
On the newsboy model with a cuto� transaction size

R. Dekker� J.B.G. Frenk� M.J. Kleijn� A.G. de Koky

September 1997

Abstract

In this paper we analyse the e�ect of a cuto� transaction size in a simple newsboy

setting. It is assumed that customers with an order larger than a prespeci�ed size

are satis�ed in an alternative way, against additional cost. For compound Poisson

demand with discrete order sizes, we show how to determine the average cost and

an optimal cuto� transaction size. Because the computational e�ort to calculate the

exact cost is quite large, we also consider an approximative model. By approximating

the distribution of the total demand during a period by the normal distribution one

can determine an expression for the average cost function that depends on the cuto�

transaction size only. A main advantage of this approximation is that we can solve

problems of any size. The quality of using the normal approximation is evaluated

through a number of numerical experiments, which show that the approximative re-

sults are satisfactory.
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1 Introduction

In practice, many inventory systems need to deal with erratic (or lumpy) demand patterns,

which may be the result of occasionally occurring large transactions interspersed among
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a majority of small transactions (Silver [16], Hollier, Mak & Lam [5]). A well-recognised

concept to prevent the large transactions from disturbing the inventory system is the use of

a cuto� transaction size. With this concept, all demand smaller or equal than a prespeci�ed

cuto� transaction size (or maximum issue quantity, exceptional quantity, break quantity,

weight limit, etc.) is routinely served, whereas large demand is alternatively delivered to the

customer, e.g. by a direct delivery from a higher level stockpoint. Although this concept

appears to gain popularity in practice (see e.g. Ballou [2], p. 43), it is not extensively

analysed in the literature. The �rst theoretical contribution (to our knowledge) was made

by Popp [14], who introduced the notion of a combined inventory policy where small demand

was delivered from stock and large demand was delivered directly, thereby incurring a �xed

setup cost. Using a rather approximative inventory model, he derived, for exponentially

distributed order sizes and zero lead time, conditions under which the use of a cuto�

transaction size was bene�cial. Silver [16] discussed some factors contributing to an erratic

demand pattern, and presented, for zero lead time and compound Poisson demand, a

method to determine the average inventory cost and service levels in an (s; S) model with

a cuto� transaction size. More recently, Hollier, Mak & Lam [5, 6] and Mak & Lai [10, 11]

presented results on the determination of the average cost in an (s; S) model with compound

Poisson demand and a positive lead time. They also considered a simple additional cost

function for not satisfying customers with large transaction sizes. However, although their

analysis is exact, the e�ect of the cuto� transaction size on the system performance is

rather intransparent, i.e. the sensitivity of the cost function with respect to the cuto�

transaction size is not obvious. Examples on the use of the concept in practice are given

by Matz [12] and Nass, Dekker & Van Sonderen-Huisman [13]. Finally, for an overview on

the e�ect of using a cuto� transaction size on the performance of a distribution system we

refer to Kleijn & Dekker [7].

The objective of this paper is to analyse the e�ect of a cuto� transaction size on the

average cost of a newsboy model, and determine a way of obtaining an optimal cuto�

transaction size. We consider compound Poisson demand, and assume that the additional

cost of alternatively delivering a large order (over
ow cost) is known. In some practical

situations this over
ow cost function may represent the transportation cost of delivering a

large order directly from the factory. Although in principle we are able to determine the

optimal policy, we also analyse an approximative method in which the demand during a

period is assumed to be normally distributed. This assumption enables us to derive an
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expression for the average cost function which only depends on the cuto� transaction size.

Moreover, if the maximum size of a customer order and/or the arrival rate is large, the

determination of the true optimal policy may fail due to computational problems. Using

the normal approximation one can handle problems of any size. Finally, under the normal

approximation it is possible to derive, for special cases of the over
ow cost function, an

upperbound on the optimal cuto� transaction size, which may also serve as a \quick and

dirty" approximation of this optimal size.

Although the newsboy model in itself is of little (practical) importance, it is the building

stone for a number of stochastic inventory models (Lee & Nahmias [9], Porteus [15]). For

example, the newsboy model can easily be extended to multi-period, multi-echelon models

with a positive lead time (see e.g. Clark & Scarf [3]). The results presented in this paper

for normal distributed demand can also be used for these extended models (Dekker, Kleijn

& De Kok [4]).

