalues other than the Eddington factor in
the M1-Eddington tensor are degenerate (blue and green
dashed lines denoted by “lateral 1” and “lateral 2”) in
Figure 16. These lateral eigenvalues of the Boltzmann-
Eddington tensor, on the other hand, are slightly different
from each other, since no symmetry is imposed artificially on
the neutrino distribution in our simulations. However, the
difference between lateral 1 and 2, which is defined as
k k k-( )lat2 lat1 lat1 with klat1,2 being the eigenvalues of lateral
1, 2, is only a few percent typically as shown in the middle

panels of Figure 16, indicating that the axisymmetry with

respect to the flux direction is nearly achieved as a consequence

of the evolution.
The estimation of the Eddington factor in the M1-closure

method is not so accurate. The fractional differences between

the Boltzmann- and M1-Eddington tensors, which are defined

as k k k-( )M B B for their corresponding eigenvalues kB and

kM1, are also presented in the bottom panels of Figure 16. It is

found that the fractional difference reaches ∼20%, just behind

the shock. Note that although there are some alternatives to the

approximate functions in Equation (24) (e.g., Just et al. 2015),

we still find ∼10% of maximum errors at least for them.
In the vicinity of the black small circle and triangle in the top

middle panel of Figure 16, the M1-Eddington factor increases

although the Boltzmann counterpart stays at almost the same

value or even decreases slightly with radius just behind the

shock. Since the M1-Eddington factor given in Equation (24) is

a monotonically increasing function of the flux factor, the latter

also increases when the Eddington factor does not. The key to

the understanding of such behaviors is the distribution function

again.
Shown in Figure 17 are two angular distributions of electron-

type neutrinos, which are taken at the positions of the small

black circle and triangle put in the top middle panel of

Figure 16. In the following discussions, we refer to the “flux

direction” as the direction in which the distribution function is

the maximum.10 It is shown as the green arrow in the middle

panel of Figure 17. It is found that the distribution function
opposite to the flux direction is a bit smaller at the point of the
triangle, which is closer to the shock. Since, roughly speaking,
the flux factor and the Eddington factor are proportional
to qá ñ˜cos and qá ñ˜cos2 , respectively, where q̃ is the zenith angle
with respect to the flux direction and á ñ· represents the average
over the solid angle, the reduction of the distribution on
the opposite side of the flux direction, q ~ -˜cos 1, leads to the
larger flux factor and slightly smaller Eddington factor at the
triangle position than at the circle position. In fact, there is a
subtlety here. Since the solid-angle average is given as

ò òá ñ W W· ≔ ·f d f dp p, the reduction of f at q ~ -˜cos 1
always results in a decrease of the denominator and hence
necessarily leads to an increase in the flux factor, whereas the
Eddington factor is not much changed.
What is important here is the fact that only the backward

portion ( q ~ -˜cos 1) in the normalized angular distributions is

depleted. This situation is induced by the emissions from the

neighborhood. Note that our Boltzmann code can treat this

situation properly, since the forward- and backward-propagat-

ing neutrinos are treated individually. This is not the case for

the M1-closure method, though, since it treats only the angle-

averaged quantities and does not distinguish the increase in

forward-propagating neutrinos from the decrease in backward-

propagating neutrinos. If additional information on the

emission from the neighborhood is somehow incorporated in

the approximate formula of Equation (24), the M1-closure

method may be improved. That is beyond the scope of this

paper, however.

Figure 15. Radial profiles of the Eddington tensors q ( )kr , q ( )k rM1 , q ( )k rthin ,

and q ( )k rthick along θ=π/4 (white dashed line in Figure 10). The neutrino
energy is the mean energy at each point. The vertical dot-dashed line indicates
the position of the shock.

