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w 1. Introduction 

Let S be a surface of non-excluded (see w 2) finite type,  and set S = S ~ { x 0 }  for some 

xoES.  Consider the very simplest self-maps of S: the self-maps tha t  are homotopic to the 

identi ty on S (in particular such maps must  fix x). When is such a map  parabolic, hyper- 

bolic, or pseudohyperbolic (see w 4 for definition) in the sense of Bers [9]? When is such a 

map reducible (see w 2) in the sense of Thurston [36]? We give a complete answer to this 

question, and as a consequence obtain two interesting facts: 

(I) There exist irreducible self-mappings on Riemann surfaces of every non-excluded 

type (p, n )#(0 ,  3); tha t  is, as long as 3 p + n > 3 .  

(II) The Teichmtiller (=Kobayashi )  metric on the fibers of the Bers fiber spaces is 

not (a multiple of) the Poincard metric on the fibers, unless the Bets fiber space is one 

dimensional. 

The more exact formulation of our first important  result is summarized in 

THEOREM 2'. Let S be an oriented sur/ace o/non-excluded/inite type. Let xoES and set 

S =S~.{xo}. Let w be a sell-map o / S  with w(xo) = x  o and w isotopic to the identity on S. Let 

J be an isotopy of w to the identity: 

J: [0, 1] xS~S, 

J(O, x )=w(x) ,  

and 

J(1, x) = x. 

(x) Research partially supported by NSF Grant MC8 7801248. 

15- 802908 Acta mathematica 146. Iraprim6 le 24 Juin 1981 



232 I. ERA 

Let c(t) =J(t, Xo). (Then v is a closed curve on S.) The map w is isotopic to the identity on 

i /and only i / c  is contractible in S, and w is an irreducible sel/ map o//~ i /and only i / c  is an 

essential curve on S. 

The equivalence of the eontractability of the curve c to the triviality of the map w 

is well known. See Birman [11] and the papers quoted here. Essential curves are defined 

in w 

Since essential curves are easily found, Theorem 2' shows the existence of irreducible 

maps for surfaces of most types. The types not covered by  this theorem can be treated 

by passing to 2 or 4 sheeted~covers (see w 9). I t  is of interest to note tha t  the irreducible 

mappings are precisely the pseudo-Anosov diffeomorphisms (see w 9 of Bers [9]). Thus 

Theorem 2' gives the existence of a wide class of pseudo-Anosov diffeomorphisms. 

A formulation of the second result mentioned above is contained in 

T~EORW~ 4'. Let ~n: V(p, n)' ~ T(p, n) be the punctured Teichmi~ller curve/or sur/aces 

o/non.excluded type (p, n ). Then the Kobayashi-Teichmi~Uer metric on V (p, n )' when restricted 

to gnl(~) with ~E T(p, n) does not agree with the hyperbolic metric on this sur/ace, except i/  

(p, n ) =  (0, 3). 

Special cases of our results have been obtained independently by Nag [29] in his 

thesis. I thank IApman Bers, Bernard Maskit, and Peter Matelski for many helpful sug- 

gestions. In particular, Bers' paper [9] is crucial to this work, and the Maskit-Matelski 

paper [27] stimulated much of the current investigation. I am also grateful to William 

Abikoff for a very careful reading of a previous draft of this manuscript. 

In  a series of papers, Nielsen [30] discussed automorphisms of orientable surfaces. He 

classified these automorphisms into various types. About 50 years later, Thurston [36] 

also studied automorphisms of surfaces, and introduced a different classification. Bers [9] 

showed that  Thurston's classification can be obtained by looking at  the element of the 

modular group induced by a self-map of a surface. Quite recently, Gilman [18] obtained 

the relations between the older Nielsen classification and the new Thurston-Bers classifi- 

cation. These few historical remarks should help explain the title of this apper. 

Several interesting new problems arise as a result of this work. These will be pursued 

further in the future. 

w 2. Self-mappings isotopic to the identity 

Let  S be an oriented surface of type (p, n). Assume S is of non-excluded type; tha t  is, 

2 p - - 2 + n > 0 .  (2.1) 
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Figure 1. An admissible curve (c) on a surface of type (2, 0). 

A finite non-empty set of disjoint Jordan curves C = {C~ ..... C~) will be called admissible 

(see Figure 1) if no Cj can be deformed into a point, a boundary component of S, or into 

C k with k4=?'. Following Thurston [36] and Bers [9], we say that  an orientation preserving 

homeomorphism /: S ~ S  is reduced by C if this set is admissible and i f / (C)  =C. A self- 

mapping / of S will be called reducible if it is isotopic to a reduced mapping, irreducible if 

it is not. If / is reduced by C, we let S 1 ..... Sm be the components of S ~ C .  These will be 

called the (proper) parts of S ~ C  or of S. Then each surface Sj is again of finite non-excluded 

type and / permutes the parts Sj. We let ~j be the smallest positive integer so t h a t / ~  fixes 

Sj. We shall denote the restr ict ion/~ISj  by the symbol /~  when the meaning is clear. 

If  ] is reduced by  C, then we say that  ] is completely reduced by C if for each j, ]~ is 

irreducible. Bers [9] has shown that  every reducible mapping is isotopic to a completely 

reduced mapping. If / is completely reduced, then the /~J are called (Gilman [18])the 

component maps of /. 

Let  xoES and set ~=S~(Xo} .  L e t / :  S-->S be a self-mapping of S. Assume that  / is iso- 

topic to the identity on S and tha t / (%)  =x o. 

Problem A. Find necessary and su[ficient conditions/or/: ~ - ~  to be reducible. 

We consider the group of orientation preserving self-mappings / of the surface S that  

satisfy two conditions 

(1) ](xo) = x  o and 

(2) / is isotopic to the identity self-map of S. 

We factor this group by Che normal subgroup of self-mappings that  are isotopic to the 

identity as self-maps of ~. We denote the factor group by 

Isot (S, x0). 
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We are interested in describing and classifying the elements of the group Isot (S, x0). 

Throughout this paper we restrict our attention to orientable surfaces o/non-excluded finite 

type, and maps between surfaces that are topological and orientation preserving. 

w 3. Another extremal problem 

Let  S now be a l~iemann surface of non-excluded finite type (p, n); tha t  is, S = 

~ , { x  1 ..... x~}, where ~ is a compact Riemann surface of genus p, Xl ..... xn are n distinct 

points on ~, and (2.1) is satisfied. 

For a quasieonformal m a p / :  S-~ ~ between Riemann surfaces, we let 

it  is given by  the formula 

K(f) = dilatation of f; 

1 + I1 11  K(/): 

where ~u is the Beltrami coefficient o f / ,  and II#]]~o denotes t h e L  ~~ (=essential supremum)- 

norm of/~. 

Problem B. Let x and y be two distinct points on S. Among all quasiconformal self-map- 

pings f: S-->S with the properties 

(i) / is isotopic to the identity, and 

(ii) f(x)=y, 

find and characterize the extremals. 

In  particular, let ~(x, y) = �89 log K, where K is the dilatation o/an extremal for the problem 

(an extremal always exists). Then ~ defines a metric on S (see w 10). Is ~ a constant multiple of 

the hyperbolic (Poincard) metric on S? 

We shall rely on the classical solution of a related problem. Let  D be a Jordan domain 

in t3U {~}  with hyperbolic metric ~D=~ of constant curvature --4. For x, yED, there 

exists a unique self-mapping (Teiehmiiller [35], Gehring [17]) f of D so that  f is the identity 

on the boundary of D, /(x)=y, and f minimizes the dilatation among all such mappings. 

Let  K(x, y) be the dilatation of such an extremal f. We shall need the following 

L]~MMA 1 (Teichmiiller [35], Gehring [17]). There exists a dif/erentiable real-valued 

function ~ defined on [0, cr such that 

(1) ~(0) = 0, limt-,~o u(t) ~ c~, 

(2) u(t) is strictly increasing, 

(3) u(t)/t is strictly decreasing, and 

(4) �89 log K(x, y) = u(e(x, y)). 
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The exact formula for z, which may  be found in [17], will not be needed in the sequel. 

The fact tha t  K(x, y) depends only on 0(x, y) is quite easy to verify. We will also need to 

know (see [17]) tha t  

(5) ~'(0)=~. 