In Section 2 we derive exact expressions for the average cost of a newsboy model with a

cuto� transaction size. Section 3 discusses an approximative analysis, where the demand

during a period is assumed to be normally distributed. This allows for the derivation of an

expression for the average cost as a function of only the cuto� transaction size. In Section

4 the quality of the normal approximation is tested through a number of computational

experiments. The last section provides some concluding remarks.

2 Analysis of the newsboy model with a cuto� trans-

action size

In this section, the traditional newsboy model is extended with the notion of a cuto�

transaction size. In this new model, demand from a customer is only satis�ed from stock

on hand if the size of the order does not exceed a prespeci�ed cuto� transaction size,

otherwise the customer is served in an alternative way, against additional cost. In order to

distinguish customers by their order size, we assume that the demand is compound Poisson

distributed. The notation that we use in this paper is listed in Table 1.

It is assumed that the starting inventory level is zero. Now the problem is to determine

how much to order (S) and how to set the cuto� transaction size q, such that the expected

cost over a single period is minimised. This problem reduces to the traditional newsboy
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N (Poisson distributed) number of customers arriving during a period

� arrival rate of customers, i.e. � := IE(N)

Yi (random) order size of ith customer

a order size distribution, i.e. a(j) := PrfYi = jg
M maximum order size, i.e. M := maxfj � 0 : a(j) > 0g
q cuto� transaction size

1fAg indicator function of the event A

aq order size distribution for cuto� transaction size q,

i.e. aq(j) := PrfYi1fYi�qg = jg
Dq (random) demand during a period for cuto� transaction size q,

i.e. Dq =
PN

i=1 Yi1fYi�qg

fq pdf of demand during a period for cuto� transaction size q,

i.e. fq(j) = PrfDq = jg
Fq cdf of demand during a period for cuto� transaction size q,

i.e. Fq(j) = PrfDq � jg
S order-up-to level

S(q) optimal order-up-to level for cuto� transaction size q

C(S; q) expected total cost during a period for order-up-to level S

and cuto� transaction size q

C(q) minimum expected cost during a period for cuto� transaction size q,

i.e. C(q) := C(S(q); q)

c unit ordering cost

h unit holding cost

p unit penalty cost

� over
ow cost function,

i.e. �(j) denotes the cost of alternatively satisfying an order of size j

Table 1: Notation.
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problem if the cuto� transaction size is set equal to in�nity (or the maximum size M of

a customer order), since then all demand is handled on a routine basis. The total cost

consists of

� ordering or production cost for realising the initial stock level

� holding cost for units in stock at the end of the period

� penalty cost for unsatis�ed demand during the period

� over
ow cost for alternatively delivering large orders during the period

It can be veri�ed that the expected total cost for a period is given by

C(S; q) = IC(S; q) +OC(q)

with IC(S; q) the expected inventory (ordering, holding and penalty) cost, given by

IC(S; q) = cS + h
SX
j=0

(S � j)fq(j) + p
1X

j=S+1

(j � S)fq(j)

and OC(q) the expected over
ow cost which equals

OC(q) = �IE(�(Yi)1fYi>qg) = �
MX

j=q+1

�(j)a(j)

Our objective is to �nd the solution of the optimisation problem

inffC(S; q) : 0 � S <1; 0 � q �Mg =

inffOC(q) + inffIC(S; q) : 0 � S <1g : 0 � q �Mg

Observe that the optimisation problem inffIC(S; q) : 0 � S < 1g is just a standard

newsboy problem with demand distribution Fq, and its solution is given by (see e.g. Por-

teus [15])

S(q) = minfj 2 IN+ : Fq(j) �
p � c

p + h
g (1)

Observe that if p � c, the optimal order-up-to level will be zero. Hence, we will henceforth

assume that p > c. In order to calculate S(q) we observe that the distribution function fq

can be computed using Adelson's recursion scheme (Adelson [1]). With

aq(j) =

8>>><
>>>:

a(0) +
PM

i=q+1 a(i) if j = 0

a(j) if j = 1; : : : ; q

0 otherwise
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it follows that fq(j) satis�es the recursive relations (see e.g. Tijms [18])

fq(j) =

8<
: e��(1�aq(0)) if j = 0

(�=j)
Pj�1

i=0 (j � i)aq(j � i)fq(i) if j = 1; 2; : : :