10
This “flux direction” might not coincide with the direction of the flux F

i,
since the latter is determined not by the maximum value but by the angular
average of the unit vector.
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4.3.3. Resolution

Due to the limited computational resources, the angular
resolution in momentum space is not very high in our
simulations. We refer readers to Richers et al. (2017) for
detailed discussions on the issues of resolution and conv-
ergence. In the optically thick regime where the neutrino
distribution is almost isotropic, this limited resolution does not
pose a serious problem since such distributions can be
accurately expressed with a small number of angular bins.
On the other hand, in the optically thin regime, forward-peaked
distributions cannot be correctly reproduced with poor
resolutions. One may hence think justifiably that the differ-
ences shown in Figure 16 are mostly artifacts of the insufficient
resolutions.

In order to check the resolution dependence, we run
additional simulations with both lower and higher resolutions.
In these simulations, we take and fix the matter distribution at
12 ms after bounce and compute only the neutrino distribution
functions in steady states. In order to minimize the
computational cost, we limit the computational domain to
~ < < ~r40 km 300 km. The numbers of the angular grid
points in momentum space are q f =n n( ) ( ), 10, 6 and (14, 10)
for the lower and higher resolutions, respectively.

Figure 18 shows the results of the additional simulations. It is
similar to Figure 16, but we plot only the Eddington factors
and their fractional differences not between the Boltzmann- and
M1-Eddington tensors but between the different-resolution
calculations with the Boltzmann solver. It is clear that the

fractional differences in both the Boltzmann- and M1-Eddington
tensors are small in the optically thick region, especially where
the Boltzmann-Eddington factor is �0.4. On the other hand, they
are as large as ∼5% in the semitransparent to optically thin
regions. The numerical convergence is hence not yet reached in
the outer regions. Note that this is consistent with the results in
Richers et al. (2017). What is more important here, however, is
that the large difference observed between the Boltzmann- and
M1-Eddington tensors in Figure 16 still exists in Figure 18 (see
the difference between red and blue lines). It is concluded,
therefore, that this is not an artifact of the relatively low
resolution in the Boltzmann simulations.

4.4. Angular Momentum Transport

We finally discuss the angular momentum that is carried
away by neutrinos (see Figure 3). It is evaluated from the
distribution function directly. The energy–momentum tensor of
neutrinos is defined as

ò=n
sr s r ( )( )T fp p dV: 31p

and satisfies the conservation law,

 =s n
sr r ( )( )T G , 32

where Gρ is defined in Equation (15). Note that the energy–

momentum tensor is also expressed as  ò=nsr sr ( ) ( )( )T M d 33 .

Using the Killing vector x = ¶f that exists under axisymmetry,

Figure 16. Radial profiles of eigenvalues for the Boltzmann- and M1-Eddington tensors at 12 ms after bounce in the laboratory frame for the electron-type neutrinos
with their mean energies. The largest eigenvalue, or the Eddington factor, is shown in red, and the other two eigenvalues named “lateral 1, 2” are represented in blue
and green, respectively. The solid and dashed lines correspond to the eigenvalues of the Boltzmann- and M1-Eddington tensors, respectively. The directions of the
radial rays chosen here are q p= 2 (equator; left panels), θ=π/4 (northeast; middle panels), and θ=0 (north pole; right panels). In each panel, the shock radius for
the particular direction is indicated with the vertical dot-dashed line. In the top panels the eigenvalues themselves are presented, whereas the relative differences
between “lateral 1, 2” of the Boltzmann-Eddington tensor are shown in the middle panels, and the fractional differences between the Boltzmann- and M1-Eddington
tensors are displayed in the bottom panels. The black small circle and triangle in the top middle panel are the points where the Boltzmann-Eddington factors are similar
but the M1-Eddington factors are different. The reason for this behavior is explained by comparing the angular distributions in Figure 17.
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we can define the angular momentum 4-current as xr
s
sr≔j T ,

which obeys the angular momentum conservation,

x =r
r

r
r ( )j G . 33

Defining the angular momentum of neutrinos inside the sphere

of radius r as òn ( ) ≔( )J r j dV
r

t
x

0
, we write the conservation law

in the integral form,

ò ò x+ =n r
r˙ ( ) ( )( )