As a mat te r  of fact ([35]), 

and 

0 K=l+~+o(o2) ,  o~O,  

K > I +  Q- all 0- 
2 '  

I t  is quite easy to conclude from [17] and the methods of w 10, tha t  the function 

(x, y) ~-> u(0(x, y)) 

on D • D defines a complete metric on D. The metric gives rise to the usual topology on D. 

I t  is invariant under the full group of automorphisms of D, and is not a multiple of the 

hyperbolic metric on any  segment which is par t  of a geodesic in the 0-metric. 

The solutions to Problems A and B and some related problems to be stated in w 6 

involve not surprisingly, the theory of Teichmiiller spaces; which we now review. 

w 4. Teichmiiller spaces and their modular groups 

We shall follow the notation of Bers [9]. Let  S be an oriented surface of finite non- 

excluded type (19, n). A con]ormal structure of the/irst kind is a topological mapping a of S 

onto a Riemann surface of finite type. From now on, "conformal structure of the first kind" 

will b y  abuse of language be abbreviated by  "conformal structure".  Two conformal struc- 

tures ~1 and % on S are strongly equivalent if there exists a conformal map c of al(S ) onto 

%(S) such tha t  ~1oco~1 is isotopic to the identity. The strong equivalence classes [~] of 

structures form the points of the Teichmi~ller space T(p, n)and the (Teichmi~ller)distance 

between two points [al] and [%] is defined by  

([~1], [as]) = I log K(h), 

where h is the unique extremal isotopic to a2o~; i. With this metric T(p, n) is a complete 

space homeomorphic to (~sp-~+n. Moreover, T(p, n) is a complex manifold, and, by  a result 

of Royden [34], the Teichmiiller metric is the same as the hyperbolic Kobayashi  metric 

on T(p, n). 

The modular group Mod (p, n) is the group of isotopy classes of self-mappings of S. I t  
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acts as a group of holomorpMc isometries of T(p, n) as follows. If / is a self-map of S, then 

the self-map/* of T(T, n) sends [0] in to /*  ([0]) =[ao/-1],  where 0 is a conformal structure 

on S. The modular group acts effectively on T(p, n) unless the type appears in the following 

short list of exceptional types: 

(0, 3), (0,4), (1, 1), (1,2), and (2,0). 

Let  % EY[od (p, n) and assume that  g acts non-trivially on T(p, n). Bers [9] has introd- 

used a classification of elements of Mod (p, n) by setting 

a(;~) = inf <T, %(v)>, (4.1) 
v~T(p,n) 

and calling % elliptic if it has a fixed point in T(p, n), parabolic if there is no fixed point and 

a (z )=0  , hyperbolic if a (z )>0  and there is a veT(p, n) with a(z)=(*:, Z(T)>, and pseudo. 

hyperbolic if a(z) >0  and a(z ) <(T, Z(T)> for all TE T(p, n). 

The number a(%) is not easily computed. If Z is induced by the self-map ] of S and a 

is a conformal structure on S, then ao]- loa  -1 is a self-map of the Riemann surface a(S). 

Let  hr be the unique extremal self-map of o(S) isotopic to oo]-1o 0 -1. Then 

a(%)= inf �89 
[a] �9 T(p, n) 

We should also observe that  Z induces a quasieonformal self-mapping on every surface 

represented in T(p, n). 

w 5. Fiber spaces over Teichmliller spaces and their modular groups 

Let Y be a finitely generated Fuehsian group of the first kind operating on the upper 

half plane U. We denote by M(F) the space of Beltrami coefficients for F. For every 

~tEM(F) there exists a unique homeomorphism 

w,,: cu cu 

(i) which is normalized to fix 0, 1, ~o, 

(ii) has Beltrami coefficient/x in U, and 

(iii) is eonformal in the lower half plane U*. 

Two Beltrami coefficients #, v are equivalent if w~ I U* = w v [ U*. The trivial Beltrami coeffi- 

cients are those equivalent to zero. The Teichmiiller space T(F) is the set of equivalence 

classes Lu] of Beltrami coefficients/~EM(F). If  Y has type (p, n), then T(F) can be used as 

a model for T(p, n). 
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For  each @ EM(F), there is also a unique @-conformal normalized automorphism of U 

that  is denoted by w~. The equivalence relation on M(F) can also be described alternately 

by: 

#~~ ~ w ~ l R  =w~lR. 

Remark. A Beltrami coefficient, as an element of the Banach space L~176 of Beltrami 

differentials, has L~176 ([[. [[o0) less than one. I t  will be useful to abuse language occa- 

sionally and call elements of norm one of L~176 Beltrami coefficients of norm one. If/~ is a 

Beltrami coefficient of norm one and z E C with [ z [ < 1, then z~u is a Beltrami coefficient in 

the ordinary sense. 

Every element # EM(F) induces an isomorphism 0 ~ of F onto a quasi-Fuehsian group 

F ~ defined by 

O~(~2)=WI~O~O(W]~) -1, rEF. 

The isomorphism 0 ~ depends only on [/~]. Similarly, 

0,(~) -- w,o~,o (wA -1 

defines an isomorphism of F onto a quasicon/ormally equivalent Fuchsian group. These 

mappings are called right translations and allow us to place an arbitrary point of T(p, n) 

at the "origin" of Teichmiiller space. 

An automorphism 0 of the Fuchsian group F is called geometric if there exists a quasicon- 

formal self map w of U such that  

0(r) = w o ~ o w  -1, a l l~EF.  

We let the extended modular group, mod F, denote the group of geometric automorphisms 

of F, and we define the modular group as 

Mod F -- rood F/F; 

that  is, Mod F is the quotient group of geometric automorphisms by the normal subgroup 

of inner automorphisms. The group Mod F acts on T(F) as follows: if the element Z of 

Mod F is represented by the quasiconformal self map w of U and if ~ EM(F), then 

X([~]) = [Beltrami coefficient of w~ow-1]. 

If r is torsion free of type (p, n), then Mod 1 ~ may be taken to be a model for Mod (p, n). 

The Bers/iber space F(F) is defined by 

F(r) -- {(E~], z); [~] E T(r), z ~ w~(u)}. 
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The natural projection of F ( F )  onto T(F) will be denoted by ~. The extended modular 

group acts on _~(F) as follows: if 0Emod r is represented by the quasiconformal map w, 

then 

Off#], z) = ([~,], ~), 

where/ t  E M(P), z E w~(U)i v = Beltrami coefficient of w~ o w -1, and 

= w . o w o  (w~) -1 (z). 

The action of mod P on F ( r )  is always effective. I t  follows easily from the above definitions, 

tha t  if 0 Emod F and % is the image of 0 in Mod F, then the following diagram commutes 

0 
F ( r )  , F(F) 

% 
T(F) , T(P I. 

(5.1) 

Observe that  the action of F on F(F) is particularly simple since F ~ m o d  F. For 

7 EF, ze~-~([#]), 

~([~], z) = (La], rt 'z) ,  

where # EM(F), and 

The quotient spaces 

y ~  = w~o~,o ( w z )  - z  = 0 " ( ~ ) .  

v(v) = F(F)/F 

provide various models for the Teiehmi~ller curves. For F torsion free of type (p, n), V(F) = 

V(p, n)' is a model for the punctured Teiehmis curve for surfaces of type  (p, n). See Earle-  

Kra [13] as well as Bets [8] and Kra [22], [24] for more details on the concepts discussed in 

this section. 

Let  us assume now that  F is a torsion free Fuchsian group of type (p, n), and let us 

choose a point a E U; 

Let  A = F a = ( T a ;  ~EF}, and let 

h: U -+ U ~ A  

be a holomorphie covering map. The  Fuchsian model for the action of F on U ~ A  is the 

group 

F =  {geAut U; 3 7 e F  with hog=7oh}, 
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where Aut U is the group of complex analytic automorphisms of U( = SL (2, R)/+_ I). Then 

uIP ~ ( v / r ) \ { ~ }  = (U\A)/F,  (5.2) 

where d is the equivalence class of a in U/F, and F is a torsion free Fuchsian group of type 

(p, ~+1). 

Throughout this paper we will follow the above notational convention: given aE U; 

A = Fa will denote its F-orbit, d its U/F-equivalence class, and F a torsion free Fuchsian 

group defined by (5.2). 

We define a surjective mapping 

h*: M(I') ~ M(F) 

h 
! 