Hence, an e�cient way to determine S(q) would be to recursively calculate fq(0); : : : ; fq(j)

until Fq(j) :=
Pj

i=0 fq(i) � (p � c)=(p + h). Substituting the optimal value S(q) into the

cost function C(S; q) we get the one-dimensional minimum expected cost function

C(q) := inffC(S; q) : 0 � S <1g = C(S(q); q)

Since the order sizes are discrete and bounded by M , we can use enumeration over q =

0; : : : ;M to �nd the optimal cuto� transaction size, i.e. the optimal solution of minfC(q) :
0 � q � Mg, and the associated expected cost. In fact, it can be veri�ed that C(S; x) �
C(S; q) with q = maxfj � x : a(j) > 0g, and hence one only needs to consider cuto�

transaction sizes q for which a(q) > 0. Observe that this will considerably reduce the

computational e�ort needed to determine the optimal cuto� transaction size.

3 Approximative analysis of the newsboy model with

a cuto� transaction size

A main problem of the exact analysis is the fact that the computation time increases expo-

nentially when the arrival rate and/or the maximum size M of a customer order increases.

This problem does not occur if the total demand during a periodDq is normally distributed.

Justi�ed by the central limit theorem, the normal distribution is often used as an approxi-

mation of the real demand distribution. In a recent paper, Tyworth & O'Neill [19] reported

that although this approximation in many cases leads to a misspeci�cation of the optimal

policy parameters, the sensitivity of the expected optimal cost appears to be much less.

We will now show that by approximating the distribution of the demand during a period

by the normal distribution it is possible to obtain an easy expression for the minimum

expected cost C(q). First, we introduce some additional notation in Table 2.

For a given cuto� transaction size q, it follows (see e.g. Tijms [18]) that the �rst two

moments �q and �2q of the variable Dq are given by

�q = �
1X
j=0

jaq(j) = �
qX

j=1

ja(j)
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�q mean demand during a period for cuto� transaction size q,

i.e. �q = IE(Dq)

�2q variance of demand during a period for cuto� transaction size q,

i.e. �2q = Var(Dq)

SN (q) optimal order-up-to level for cuto� transaction size q and normal demand

CN (S; q) expected total cost during a period for order-up-to level S,

cuto� transaction size q and normal demand

CN (q) minimum expected cost during a period for cuto� transaction size q

and normal demand, i.e. CN(q) := CN(SN (q); q)

';� pdf and cdf of the standard normal distribution

Gq cdf of normal distribution with mean �q and variance �2q

Table 2: Additional notation.

and

�2q = �
1X
j=0

j2aq(j) = �
qX

j=1

j2a(j)

Approximating Fq by a normal distribution Gq with mean �q and variance �2q it follows

from (1) that the optimal order-up-to level is given by

SN (q) = minfj � 0 : j � �q + z�qg

with z := ��1((p � c)=(p + h)) the safety stock multiplier. Moreover, the expected total

cost during a period is approximated by

CN(S; q) = cS + h
Z S

0
(S � y)dGq(y) + p

Z
1

S
(y � S)dGq(y) + �

MX
j=q+1

�(j)a(j)

Although the optimal order-up-to level needs to be an integer, we substitute S = �q + z�q

into the expected cost funtion CN (S; q) to obtain that the minimum expected cost during

a period is approximately equal to (see e.g. Porteus [15])

CN(q) = c�q + �q [(c+ h)z + (p+ h)I(z)] + �
MX

j=q+1

�(j)a(j)

= �IE(�(Yi)) + k�q � �
qX

j=0

(�(j)� cj)a(j) (2)
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where I(�) denotes the normal loss function (Tijms [18], Silver & Peterson [17]) and k :=

(c+ h)z+ (p+h)I(z). From Tijms [18] we learn that I(z) = '(z)� z(1��(z)), and since

z = ��1((p � c)=(p + h)) this implies that k = '(z). Again, we can use enumeration over

all cuto� transaction sizes q for which a(q) > 0 to determine the optimal cuto� transaction

size. However, for the approximative model it is possible to characterise an upperbound

on the optimal cuto� transaction size.