( )

J r j ds G dV , 34
S r

r
r

x
0

where ds is the surface element. The right-hand side represents

the exchange of angular momentum between neutrinos and

matter. Assuming that advection of the angular momentum of

matter is negligible, then we can evaluate the angular

momentum loss by neutrinos from the sphere as

ò ò q- = - n
f˙( ) ≔ ( )

( ) ( )
( )J r j ds r T dssin . 35

S r

r

S r

r2 2

In the discussions below, we set =r 100 km since the

numerical resolution poses no problem up to this radius (see

Figure 18). Not to mention, we take a sum over all neutrino

flavors.
Epstein (1978) proposed a way to analytically estimate the

angular momentum loss by neutrinos. It is expressed in the
natural unit as

ò p
w= - n
^⎜ ⎟

⎛
⎝

⎞
⎠

˙ ( )J
L

r
r ds

4
, 36

2

2

where Lν and r⊥are the neutrino luminosity and the length of

the lever from the rotational axis, respectively, and the integral

is done over the “stellar surface” where neutrinos are emitted.

In the current context, it should be interpreted as the

neutrinosphere. In the derivation, he assumes that the neutrino

distributions are isotropic in the fluid rest frame and acquires

anisotropy in the laboratory frame solely from the relativistic

beaming by the rotation of matter. In Equation (36), we also

need the neutrino luminosity. We adopt the blackbody formula

for each neutrino flavor at the neutrinosphere,

p s= ´n ( )L r T4
7

16
, 372

SB
4

since the formula was originally meant to be used that way. In

this expression, σSB and T are the Stefan–Boltzmann constant

and the matter temperature at the neutrinosphere, respectively.

In the following evaluation, the neutrinosphere is set at the

radius where the density is r = -10 g cm11 3. In other words,

the surface integral is conducted over the isodensity surface

with r = -10 g cm11 3 and multiplied by six to account for the

six neutrino flavors : νe, n̄e, νμ, nm¯ , ντ, and nt¯ .
In Figure 19, we compare the angular momentum losses

estimated from Equations (35) and (36). Since Equation (35) is
evaluated at r=100 km, we plot the evolutions only after the
time when the minimum shock radius exceeds that radius. It is
found that the evaluation of Equation (35) gives a much more
gradual increase than the estimate from Equation (36) and the
deviation reaches ∼30% around 100 ms after bounce. Although
this is not small, the analytical formula is good enough to
obtain the order of magnitude of the angular momentum loss,
indicating that the basic picture of the angular momentum loss
via neutrino emission is correctly described by Epstein (1978).

Figure 17. Angular distributions in momentum space of electron-type
neutrinos at the two points in the vicinity of the shock that are marked with
the small circle and triangle in the top middle panel of Figure 16. The neutrino
energies are again set to the mean energies at the individual points. The energy
and angle of neutrinos are measured in the laboratory frame. Each distribution
is normalized with its maximum value. The red and blue colors represent the
quantities at the circle and triangle points, respectively. The top panel shows
the three-dimensional angular distribution, and the middle and bottom panels
display those on the sections spanned by er– qe and er– fe , respectively. The

green arrow in the middle panel is the flux direction defined in the text.
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5. Summary and Discussion

In order to examine the effects of rotation on the supernova
dynamics and, in particular, on the distributions of neutrinos,
we performed a core-collapse simulation for a rotating
progenitor with the Boltzmann-radiation-hydrodynamics code.
Although the shock morphology is different, the average shock
radius, the luminosities, and the mean energies of neutrinos for
the modest rotation we assumed in this paper are not much
different from those in the corresponding nonrotating model
presented in Nagakura et al. (2018). Besides, no successful
shock revival is obtained. This result is consistent with Summa
et al. (2018).