-~ /~ EM(F). (h*)oh = ~ h"  

by the formula 

The mapping h* induces a mapping 

~: T(F) -~ F(F) 

by 

~([~]) = (Iv/, w~(a)), 

where #EM(F)  and v=h*[~. The mapping ~0 is a biholomorphic surjeetive map, whose 

existence shows that  F(F) is complex analytically isomorphic to T(F), which is a model 

for T(p, n + 1). Further,  the projection map ~: F(F)-~ T(F) may be identified with the 

forgetful map T(p, n + 1 ) ~  T(p, n) discussed in Ear le-Kra [13]. 

We proceed to s tudy the action induced by the isomorphism ~ on the modular groups. 

Let 0Emod F. Assume that  0 is induced by a quasiconformal map w that  conjugates F 

into itself. The mapping w can be replaced by another mapping that  induces the same 

isomorphism 0 and sends the distinguished point a onto itself (see Lemma 2 of w 9). Thus 

without loss of generality we assumed that  w(a)=a (see Bers [8], Kra [22], Riera [33]). 

The condition w(a)--a suffices to guarantee that  w is an automorphism of U ~ A .  Hence, 

there exists a quasiconlormal W: U ~  U such that  the following diagram commutes 

W 
U , U  

W 
U \ A  ~ U \ A .  

The mapping w induces a self-map of (U~A) /F .  Hence W induces a self-map of U/F, 

and thus W conjugates F onto itself and defines an element Z of Mod F. I t  is now straight 
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forward to check tha t  the diagram 

T(i') Z ,  T(r) 

F(r)  , F(P) 

commutes. We have constructed an isomorphism 

I:  rood F-~ Mod ]~. (5.3) 

The Image of I is a subgroup of index n + 1 in Mod i ~. The image consists of those elements 

;~ eMod F tha t  are induced by  self-mappings W of U/F tha t  fix one of the (specified) punc- 

tures on U/F. For more details see [8], [22], [33]. 

We are now ready to classify the elements of the group Isot  (S, x0), which was defined 

inw 

PROrOSITION 1. There is a canonical isomorphism I:rcl(S)~Isot (S, x0). In par. 

ticular, the elements o/Isot (S, x0) are classi/ied by the/undamental group o/S. 

Proo/. Represent S as U/F for some torsion free Fuchsian group F. Then, of course, 

F ~Zl(S). Choose aE U, so tha t  d, its equivalence class in U/F, represents xoES. As sbove 

represent (V/F)~{d} by a torsion free Fuchsian group F so tha t  (U/F)~{d} = U/F. 

The isomorphism I is the restriction of the isomorphism (5.3) to F c m o d  F. We shall 

discuss this isomorphism in detail and show tha t  indeed I(F)  = Isot  (U/F, d). For the con- 

venience of the reader, we will repeat  certain arguments from [8], [22], [33]. Let  ~ E F and 

choose a quasiconformal automorphism w 0 of U so tha t  wo(a ) =y(a) and w0 acts trivially 

on F (that is, woogow~l=g for all gEF). Let  w=w~lo~. Then w conjugates F onto itself 

and w(a) =a. The mapping w induces an automorphism W of U/F (that fixes d) so tha t  

W 
U - -  , U  

u / r  , u / r  

(5.4) 

commutes. We now use the observation of Ahlfors [3] tha t  W is homotopie (or equivalently, 

isotopic) to the identi ty on U/F if and only if w induces an inner automorphism of F. We 

thus see tha t  l(w) E Isot  (U/F, d) c Mod F. The mapping I is well defined. I f  w0 also acts 

trivially on F and sends a onto ~(a), then ~ = ~ 1 o ~  and w induce self-maps W and W 

of (U/F)~{d} = U[~. We must  show tha t  Wo W -1 is isotopic to the identi ty on U/F. Now 

Wo W -1 is induced by  the self map ~ o w  -1 =~glowo tha t  acts trivially on F and fixes the 
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point aE U. Such a map  is homotopic to the identi ty (on U[F) by the homotopy along 

Poincard geodesics defined by Ahlfors [3]. This homotopy keeps fixed the point d. I t  fol- 

lows that  ~ o w  -1 is isotopic to the identi ty on (U/I~)~{d} (Baer [4], [5], Epstein [14]; 

see also Bers [8], Kra  [22], and Birman [11]). 

The mapping I is a homomorphism. Let  ~jEF, j=l ,  2. Choose w0~ such that  w0joT= 

~'ou'o~ all 7~F ,  and Wo~(a)=yl(a ). Let  ws=w~lo~s, and construct W1: U/F~U/F so tha t  

Wr Then clearly 

W l o  W 2 o  q = W l O q O w  2 = q o w l o w 2 ,  

showing tha t  I(ylo~2 ) = I(71 ) o I@2 ). 

To show tha t  I is injective, let ~E1 ~ and assume tha t  I(7 ) =1.  Using the notation in- 

troduced a t  the beginning of this proof, we see tha t  W is isotopic to the identity on 

(U/F)~{d~}. In  particular, w must  act trivially on F (the inner automorphism is trivial 

because w fixes a). Since w =w~lo~,  and both w and w 0 commute with the elements of F, 

we conclude tha t  so does ~. Hence y is the identity. 

I t  remains to show tha t  I is surjective. Let  W be a self-map of U/F tha t  fixes the point 

d and is isotopic to the identi ty as a self map of U/F. Lift W to a self-mapping w of U so 

tha t  (5.4) commutes. Then w(a) =?(a) for some ~,EF, and it is quite easy to see tha t  I(y) 

is the class of W in Isot  (U[F, d). 

Remark. Proposition 1 is well known. I t  has been proven explicitly or implicity many  

times (in [8], [11], [22], for example). I t  is a special case of more general results. See Birman 

[11] and the literature quoted there. 

w 6. Teiehmiiller dlses in T(p,  rt) 

A point T in the Teichmiiller space T(p, n) represents a Riemann surface S of type 

(p, n). Choose a torsion free Fuchsian group r of type (p, n) so tha t  S = U/F. Take T(F) as 

a model for T(p, n). 

A/ormal Techmiiller (Beltrami) coefficient for F is of the form 

ix = k~] ]~0[, (6.1) 

where 0 < k < 1, and ~0 is a meromorphic integrable automorphic/orm/or F o/weight - 4 and 

norm 1 (that is, 

~: u - ~ c u  {~o} 

is a meromorphic function satisfying 
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and 

11 ll=�89 [ c f ( z ) d z A d S ]  = 1). 
d J ~  /F 

The automorphic form ~ as above projects to a meromorphie quadratic differential (P 

which has at  worst simple poles a t  points of U/F and at  the punctures of U/F--hence  (I) 

has only finitely many  poles. A formal Teiehmiiller coefficient is called a Teichmi~ller 

coefficient for F if ~ is also holomorphie (in addition to being integrable) on U/F. The 

Banach space of integrable holomorphie quadratic differentials on the Riemann surface S 

will be denoted by  Q(S). Note tha t  every element of Q(U/F) comes from an automorphic 

form. We shall henceforth identify automorphie forms of weight - 4  and quadratic dif- 

ferentials. 

A quasiconformal mapping w whose Beltrami coefficient is a (formal) Teichmiiller co- 

efficient /t given by (6.1) will be called a (formal) Teichmi~lle r mapping. The quadratic 

differential ~ will be called the initial differential of w. The terminal differential of w is the 

negative of the initial differential of w -1. For more information on the connection between 

formal Teiehmiiller mappings and the problems considered in this paper, the reader is 

refered to Bets [9]. 

Assume now tha t  q~ EQ(U/F) with I1~[[ = 1. Consider the map of the unit disc A into T(F) 

given by  

This mapping is an isometry with respect to the hyperbolic metric on A and the Teichmiiller 

metric on T(F). The image of this mapping is a totally geodesic submanifold of T ( F ) =  

T(p, n) called the Teichmi~ller disc through ~ corresponding to the differential q). Techmiiller's 

theorem asserts tha t  the Teichmiiller discs through ~ fill out T(p, n). A Teichmi~ller line 

through ~ consists of the points [/c~/[~[], - 1  < k < l ,  in T(F). 

Problem C. Let ~: _F(F)->T(F) denote the Bets fiber space. Recall that F(F)=T(F) .  

Thus we can de/ine Teichmi~ller discs in F(F).  Let [#] E T(F). Is g-l([/t]) a Teichmi~ller disc? 

The domain ~-1([#])=w~(U), /~eM(F),  has the canonical hyperbolic (Poincard) metric 

on it. Does the metric that w~(U) gets/tom its imbedding in T(~) coincide with the Poincard 

metric? 