Lemma 3.1 An optimal solution q�N of the optimisation problem inffCN(q) : 0 � q �Mg
satis�es

q�N � qu := maxfj � 0 :
1

2
k��1M j2 � (�(j)� cj) < 0g

Proof: By (2) we obtain that

CN (q)� CN(q � 1) = k(�q � �q�1)� �(�(q)� cq)a(q)

for 0 < q �M . Since due to the concavity of the function x! p
x it follows for 0 � x <1

and 0 < y <1 that
p
y�px � 1

2
y�1=2(y�x), we obtain (by taking y = �2q and x = �2q�1)

that

�q � �q�1 �
1

2
��1q �q2a(q)

Hence, since ��1q � ��1M this yields

CN(q)�CN (q � 1) � �a(q)
�
1

2
k��1M q2 � (�(q)� cq)

�

Since for any q > qu it follows that CN (q) � CN (qu) the desired result follows. 2

An immediate consequence of the above result is that for an a�ne over
ow cost function

�(j) = �0 + �1j an upperbound on the optimal cuto� transaction order size is given by

qu =
(�1 � c)�M

k
+

s
(�1 � c)2�2M

k2
+
2�0�M
k

(3)

Since this upperbound is very easy to compute, it may be used as a \quick and dirty"

approximation for the optimal cuto� transaction size.

This concludes our analysis of the newsboy model with a cuto� transaction size.
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4 Computational results

The main objective of this section is to test the quality of the normal approximation,

in particular with respect to the optimal cuto� transaction size and the maximum cost

reduction that can be obtained by introducing a cuto� transaction size. We evaluated 4

di�erent order size distributions and considered a�ne over
ow cost. For each distribution

we generated examples by choosing the parameter values from the following sets: h 2 f1g,
p 2 f10; 50; 100; 500g, c 2 f5; 10; 25; 50g, �0 2 f0; 10; 25; 100g, �1 = c + �(p � c) with

� 2 f0:2; 0:4; 0:6; 0:8g and � 2 f1; 2; 5; 10g. Since we require p > c, this leads to 768

di�erent data sets for each distribution.

The �rst two order size distributions we used are based on examples given by Hollier, Mak

& Lam [6] and Silver [16]. The third distribution is created using a geometric distribution

with parameter 0:2 (a(j) := 0:2 � 0:8j�1) for j = 1; : : : ; 15, and setting the tail of the

distribution at j = 25. The last order size distribution was based on real-life demand data

from the CERN laboratory (Krever [8]), scaled with a factor 100 to allow for the calculation

of the exact cost. In Table 3 the order size distributions are presented. For each order size

distribution, we calculated for all 768 cases the cost reduction obtained by using a cuto�

transaction size. The values in column exact report the relative cost reductions obtained

using the exact cost analysis, i.e.

C(M)� inff0 � q �M : C(q)g
C(M)

whereas in column approximation the relative cost reductions are presented which were

obtained using the approximative cost function, i.e.

CN(M) � inff0 � q �M : CN(q)g
CN(M)

We also calculated the relative cost reduction that one gets when the cuto� transaction

size equals the cuto� transaction size that minimises the approximative cost function, i.e.

C(M)� C(q�N)

C(M)

with q�N the optimal solution of inff0 � q � M : CN (q)g. This reduction is presented in

column optimal normal. Finally, column upperbound reports the relative cost reduction

related to using the upperbound qu given in (3) as the cuto� transaction size, i.e.

C(M)� C(qu)

C(M)
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In Table 4 the minimum, average and maximum relative cost reduction (� 100%) are

presented.

order size distribution 1 (mean 4:49, variance 35:48, coef. of var. 1:32)

i 1 2 3 4 5 6 7 8 9 12

a(i) 0.35 0.20 0.07 0.15 0.01 0.02 0.02 0.05 0.01 0.02

i 14 15 18 20 24 25 28 30 36 40

a(i) 0.02 0.05 0.005 0.004 0.003 0.002 0.005 0.002 0.003 0.001

i 42 45 50

a(i) 0.002 0.002 0.001

order size distribution 2 (mean 2:1, variance 54:99, coef. of var. 3:53)

i 1 5 75

a(i) 0.90 0.09 0.01

order size distribution 3 (mean 5:16, variance 25:01, coef. of var. 0:96)

i 1 2 3 4 5 6 7 8 9 10

a(i) 0.20 0.16 0.128 0.102 0.082 0.066 0.052 0.042 0.034 0.027

i 11 12 13 14 15 25

a(i) 0.022 0.017 0.014 0.011 0.009 0.034

order size distribution 4 (mean 11:16, variance 127:73, coef. of var. 1:01)

i 1 2 3 5 6 7 8 10 11 12

a(i) 0.18 0.02 0.08 0.04 0.14 0.02 0.02 0.10 0.14 0.02

i 13 16 18 20 21 22 30 35 38 46

a(i) 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02

i 50

a(i) 0.02

Table 3: Order size distributions.