The neutrino distributions are affected by the rotation,
though. The relativistic aberration tilts the neutrino distribu-
tions in the rotational direction. As a consequence, the
azimuthal component of the neutrino flux emerges. It is
interesting that this component is positive, i.e., has the same
sign as vf, in the laboratory frame, whereas it is negative in the
fluid rest frame, meaning that matter is rotating faster than
neutrinos.

Then we compared the Eddington tensor obtained directly
from our Boltzmann simulation with that evaluated according
to the M1-closure prescription from the same data. The
Eddington tensor is determined by some complicated combina-
tions of the matter velocity, local neutrino reactions, and the

neutrino flux that originated deeper inside. We found the earlier
transition from the optically thick to thin limits for the diagonal
components of the M1-Eddington tensor. The behavior of
the off-diagonal components is quantitatively (for the rf- and
θf-components) and even qualitatively (for the rθ-component)
different in the semitransparent region. The deviation in the
Eddington factors reaches ∼20% just behind the shock. The
discrepancy originated from the poor performance of the
M1-closure prescription for the particular angular distributions
of neutrinos in momentum space, in which only the neutrinos
going almost in the opposite direction to the flux direction are
depleted. We found in such cases that the flux factor is
increased but the Eddington factor is decreased and, as a result,
the M1-Eddington factor increases while the Boltzmann-
Eddington factor decreases. In order to correct such a
qualitatively wrong behavior in the M1-closure prescription,
we have to somehow take into account the effect of emissions
from the neighborhood better. Although the resolution in our
Boltzmann simulation is rather low, the discrepancy in the
Eddington tensors is not an artifact of the resolution since it is
also found in the high-resolution simulation.
Finally, the angular momentum loss by neutrino emissions

was evaluated both directly from the distribution functions and
analytically according to the Epstein formula. It is found that
the latter approximation tends to overestimate the angular
momentum loss but that the error is at the level of several tens
of percent.
In this paper we discussed effects of rotation, assuming

axisymmetry. New features may appear in 3D simulations.
Takiwaki et al. (2016), for example, reported that the
nonaxisymmetric fluid instability called low- ∣ ∣T W instability
revives the stalled shock in their 3D models. Such an instability
may also occur in 3D simulations with the Boltzmann solver,
changing the dynamics significantly. The 3D version of our
Boltzmann-radiation-hydrodynamics code is under develop-
ment, and results of such an investigation will be reported
elsewhere. Although we studied only a modestly rotating
model in this paper, faster rotations are certainly our concern.
Then not only the neutrino distributions but the dynamics itself
will also be affected. For instance, the rotational core bounce,
which is induced not by nuclear forces but by centrifugal
forces, is an interesting topic. We are currently running such
simulations at present, and the results will be published later.
The improvement of our code is also underway. Among

other things, how the general relativistic strong gravity affects
the supernova dynamics, as well as the distributions of

Figure 18. Comparison of the Boltzmann-Eddington (red) and M1-Eddington (blue) factors for the simulations with the higher (solid lines) and lower (dotted lines)
resolutions. Only the electron-type neutrinos are shown at their mean energies. In the lower panels, the fractional differences between the higher- and lower-resolution
results are plotted.

Figure 19. Angular momentum loss by neutrino emissions as a function of the
time after bounce. The blue and red lines show the evaluation from
Equations (35) and (36), respectively.
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neutrinos, is our concern. Note that the Boltzmann solver
described in Nagakura et al. (2017) and used in this paper has
already implemented general relativity in the 3+1 decom-
position of spacetime, although only the uniform acceleration
of the entire system in the flat spacetime has been employed.
Some tests in curved spacetimes and/or the coupling with
dynamical spacetimes will be reported in a forthcoming paper.
We have so far developed a numerical relativity module in
polar coordinates like what is proposed in Baumgarte et al.
(2013), which will also be published elsewhere soon.
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Appendix
Some Diagnostics

Although the rotation in our simulation is modest and does
not essentially affect the dynamics, some diagnostics are still
useful for the comparison with other works. In this appendix,
we hence present the ratio of the rotational energy to the
gravitational energy, the electron fraction as a function of the
density, the timescale ratio, and the trajectory of the PNS
center, for that purpose.