I t  will be convenient to characterize the Teichmiiller metric on F(F) more directly. The 

Teichmiiller metric on T(I") arises from the solution of an extremal problem, The same is 

true for F(F). We proceed to describe the extremal problem for F(F). 

Choose any  point aE U. We say tha t  two Beltrami coefficients tt and vEM(F) are 
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equivalent with respect to {1"; a} provided w~[ U*= w ~ [U* and w~(a)= w~(a). Call the space 

T(F; a) of such equivalence classes the Teichmiiller space o/ the pointed Fuchsian group 

{F; a} (see Kra [22]). I t  is quite easy to define a Teichmtiller metric on T(F; a), and re  show 

that  

~ ([~], w~(a)) 

defines an isometric surjeetive mapping of T(F; a) onto F(F). Thus a Teiehmtiller disc in 

F(F) through the point ([0], a) is of the form 

([z~], wZ~(a)), 

where z e C, ]z ] <  1, # =~/]q)l is a formal Teichmiiller coefficient of norm one with ~ holo- 

morphie on U~{Fa} (that is, ~ e Q((U/F)~{d})). I t  is an easy exercise to show that  the iso- 

morphism of T(F) onto F(F)~-T(F;  a) Preserves Teiehmiiller discs. 

An element of z EMod (p, n) takes a Teichmiiller disc D through~e  T(p, n)onto the 

Teichmiiller disc z(D) through Z(~). 

Problem D. Which elements o/ Mod (p, n) leave invariant (as a set) some Teichmis 

disc in T(p, n)? 

A necessary and sufficient condition for z(D) = D is that  D and z(D) have (at least) 

two points in common (Marden-Masur [26]). This question is closely related to under- 

standing the action of Mod (p, n) on the various boundaries of T(p, n). See Abikoff [1], 

Bers [10], Kerckhoff [19], Marden-Masur [26]. 

w 7. The Thurston-Bers classifications of elements of Mod (p, n) 

Let / be an automorphism of a surface of type (p, n) and Z the corresponding element 

of Mod (p, n). Bers' [9] important result on the classification of elements of Mod (p, n) 

has several parts. For an exposition of this and several related topics see Abikoff's mono- 

graph [2]. 

(A) The map Z is elliptic if and only ff / is (isotopic to) a periodic mapping. 

(B) If [ is not (isotopic to) a periodic mapping, then g is hyperbolic if and only if [ is 

irreducible. The reducible (non-periodic) [ correspond to parabolic or pseudohyperbolic Z. 

(C) A non-periodic element Z ~Mod (p, n) is hyperbolic if and only if it leaves invariant 

a Teichmiiller line in T(p, n). In this case we can choose a model T(F) for T(p, n) so that  

g timed P is induced by  a Teichmiiller mapping w that  conjugates F into itself and satisfies 

K(w ~) =K(w) 2. Equivalently, the initial and terminal quadratic differentials of w coincide. 

Such a w is called ([9]) an absolutely extremal (non-conformal) mapping. 
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(D) A parabolic or pseudohyperbolic g (non-periodic) can always be induced by  a 

completely reduced/ .  The component maps of / induce elements of modular groups of the 

parts  of S which we will call the restrictions of Z- The map  Z is parabolic if all the restric- 

tions are periodic (or trivial) and pseudohyperbolic if a t  least one restriction is hyperbolic. 

PROPOSITION 2. Let gEMod (p, n) and let ~ be a positive integer. Then Z and g a are 

both o/ the same type. 

Remark. The identity element of the modular group will be considered to be of elliptic 

type.  

Proo]. I f  X is elliptic, then so is Z a because a fixed point of g is certainly a fixed point 

of g-. I f  Z is hyperbolic, it has an invariant  line l, then I is also invariant  under X ~. So X ~ is 

also hyperbolic. I f  X is parabolic, then all the restrictions are elliptic (or trivial). Hence all 

the restrictions of Z a are also elliptic, and Z a is parabolic. I f  X is pseudohyperbolic, it is 

reducible and a t  least one of the restrictions is hyperbolic. The same is true for Z ~. Since 

type  is preserved by raising to power, the converse is also true. 

Remark. As we have seen, rood I ~ is a subgroup of l~Iod r .  Hence the above classifica- 

tion carries over to elements of mod F. 

An amplification of a result (Theorem 6) of Bers [9] is contained in 

T ~ O R E ~  1. An  element XEMod (p, n) leaves invariant a Teichmiiller disc in T(p, n) 

i /and  only i / i t  can be induced by a con/ormal sell-map or a Teichmi~ller sell-mapping w o /a  

Riemann suv/ace So[  type (p, n) satis[yinff the [ollowing two equivalent conditions: 

(a) the mapping w 2 is also a Teichmi~ller mapping, 

(b) the terminal di[]erential o / w  is a multiple ~ o[ the initial di[/erential with 1771 =1. 

A mapping y. that leaves invariant a disc is either elliptic (i[ w can be chosen con[ormal), 

hyperbolic (i/ ~ = 1,/or some choice o[ w), or parabolic. Conversely, every elliptic or hyperbolic 

)C leaves invariant a disc, while no pseudohyperbolic Z can leave a disc ~nvariant. 

Proo/. An observation of Kravetz  [25] (see also Earle [12]) implies tha t  if w 1 and w~ 

Sz ,  w~ S w x ' s  1 

are Teichmiiller mappings, then w~ow~ 1 is also a Teichmiiller mapping if and only if the 

Beltrami coefficient/~1 of w 1 is a constant multiple of the Beltrami coefficient ~uz of wz. 

The case where either/~1 or p~ is zero is trivial. Hence write 
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where 0 < r j < l ,  ~jEQ(S), and I1  11 =1,  I t  is easy to see t h a t  #1 is a multiple of/z~ if and 

only  if ~1 is a multiple of ~ .  Recall t ha t  ~0j is the  initial differential of wj. 

I f  w is a Teichmiiller mapping,  then w 2 is a Teichmiiller mapping  if and only if the ini- 

tial differential of w is a multiple of the initial differential of w -~ ( = t h e  negative of the ter- 

minal  differential of w). Thus we have established the equivalence of (a) and (b). The con- 

s tan t  ~ mus t  have absolute value 1 because w and  w -1 have the same dilatation, and the 

quadrat ic  differentials under  consideration have norm one. 

Assume tha t  an element g of Mod (p, n) leaves invar iant  a disc th rough  r E T(p, n). 

Hence Z mus t  restrict to  a MSbius t ransformat ion on this disc. Choose a Fuchsian group F 

so t h a t  T(P) becomes a model for T(p, n) with the  origin in T(F) corresponding to  7. Choose 

~Eq(u/r)  with I1 11 = 1  so t ha t  the  disc corresponding to ~0 is invar iant  under  Z and set 

#=~ / Iqg l .  Choose a quasiconformal w tha t  induces Z" Wi thou t  loss of generali ty w is a 

Teichmiiller mapping.  Then there exists a M6bius t ransformat ion A t h a t  fixes the uni t  

disc A so tha t  

z([t/z]) = [Beltrami coefficient of w~'ow -1] = [A(t)#], for all tEA. 

I n  particular, 

Z([0]) = [Beltrami coefficient of w -1] = [A(0)/z], 

and we conclude t h a t  the terminal  differential of w is a multiple of ~0, by  the  uniqueness 

par t  of Teichmtiller's theorem. Similarly Z -1 leaves invariant  the same disc in T(F) and g -1 

is induced by  w -1. Hence the initial differential of w is also a multiple of ~c. 

The converse is established by  direct computat ion.  I f  w is a Teiehmiiller self-mapping 

of U t h a t  conjugates F into itself and satisfies condition (b), then we let ~0 be the initial 

differential of w and show t h a t  the disc th rough  0 corresponding to  ~ is invariant  under  Z, 

the  element of Mod F induced by  w. Wr i t e / t  =(f/l~], and assume t h a t  the Beltrami coeffi- 

cient of w is k/t, for some k with 0 < k < 1. The Beltrami coefficient of w -1 is then r with 

E C, [q [ = k. The chain rule shows tha t  

w'k , ( 7 .1 )  = - 

and tha t  the Beltrami coefficient of wOow -1 is 

( t -  k,) # )  w~,,w_ 1 = r t -  k 
1 - k t  ] ~  k 1 - k t / t  =A( t ) /x '  

where the  next  to  the last equali ty is a consequence of (7.1). Since k > 0  and I~//k[ =1 ,  

A is a MSbins t ransformat ion  fixing the  uni t  disc. 
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The last par t  of the theorem is essentially a consequence of the Bers classification of 

elements of Mod (p, n). 