If the maximum order size or the arrival rate of customers is rather large, then it is

computationally impossible to use the exact cost function C(S; q) in order to determine

the optimal cuto� transaction size and the corresponding relative cost reduction. In this

case, one may use the approximative cost function CN (S; q). Comparing the columns exact

and approximation, we can see how well the relative cost reduction is estimated when using

the approximative cost function. From Table 4 we see that using the normal approximation
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order size distribution exact approximation optimal normal upperbound

min 0.00 0.00 -6.00 -3.00

1 av. 5.85 6.76 4.99 3.35

max 52.00 55.00 52.00 34.00

min 0.00 0.00 -9.00 -3.00

2 av. 20.51 29.41 17.49 12.93

max 67.00 74.00 67.00 61.00

min 0.00 0.00 -7.00 -6.00

3 av. 3.75 4.31 3.34 2.01

max 47.00 50.00 47.00 32.00

min 0.00 0.00 -6.00 -2.00

4 av. 4.37 5.06 3.99 2.40

max 48.00 50.00 48.00 34.00

Table 4: Minimum (min), average (av.) and maximum (max) relative cost reduction (�
100%) obtained by cuto� transaction size for 768 data sets.

of the demand generates results which are close to the exact results. However, the relative

cost reduction tends to be overestimated when the approximative cost function is used. In

particular for order size distribution 2, the di�erence is about 9%, although it should be

noted that this order size distribution is highly lumpy. Since the order size can only attain

3 di�erent values (1, 5 or 75), the use of the normal approximation of the total demand

can easily lead to relatively large errors. The other distributions are smoother, and the

results of using the approximative cost function are much better.

It is also interesting to determine the quality of the optimal cuto� transaction size obtained

by minimising the approximative cost function. Comparing columns exact and optimal

normal, we see that on average the relative cost reduction when using the approximative

optimal cuto� transaction size is only slightly smaller than optimal. However, in some

cases, it leads to a bad performance, i.e. an increase in cost. The worst case, for order size

distribution 2, led to an increase of 9%. An analysis of the worst cases revealed that they

occurred for � = 1, i.e. the lowest arrival rate. Since the normal approximation is justi�ed

using the central limit theorem, it is clear that its quality will increase if the arrival rate

of customers increases.
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Using the upperbound qu as a \quick and dirty" approximation of the optimal cuto�

transaction size gives satisfactory results. Although the relative cost reductions are less

than optimal, the worst case behaviour is good compared to the worst case behaviour of

using the cuto� transaction size that minimises the approximative cost function. Finally,

one can observe that the relative cost reduction appears to increase with the coe�cient

of variation of the order size distribution, which is de�ned as the ratio of the standard

deviation and the mean of the order size distribution. This can be explained by the fact

that the inventory holding cost is increasing with the variability of the demand. If this

variability is relatively large, then rejecting the demand from a small fraction of customers

with large order sizes will cause a signi�cant reduction in the demand variability and thus

the inventory holding and shortage cost.

Intuitively, one could imagine that there is a relation between the optimal cuto� transaction

size and the order size distribution. In particular, it is expected that an optimal cuto�

transaction size will coincide with a peak in the distribution. However, this does not seem

to be the case in general. For all 4 order size distributions we determined the percentage of

cases that a certain cuto� transaction size was optimal, and plotted these results against

the order size distribution in Figures 1, 2, 3 and 4.
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Figure 1: Percentage of cases that cuto� transaction size i was optimal for distribution 1.
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From Table 3 we read that order size distribution 1 has a large peak at i = 15 and a

small one at i = 28. However, from Figure 1 it follows that q = 20 and q = 30 were

popular choices for the optimal cuto� transaction size. For distributions 2 and 3 the

relation between the order size distributions and the optimal cuto� transaction sizes was

signi�cant. In 65% of the cases for distribution 2 the optimal cuto� transaction size was

equal to 5, whereas for distribution 3 in 15% of the cases q = 15 was optimal. Hence, in

both situations a good policy seemed to be to satisfy all order sizes, except the largest one.