As a gauge of the degree of rotation, we show the ratio of the
rotational energy to the absolute value of the gravitational
energy, ∣ ∣T W , from the onset of collapse to just after bounce
in Figure 20. It is found that ∣ ∣T W varies from ∼2.5×10−4 to
∼3×10−3 during this period.

Liebendörfer (2005) demonstrated in his 1D general
relativistic Boltzmann-radiation-hydrodynamics simulations
that the electron fraction Ye of each fluid element follows
approximately the same history during the collapse phase,
which can be expressed conveniently as a function of density,

whose functional form is obtained by fitting the numerical data.
Note that his result is based on the 1D simulations, and possible
effects of rotation on this “Ye prescription” were not examined.
Figure 21 shows the comparison between our rotating model
and the nonrotating model in Nagakura et al. (2018). It is clear
that, contrary to the claim by Liebendörfer (2005), the electron
fraction profiles at different times cannot be expressed by a
single function of density alone. This is not unexpected,
though, since we use the updated electron-capture rates and
assume the Newtonian gravity. There is almost no difference
between the rotating and nonrotating models, on the other
hand. The rotation assumed in this study is simply too modest,
and more rapid rotation may change the result. Such
investigations are currently being undertaken, and the results
will be presented elsewhere in the near future.
Figure 22 shows the timescale ratio t tadv heat, which is often

used by supernova modelers. The advection timescale tadv is
defined as the ratio of the gain mass, which is the mass in the
region where neutrino heating dominates cooling, to the mass
accretion rate. The heating timescale theat is defined as
t = ∣ ∣E Qheat gain , in which

ò r ry= + +⎜ ⎟
⎛

⎝

⎞

⎠
( )E e v dV

1

2
38

r

r

gain th
2

gain

shock

is the total energy in the gain region, with eth and ψ being the

thermal energy and gravitational potential, respectively, whereas

Figure 20. Time evolution of ∣ ∣T W .

Figure 21. Electron fraction profiles as a function of the density at the times

when the central density is -10 g cm11 3 (red and blue lines) and -10 g cm14 3

(yellow and green lines). The solid and dotted lines represent our rotating
model and the nonrotating model in Nagakura et al. (2018), respectively.
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Q is the neutrino heating rate in the gain region. According to

Appendix A in Bruenn et al. (2016), the thermal energy should

be defined as

r r
= + + -

⎛

⎝
⎜

⎞

⎠
⎟

¯
( )e

Am
kT aT e Y m c

m

3

2
, 39th

u

4
e e e

2

u

where ee , Ā, and a are the internal energy density of the

electron–positron gas with their rest mass included, the mean

mass number, and the radiation constant, respectively. When

the ratio t tadv heat exceeds unity, the heating occurs faster than

the advection and the supernova has a chance to explode

successfully. It is seen in Figure 22 that this happens during

only a very short period and the ratio has decreasing trends

thereafter, indicating the failure of shock revival in this model.
Since our code is equipped with the moving-mesh capability,

we can follow the proper motion of a PNS, unlike other codes,
in which the center of a PNS is artificially fixed. This is shown
in Figure 23 for both the rotating model presented in this paper

and the nonrotating model presented in Nagakura et al. (2018).
According to the figure, the motion of the PNS is more violent
in the nonrotating model than in the rotating model. This can be
understood from Figure 1. The entropy distributions in the
meridian section are more symmetric with respect to the
equator up to the stalled-shock phase in the rotating model.
Since it is a result of the centrifugal force, the larger force
imbalance between the northern and southern hemispheres
leads to the more violent PNS kick in the nonrotating model.
The kick velocity is small in both models, however, and the
difference between the laboratory frame and the acceleration
frame is also small accordingly.
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