I f  Z EMod (p, n) is elliptic, then the fixed point set 

T(p, n) z -~ {te T(p, n); Zt=t} 

is again a Teichmiiller space of type (p', n'). I f  Z is induced by the conformal self-map h 

of S, then p' is the genus of S=S/ (h )  and n '  is the number  of distinguished points on 

(which is the sum of the number  of punctures on ~ and the number  of points over which the 

projection S - ~  is ramified). Thus as long as 3 p ' - 3  + n '  >0,  T(p, n) z has positive dimen- 

sion, and every point of T(p, n) z is clearly contained in a Teichmiiller disc invariant under Z. 

In  general, view h as a conformM map fixing U, the universal covering spuce of S = U/F. 

The mapping h acts on M(F) and Q(S) by the rules 

h*ffoh=fh'/f~', ff EM(F), 

h*cpoh=~(h') ~, cfEQ(S). 

The first formula gives, of course, the action of h on T(F). Since h conjugates F onto itself, 

h* fixes M(F) and Q(S). From the above two formulae, we see tha t  for the Teichmiiller 

coefficient ff =q~/[~[, we have 

h*ff where v=h*~9. 

I t  is quite easy to see tha t  the linear mapping h*: Q(S)-+Q(S) has an eigenvalue (see, for 

example, Fa rkas -Kra  [15, p. 256]); which must  be of absolute value one. Say h*~=2~0 

with )~ e (~, I~1 = 1. Then h*# =~ff. Hence the Teichmiiller disc determined b y ~  is invariant  

under Z. 

I f  Z is hyperbolic, then, by  Bers'  [9] theorem, Z has an invariant line, and hence an 

invariant  Teichmiiller disc. 

Finally, a pseudohyperbolic Z cannot have an invariant  disc, since a M6bius transforma- 

tion tha t  fixes a disc must  be elliptic, parabolic, or hyperbolic. In  the first two cases a(z ) = 0. 

In  the last case, by  Bers' [9] theorem, Z is hyperbolic. 

COROLLAgY 1 (of the proof). Let/: S-+S be a con/ormal mapping o/a Riemann surface 

o/ non-excluded finite type. Let (p, n) be the type of the Riemann surface S/(/) .  (Thus n is the 

number of (/)-equivalence classes of punctures on S.) The mapping / is reduced i/3p - 3 + n > O. 

Proof. The mapping / is reduced whenever we can find an admissible curve on S/(f) .  

Remark. Theorem 1 provides a partial solution to Problem D. The theorem does not 

t reat ,  however, the case of parabolic elements: As we shall see; in w 9, we will exhibit a class 



O N  T H E  IN-IELSEN--THURSTON--BERS T Y P E  O F  SOME SELF-lYIAPS O F  RIEMAN-I~ S U R F A C E S  247 

of parabolic elements of Mod (p, n) induced by  products of Dehn twists about  admissible 

curves and their inverses. I f  no inverses appear  (that is, if we consider a product of Dehn 

twists), then the corresponding element of the modular  group has an invariant  disc. This 

was proven by  Marden-Masur [26]. I f  inverses of Dehn twists are also used, then one can 

produce parabolic elements of Mod (p, n) tha t  do not have any invariant  discs (H. Masnr, 

private communication). Necessary and sufficient conditions for a parabolic element to 

have an invariant  disc are not known. 

PROPOSITION 3. Let z:  F(F)-> T(F) be the Bets fiber space, where F is a torsion/tee 

Fuchsian group o/ type (p, n). Let 0 Emod F and g EMod F be induced by the same quasicon- 

]ormal automorphism w o/ U (so that (5.1) commutes). Then 

a(O) >~ a(z), (7.2) 

where a( ) is de/ined by (4.1). 

In  particular: 1 /Z  is hyperbolic or pseudohyperbolic, then so is O. I / 0  is elliptic or para- 

bolic, then so is Z (it could be the idenitity). 

Moreover: I /  Z is hyperbolic, then 0 is hyperbolic whenever we can replace F by a quasicon- 

/ormally equivalent group so that Z and 0 are induced by an absolutely extremal w (for the 

sur/ace U/F) that/ixes some point z o E U. 

Proo/. The Teichmiiller metrics on T(1 ~) and F(F) are the Kobayashi  metrics on these 

spaces (Royden [34], see also Ear le -Kra  [13]) and hence all maps involved are distance non- 

increasing. Then for xE F(F), 

<x, Ox) >~ <xex, 7~Ox> ~ <~x, Zzx> >1 a(z); 

from which (7.2) follows. Assume now tha t  Z is hyperbolic. I t  therefore can be induced by  

an abolutely extremal w (after passing to a quasieonformally equivalent F). Let  ~ be the 

initial (and terminal) differential of w and set # = ~ / I T  [. Then the Teichmtiller line corre- 

sponding to ~o is invariant under Z; tha t  is, there exists a MSbius transformation A tha t  

fixes the unit disc A (and has the open interval ( - 1, 1) as its invariant axis) so tha t  

Write 

z([t/z]) = [A(t)#], tEA. (7.3) 

W ~ .~OWto .U  ~ 

for some t o with 0 < t o < 1 and B a M6bius transformation. Then for any z 0 E U, 

0([q~], w~(z0))= ([(At)T/, w(A~)~ow(z0)), 

16 - 802908 Acta mathematica 146. I m p r i m 6  lo 24  ~Iuin 1981 
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Hence we can produce an invariant  line in F(F) if we can find a z 0 E U with W(Zo) = z o. 

Let  

0:  mod F ~  Mod F 

be the canonical projection. 

COROLLARY 2. For every hyperbolic Z E ~ o d  F, we can l ind a hyperbolic 0Emod F 

and a positive integer ~ so that ~(0) = Z ~, provided F is o / t ype  (p, n) with p >~ 2. 

Proo/. Without  loss of generality Z is induced by  an absolutely extremal w tha t  is a 

Teichmii]ler mapping conjugating F into itself. Let  ~0 be the initial differential of w. Let  

W be the self-map of U/F induced by  w. Then W permutes the zeros of the projection of 

~0 to U/F. Hence a power of W fixes these zeros. We conclude tha t  for some z 0 E U and some 

positive integer :r there is a gEF with 

w~(zo) = g(zo). 

(The assumption p ~> 2 is needed to guarantee a non-empty zero set ~or ~.) Let  0 be the ele- 

ment  of rood F induced by  g-iowa.  Then 0 is hyperbolic by  Proposition 3, and ~ ( 0 ) = Z  ~. 

w 8. Metrics on the fibers of F ( r )  

Let 7~: F(F)-~ T(F) be the Bers fiber space, where F is a torsion free Fuchsian group 

of type (p, n) satisfying (2.1). For every YET(F), 7e-1(~) is a domain in CU ~ }  bounded 

by  a quasicircle passing through 0, 1, ~ .  The domain ~-1(~) has two canonically defined 

metrics on it: the Teichmiiller metric ( . ,  .) ,  and the non-Euclidean metric ~ of constant 

negative curvature - 4 .  Both metrics are invariant  under mod 1 ~. 

PROPOSITION 4. (a) Let x,  yE~-I(T). T h e n / o r  x :~y ,  

u(~(x, y)) < (x,  y )  <~ ~(x, y), 

where ~ is the/unction o/ Lemma 1. Further, i /  I ~ has type (0, 3), then 

(x,  y )  = e(x, y). 

(b) I n  general, the Teichmis metric on ~-1(~) is complete. 

(e) For xj=([#~], zj)EF(F), i = 1 , 2 ,  

d(zi, z2) < <X 1, X2>, 

where d is the non-Euclidean metric on C~{0,  1}. 

(s.1) 

(s.2) 
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Proo/. Assertion (b) is obvious since the Teichmiiller metric is complete on F(F) and 

:r-l(v) is closed in F(F).  Alternately, (b) follows form (a) since both ~ and ~o~ are complete 

metrics on the domain :r-l(T). 