For order size distribution 4 the results were similar to distribution 1. The popular optimal

cuto� transaction size 22 did not correspond to a peak in the order size distribution. We

also mention that, for all distributions, the percentage of cases with q = 0 optimal was

about 10%. In these cases the additional cost of not satisfying demand from stock on hand

was less than the cost of holding inventory. The optimal cuto� transaction size was equal

to the maximum size of a customer order in respectively 42%, 10%, 62% and 69% of the

cases. Since a cuto� transaction size equal to the maximum order size is equivalent with

a traditional policy without the concept of a cuto� transaction size, the cost reduction

in these cases was zero. Finally, again the results of the approximative model are closely

related to the exact results, as can be observed from Figures 1, 2, 3 and 4.

We now consider two arbitrary examples for order size distribution 4. For both examples,

we plotted in Figures 5 and 6 the exact cost function C(q) and the approximative cost

function CN (q) for all values of the cuto� transaction size q.
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Figure 5: A plot of C(q) and CN (q), for distribution 4 and c = 5, p = 10, �0 = 25, �1 = 6

and � = 5.



On the newsboy model with a cuto� transaction size 15

1880

1900

1920

1940

1960

1980

2000

2020

2040

0 5 10 15 20 25 30 35 40 45 50 q

exact C(q)
approximation CN(q)

Figure 6: A plot of C(q) and CN (q), for distribution 4 and c = 10, p = 50, �0 = 0, �1 = 18

and � = 10.

As can be seen, the normal approximation is closer to the exact cost when the arrival

rate is larger. However, even though there is a signi�cant di�erence between the exact

and approximated cost in Figure 5, the shapes of the function are similar and the optimal

cuto� transaction sizes are close (18 (exact) vs. 13 (approximation)), and also the relative

cost reductions are similar (7% vs. 10%). The value of the upperbound qu in Figure 5 was

equal to 27, which led to a reduction of 6% in average cost. The di�erence between the

true cost function and the approximative cost function is very small in Figure 6. Also the

optimal cuto� transaction sizes and relative cost reductions (30 and 0.07% (exact) vs. 38

and 0.04% (approximation)) are comparable. The value of the upperbound was equal to

50 (the maximum size of a customer order).

To conclude our section on computation results, we observe from Figures 5 and 6 that in

general the cost functions C(q) and CN (q) do not have a shape that could allow us to design

a straight algorithm to �nd the optimal q. Together with the observation that the optimal

cuto� transaction size does not have a relation with the order size distribution, this justi�es

the use of enumeration to �nd the optimal cuto� transaction size. The remark at the end

of Section 2, that only cuto� transaction sizes q for which a(q) > 0 need to be evaluated,

can also be veri�ed from Figures 5 and 6. It can be observed that C(q + 1) = C(q) and

CN (q + 1) = CN(q) if a(q + 1) = 0.
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5 Concluding remarks

In this paper an analysis of the newsboy model, extended with the notion of a cuto�

transaction size, was presented. This extension allows the delivery of large demands in an

alternative way, thus preventing the large orders from disrupting the inventory system. The

main contributions are the derivation of the exact cost and an approximative expression of

the cost as a function of only the cuto� transaction size. The approximation originates from

�tting a normal distribution on the distribution of the total demand during a period. From

the computational experiments it follows that this approximative analysis gives satisfactory

results. A major advantage of using the normal approximation is the fact that it requires

much less computational e�ort. Therefore, it can handle order size distributions with a

wide range of possible order sizes, whereas the computational e�ort needed to calculate

the exact cost grows exponentionally with the range of the order size distribution.

The results presented in Section 4 indicate that the optimisation problem associated with

�nding the optimal cuto� transaction size is in general not an easy problem due to the

nonconvexity of the average cost function. Since only a relatively small number of cuto�

transaction sizes need to be evaluated, the use of enumeration to �nd the optimal policy

is justi�ed.

Finally, we mention that it is possible to extend the approximative results to more general

systems, since the newsboy type equations appear in many inventory models. For example,

the results can be extended to a multi-period, multi-echelon inventory system with positive

lead times (see Dekker, Kleijn & De Kok [4]).
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