To obtain the inequalities in (8.1), it suffices to assume tha t  T = 0, and thus tha t  

:r-l(0) = U. We identify F(F) with T(F; a) for some aE U and take x=a.  There is now a 

unique formal Teichmiiller Beltrami coefficient 

#o = tqS/[~v[ EM(F), 

where ~v EQ((U~A)/F) ,  ~ has a simple pole at  a, 1, a n d  t >  O, such t h a t  [ o1 = [0], a n d  

w~'O(a) = y 

(A =Fa, and we abrcviate ~ / I~l  by  #). I t  follows tha t  

l + t  
(x, y~ = �89 log 1 - t" 

Now the map z ~->([0], z) of U into F(F) is holomorphic. Since the Teichmiiller metric on 

F(1 ~) is the Kobayashi  metric, this map is distance non-increasing. Hence 

(x, y~ ~< e(x, y). 

If  ~-1(0) were a Teichmiiller disc, then the map 

Agz  ~-~ ([0], w~'(a))EF(F) (8.3) 

would be an isometric mapping of the unit disc A onto z-l(0)  in F(F). This would mean tha t  

the Beltrami coefficient z/~ would be trivial for all z E C with ] z I < 1. In  particular, w~'(x) =x 

for all xER, and hence 

dw~"(x) t=o=O, all xER~ 

tha t  is (see Bers [7]), 

x(x-1) (( 

or/~ would also be locally trivial. Now if I ~ is of type (0, 3), then T(F) is a point and F(F) = U. 

In  this case, the holomorphic mapping (8.3) is distance non-increasing establishing the 

equality (8.2). 

To establish the (first) strict equality in (8.1), note tha t  w ~~ is the identi ty on R and 
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sends x into y, Hence it is a competing function for the extremal problem associated with 

Lemma 1. I t  is clearly not the extremal function for this problem (see Teichmiiller [35]). 

Hence 

z(@(x, y)) < (x, y),  

establishing par t  (a). 

Par t  (c) follows from the fact tha t  the mapping (projection onto the second coordi- 

nate) 

F(s z) F+ z~ C\{0,  1} 

is distance non-increasing with respect to ( . ,  �9 } and d (see Kra  [23]). 

COROLLARY 3 (of the proof). The/iber ~-1(0) is a Teichmi~ller disc i /and only i/there 

exists a/ormal Teichmi~lIer Beltrami coe//icient tt o/norm 1, # ~- qS/[F [, where q~ has a simple 

pole at de v / r  with ~eQ((U/r)\{~}), H =1, such that z# is a trivial coe//icient /or all 

zEA. 

COROnLARu 4 (of the proof). There exist Beltrami coe//icients ft@O such that z# is 

trivial/or each zeC, 1~1 <~/ll~ll. 

Proo]. Take any Beltrami coefficient for a triangle group (a group F of type (0, 3 ) - -  

torsion is permitted), and use the fact tha t  the corresponding Teichmiiller space is zero 

dimensional. 

Remark. Some years ago this author asked the following question. I f  # is a trivial 

Beltrami coefficient and 0 < t <  1, is t# also trivial? Gehring [17] produced an example to 

show tha t  the answer is no. The following simple example due to Edgar Reich also shows 

tha t  in general the answer is no. Reich works with the unit disc A. Fix ~E(~, I~1 <1 ,  

and put  

w(z)=z+~(1--z~), zEA. 

Then w is a quasiconformal automorphism of the unit disc fixing the unit circle. The Bel- 

t rami  coefficient of w is 

ritz) - 1 - ~5" 

I f  =b0, then # is not locally trivial since for any  Ll-holomorphic function / on A, 

dz A d5 fz=o z/(z) dz; f f /(z) /(z) = - = 

which is non-zero f o r / =  1, for example. 
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In w I0 we will give more interesting examples involving formal Teichmiiller dif- 

ferentials. 

For g6F,  we define two functions on T(F): 

/I(T) = inf <x, gx), 

12(~) = i n f  Q(x, gx). 
xen-~(z) 

I t  is well known that/2@) is the length of the geodesic corresponding to the element g of the 

fundamental group of the Riemann surface represented by 3. For parabolic g, 

/~(~) = o = i~(~), all ~-eT(r). 

If g is hyperbolic, then for ~=[#] ,  #6M(F) ,  

h(~)  = ~2- I log ~-~,1, 

where /~  is the multiplier of the hyperbolic element 

g~ = W/~ogow-/~ 1, 

and 

/~(~) = Q(z, g~z), for all z on the axis of g~. 

(See w 9.) Thus we also have 

P~OrOSITIO~ 5. For hyperbolic g6F, /2 :  T(F)-~(0, oo) is a continuous (real analytic) 

/unction, and 

~(/~@)) ~</l@) ~</~@), all T6 T(f`). (8,4) 

w 9. Solution to Problem A 

We need a slight generalization of a well known fact about (Teichmiiller) trivial auto- 

morphisms. 

L E M ~ x  2. Let f` be a finitely generated torsion/ree Euchsian group o/ the first kind. Let 

ls, ] = 1  . . . . .  k be the axis o / a  hyperbolic element 7sEF. Assume that these axes project to dis- 

joint Jordan curves on U/f' under the canonical projection q: U--~ U/F. Let cs be a closed,collar 

about q(ys), with these collars pair-wise disjoint. Let C = q-l(c 1U ... U ck). Then U' = U ~ C  is 

open in U, and/or each pair o] points x, y in the same component o /U' ,  there exists a quasi- 
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con/ormal automorphism w o/ U such that w(x)=y,  

wog = tow,  /or all gEF (9.1) 

(hence w is the identity on R), and 

w is the identity on C. (9.2) 

Proo]. Let  c : c  1U ... U ck. Since U'  =q-l(S~e), U' is open in U. Let  D be a component  

of U', and let a E D. Define 

D' = {yED; 3 a quasiconformal au tomorphism w of U satisfying w(a)=y,  (9.1), and (9.2)}. 

The set D '  is not  emp ty  since a E D' .  Assume t h a t  Yo E D', and assume tha t  w 0 is the cor- 

responding map.  Choose a small disc D I a round Y0 so t h a t  D I ~  D and  ql D1 is injective. 

For  y E D1, there exists a quasiconformal au tomorphism w 1 of D 1 such tha t  w I is the ident i ty  

on the boundary  of D 1 and wl(yo) =y. We extend w 1 to FDx( = t h e  image in U of D 1 under  

F) by  invariance, and to be the  ident i ty  on U ~ F D  1. Then w =WlOW 0 sends a to y and  satis- 

fies (9.1) and (9.2). Thus DI~  D' and D '  is open in D. Precisely the same argument  shows 

tha t  D' is closed in D. Hence D = D' .  

We now re turn  to Problem A and use the nota t ion of w 2. We represent the surface 

S with some conformal s t ructure by  a torsion free finitely generated Fuchsian group P of 

the first kind so t h a t  S = U/F. We @oose a E U so t h a t  S = (U/F)~{d} .  Finally, we choose 

another  Fuchsian group F so t h a t  ~ = U/P. 

We have seen (Proposition 1 of w 5), t h a t  the elements of Isot  (S, d) are classified by  

~ l ( S ) z P .  We shall call a hyperbolic element g E F  simple if g is a power of an  element 

whose axis projects to an admissible Jo rdan  curve on S. I f  g is no t  simple, it is called 

essential (according to Maskit-Matelski [27]) if the axis of g projects to  a curve t h a t  inter- 

sects every admissible curve on S. The element g E F  is essential if and only if the projec- 

t ion of the axis of g is a / i l l ing  curve on S, as defined by  Thurs ton  [36]. See also [32] and  

Figures 2 and 3. 

I t  is easy to verify t h a t  g is essential if and only if the  complement  in S of the  projec- 

t ion of the axis of g consists of a union of discs and punc tured  discs. 

T ~ ~ o R ~ ~ 2. Let 1 ~ / ~  Isot  ( S, d) and let g E F be the corresponding elements o /F  ~" ~1( S ). 

(a) I] S has type (0, 3) then g is a parabolic (hyperbolic) element o/rood r i/ and only i/ 

g is a parabolic (hyperbolic) element o /F .  In  particular, / is reducible i /and  only i / g  is para- 

bolic. 

(b) Assume that S is not o/ type (0, 3), then: 
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c2 

/ ~1 

i S 

! 

i 

Figure  2. A non-essent ial ,  non-s imple  curve (cl) on a surface of t ype  (2,0). c~ is a reducing curve for t h e  

corresponding self-map of a surface of t ype  (2,1). 

| e 

I 

Figure  3. An  essential  curve on a surface of Sype (2,0). 

(i) g is a parabolic element of rood F if and only if g is either a parabolic or a simple 

hyperbolic element of F, 

(ii) g is a hyperbolic element of rood F if and only if g is an essential hyperbolic 

element of I ~, and 

(iii) g is pseudohyperbolie element of rood F if and only if g is a non.slmple non. 

essential element of F. 

In  particular, f is reducible if and only if g is not a hyperbolic essential element o] F. 

Remark. For type (0, 3) every hyperbolic element of F is essential. Hence (a) is a special 

ease of (b). 
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Proo/o/ the  theorem. Par t  (a) is completely obvious since the Teichmiiller metric on 

F(F) ~ U agrees with the Poinear6 metric on U (by Proposition 4 of w 8). To prove par t  (b) 

we examine the action of g on F(F).  Recall tha t  

where 

z e w~(U), 

g([~], z) = ([M, g.(z)), 

~EM(F) ,  and gl~=w~ogo(w~)-z. 

By Proposition 4, for every x E F(F), 

(x, gx) < ~(x, gx). 

Note tha t  O(x, gx) is well defined since x and gx are always in the same fiber. I t  is clear tha t  

for a parabolic element g of F, a(g) = 0  (see w 8). Assume tha t  g is a hyperbolic element of P. 

By  Proposition 2 of w 7, it suffices to assume tha t  g is primitive (not a power of another 

element of F). We will compute for certain z Ewe(U), the Poincar6 distance O(z, ge(z)). 

Choose a normalized Riemann map h: w~(U)-+U. Note tha t  how~ is a normalized 

#-conformal automorphism of U and hence equal to w~, and tha t  

gt, = w~~176 ~1 = h~ ~~ (all gEP). 

Hence F s =w~Fw~ 1 is the Fuchsian model for the quasi-Fuchsian group P ~. Invariance of 

the Poincard distance under conformal maps shows tha t  

~w~,(v)(z, g~(z)) = ~v(h(z), g~oh(z)), 

for all zEw~(T). Thus 

inf ew,(v)(z, g"(z)) = inf Qv(z, g,(z)) = g I log 2, l, 
z e w l ~ ( U  ) z e  U 

(9.3) 

where 2~ is the multiplier of gg. The axis of gg projects to a curve on U/I'~. Assume now tha t  

g is simple and primitive. Bers [6] has shown how to construct a sequence/~jEM(F) so tha t  

Iim 2., = 1. 
j--~oo 

Hence the infimum in (9.3) must  be zero, and inequality (8.1) shows tha t  a(g)=0, or  tha t  

g is a parabolic element of rood F. 

I f  g is a hyperbolic and non-simple element of F, then the axis 0fg projects to a closed 

geodesic on S with a non-trivial self intersection. By the Keen-Halpern collar lemma 
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(see Matelski [28]), there is a constant C >0  such that  

1~(~:)/> C, all T E T(F) 

(see Proposition 5). Hence a(g)>0 and g must be a hyperbolic or pseudohyperbolie element 

of rood F. 

Assume that  g is essential. (See Figure 3.) Choose a minimizing sequence 

{xs} ~ F(F),  

lira <x~, gxr = a(g). 
j--). oo 

(9.4) 

Recall that  F(F) ~ T(F) and thus each poipt xjE F(F) represents a surface of type (p, n + 1) 

in T(F), where F has type (p, n). There are two possibilities: 

(I) There exist a constant C 1>0 such that  all simple closed geodesics (admissible 

curves) on all xj have length ~> Cz, or 

(II) By passing to a subsequence we may assume xr carries an admissible curve lj of 

length ej with 

lim st = 0. 
j-->oo 

In case (I), we modify an argument of Bers [9] to show that  the minimum a(g) is 

achieved. By Lemma 4 of [9], we may assume, by passing to a subsequence if necessary, 

that  there exists a 0jEMod F such that  yr converges to an element yEF(I~). Since 

each 0j is an isometry, 

<yj, OjogoO]-l(yj)> = <x~, gxj>. 

Thus by (9.4) 

lim <yj, OjogoO;Z(yj)> = a(g). (9.5) 
i--> co 

Since y = l i m j _ ~  yj, we  may assume (by selecting a subsequence if necessary) that  the 

sequence (OjogoO71(yj)) converges to some point z E F(F). We claim that  

lim OjogoOj-l(y) = z. (9.6) 
j-->oo 

This follows from the inequalities, 

<OjOgOOt-l(y), •> ~ <OjOgOO'jl(y), OjO~OO71(yj)> -}-<OjogoO71(yj), Z> 

= <y, yj> + <OjogoO;-l(yj), z>. 
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The limit (9.6) implies that  for any e >0,  

((OjogoO;1)-lo (O~ogoOi -1) (y), y)  ~< e 

for large i and j. Since Mod F acts properly discontinuously on F(F), we may  assume tha t  

OjogoOj 1 is constant (by passing to a subsequence). Setting 

O / o g o O J  -1 = ~EMod F, 

we conclude tha t  (y, ~y)=a(g), by (9.6), or tha t  

(~ ,  g . )  = a(g), 

where x =Oily (for any j). Hence g is a hyperbolic element of mod P. 

In  case (II), we modify an argument of Maskit-Matelski [27]. The curve l s is also an 

admissible curve on the surface ~j =~(xj) E T(F). The length of this curve lj on Tj is less than 

ej. Since the axis of g projects to a curve tha t  crosses lj, the Keen-Halpern  collar lemma 

implies tha t  the length of the axis of g on Tj must  go to infinity. Thus 

l im inf  ~(z, gz)=lim �89 2j] = + ~ ,  
t-.-).oo zEz~-l(vi) j--->oo 

where 2j is the multiplier of g~, with/~jEM(F),  [#j] =Tj. Thus 

lim ~(xj, gxj)= + ~ ,  
j -->oo 

and by  Proposition 4 of w 8, the sequence {xj} could not have been a minimizing sequence 

for (9.4). 

Before considering the case of non-simple non-essential hyperbolic g E F, we investigate 

the question of finding reducing curves for reducible elements of Isot  (S, d). 

Consider first a primitive parabolic element g E F. We want  to determine the action 

of the corresponding element ] E Isot  (S, d) on ~. Without  loss of generality g(z) = z + 1 and 

a satisfies I m  a > 1. Thus, by  a well known lemma of Shimizu-Leutbecher (see, for example, 

Kra  [21, pp. 58-62]), we conclude tha t  7(U1) N U 1 is empty  for all 7 E F  such tha t  ? is not  

a power of g, where 

U 1 =  {zeC; I m  z > l } .  

We must  construct a quasiconformal automorphism w 0 tha t  commutes with P and satisfies 

wo(a ) = a  + 1. Choose e > 0  so tha t  

U 2 = { z E C ; I m a - r  U 1. 
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Define 

w 0 ( z ) = R e z + l  - l [ I m ( z - a ) l + i I m z ,  zE0.,. 
8 

Note tha t  Wo(Z+ 1)=Wo(Z ) + 1, and tha t  w o is the identity on the boundary of 0 3. We ex- 

tend w 0 to FO~ by  invariancc: 

Wo(yZ) =~ow0(z), ze02 ,  ~ e F ,  

and set it to be the identity on U ~ F 0 2 .  We compute the action of w=w~log on ~ =  

(U~A)/F, where A =Fa. Note tha t  q (02)~{d  } is a punctured annulus a on S, and tha t  

the projected map W: ~-+~ is the identi ty outside this annulus. (Here q is the projection 

of U to U/F.) By modifying our construction slightly we may  assume tha t  W is the identity 

also on a smaller punctured annulus around d. We can draw two conclusions: W is the in- 

verse of a Dehn twist about the curve q({Im z = a - e } )  (see Marden-Masur [26]), and W 

is completely reduced by  a family of admissible curves in S ~ a .  See Figures 4 and 5. 

We now assume tha t  g is a primitive simple hyperbolic element of F. Without  loss of 

generality we assume tha t  g(z)=~z, ~ ER, ,~ > 1. The axis of g projects to a geodesic on S. 

We take a collar neighborhood of this geodesic on S and lift i t  to U. Without  loss of gen- 

erality we may  assume tha t  one component of this set is of the form 

~ {zE U; z=rdO, r >O, 2 - 7e } = s < ~ O < ~ + e  . 

We take a to be on the imaginary axis, and we define w o (in polar coordinates) by  

w0, 0,_( ox,[(110 -~ -~ /  , , 

Again, Wo(~Z ) =)tz, z E G~ and w o is the identi ty on the boundary of U2. Hence we continue 

exactly as in the case of a parabohc clement of F. Here W is a product of the inverse of a 

Dchn twist about the the curve 

q A r g z = ~ - e  , 

followed by  a Dehn twist about  the curve 
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Figure 4, A curve on a surface of type  (2,1) corresponding to a parabolic element of the covering group. 

i 

Figure 5. The inverse of the Dehn twist  about  c~ on a surface of type (2, 2) corresponding to the para- 

bolic element of Figure 4. a u annulus where "ac t ion"  of Dehn twist  takes place, c2, ..., c~ are reducing 

curves for Dehn twist. Note t h a t  the  restriction of this  map to a may  be identified with the  restr ict ion 

of the  spin in Figure 6 to the corresponding a, since the Dehn twist  about  c 1 can be "unwound". 

S u c h  a m a p  is k n o w n  as  a spin (see B i r m a n  [11] a n d  t h e  l i t e r a t u r e  q u o t e d  t h e r e )  o n  

a b o u t  t h e  c u r v e  

See F i g u r e s  1, 6, a n d  7. 

Remark. T h e  case  of s i m p l e  p a r a b o l i c  g E 1" is s i m i l a r  t o  t h e  case  of  a s i m p l e  h y p e r b o l i c  

g. I n  t h e  f i r s t  case,  t h e  s e c o n d  D e h n  t w i s t  c a n  a l w a y s  b e  u n w o u n d  t o  b e c o m e  t h e  t r i v i a l  

m a p .  
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�9 puncture 

Figure 6. The  spin about  e on  a surface of t y p e  (2 ,1 )  corresponding to the  admiss ible  e l ement  of Figure  1. 

n i s  the  p u n c t u r e d  annu lus  where  "~et ion" of sp in  takes  place.  The  spin  about  e is the  inverse  of the  

De/an twist~ a b o u t  e~ fo l lowed b y  a D e h n  tw i s t  about  e l .  T h e  admiss ible  curves  c~ and c~ a long w i t h  e~ 

and c~ are reducing  curves  for the  spin.  

puncture 

s 

C 

puncture 
/ / 

1 _ _ s  
\ i~- ~ . . . . . . . . . . . . . .  : 

d 

I _ . _ . . A  

C2 C2 

Figure  7. The  act ion  of the  spin of Figure  6 on  the  curves  d, c, c2, c 1 of the  p u n c t u r e d  a n n u lu s  ~. 

Finally, continuing with the proof of Theorem 2, we are ready to consider hyperbolic 

non-simple, non-essential elements g E F. (See Figure 2.) In  this case there exists an admis- 

sible curve c on S = U/F such that  c is disjoint fro m the projection of the axis of g to U/F. 
The curve c is also admissible on ~.  B y  Lemma 2, we can choose w to be the identity on the 

preimage of c in U. Hence c is a reducing curve for W (defined as above). Since W is redu- 

cible, g must  be parabolic or pseudohyperbolie.  Since it cannot  be parabolic~ we have 

completed the proof of Theorem 2. 
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Remarks. (1) We have shown tha t  for non-essential g, there is always an admissible 

curve on U/F t ha t  is disjoint f rom the image of the axis of g. By  taking a maximal  set of 

disjoint and homotopical ly  distinct curves of this type,  we clearly can obtain  an  admissible 

set C of Jo rdan  curves so tha t  the self map  ] of S corresponding to g is completely reduced 

by  C. 

(2) Maskit-Matelski  [27] have showed t h a t  for essential elements g EF, the funct ion 

/~ (of Proposi t ion 5 of w 8) achieves a min imum on T(F). Theorem 2 shows t h a t  these are 

also the elements g of F for which ](x) = (x, gx} achieves a min imum somewhere on F(F) .  

The relation between these two extremal problems is not  completely clear. See w 12. 

S. Wolper t  has informed the  author  (oral communicat ion) t h a t  for essential g EF 

the  funct ion/2  is a Morse funct ion on T(F), as a consequence of Kerekhof f s  work [20]. I t  

has a unique min imum on T(F) and every critical point  of/~ is an absolute minimum. 

(3) The fact  t ha t  parabolic and simple hyperbolic  elements of F act  as parabolic 

elements of mod F was also obtained by  Nag  [29]. 

COROLLARY 5. Let S be a sur/ace o/non-exluded type (p, n)~=(0, 3). There exist non- 

con/ormal absolutely extremal sel/ maps o/ S (with respect to some conlormal structure). 

Proof. I f  n > 0, the result follows immediate ly  from our theorem and the (easily verified) 

existence of essential curves on a surface of type  (p, n - 1 ) ,  since T(p, n) is isomorphic to  

the  Bers fiber space of a surface of type  (p, n - l ) .  (Except  if (p, n )= (1 ,  1), where T(1, 1) 

is isomorphic to  the fiber space over a point.) I t  thus remains to  consider type  (p, 0), 

p ~>2. The case p = 2  follows trivially f rom the isomorphism T(2, 0)=~ T(0, 6). I n  general, 

we know tha t  surfaces of type  (0, 2n + 2) admi t  absolutely extremal maps  tha t  are no t  holo- 

morphic.  Let  x 1 .. . . .  x2~+~ be 2 n + 2  distinct points on CU {co}. Let  E = C 0  { o o } ~ { x l  . . . . .  

X~n+~.}. Let  w be an  absolutely extremal non-holomorphie self-map of E. B y  our theorem 

such a map exists for some choice of xj, j = 1 . . . . .  2n + 2. Let  S be a two sheeted cover of 

(~ tJ { ~ } t ha t  is branched over x j, j = 1 .. . . .  2n + 2. The surface S is, of course, a hyperelliptie 

Riemann  surface. Lift  w to a self map  W of S. The maps  w and w ~ are Teichmiiller mappings,  

with K(w~)=K(w) ~. Hence W and W 2 are Teiehmiiller mappings with K ( W 2 ) = K ( W )  2. 

Thus W is aboslutely extremal by  Theorem 6 of Bers [9]. 

I n  the proof of the  above corollary, we have encountered an interesting 

Open Problem. Let F~=C~{O,  1, z 1 .. . . .  z~_3} with n>~4 and {z 1 ..... z~_3} distinct in 

C~{O, 1}. _Find necessary and su//icient conditions /or the existence o/ non-holomorphic 

absolutely extremal sell-maps o / E .  



ON T H E  N I E L S E N - - T H U R S T O N - - B E R S  T Y P E  OF SOME SELF-MAPS OF R I E M A N N  SURFACES 261 

I t  is instructive to reformulate Theorem 2 in purely topological terms. This reformu- 

lation is contained in Theorem 2' of the introduction. I t  should be noted tha t  we can 

actually distinguish topologically the four types (elliptic, parabolic, hyperbolic, pseudo- 

hyperbolic) of Bers, rather than just the two types (reducible, irreducible) of Thurston. 

Similarly, the concept of a parabolic clement of 1 ~ can be described completely in terms of 

~1(S): a parabolic element of F corresponds to a loop tha t  is contractible to a puncture on S. 

Thus we also have 

THEOREM 2' (addendum). Furthermore, 

(1) c is a power o /a  Jordan curve on S i /and only i / (w  is reducible and) all the component 

maps o / w :  S ~ S  are isotopic to periodic maps, and 

(2) c is a non-essential non.simple curve on S i / and  only i / some component map o /w:  

~ is irreducible. 

w 10. Solutions to Problems B and C 

THEOREM 3. Let F be a torsion/ree Fuchsian group o/ type (p, n):#(0, 3). Then/or  all 

x, yE F(F) with x~:y, and ~r (x )~ (y ) ,  we have 

(x, y)  <~(x, y). 

In  particular,/or every ~E T(F), the fiber 7~-1(~) is not a Teichmiiller disc. 

Proo/. Assume there exists a TE T(F) and x and yE~r-l(~) such tha t  

(x, y)  =9(x, y). (10.1) 

Without  loss of generality we may  assume tha t  T =0  and x = a is used as base point for 

identifying F(F) with a Teichmiiller space T(F) ~ T(F; a). Thus we may  write 

y = wto~(a), 

where # = ~ / l ~ l ,  ~ is an integrable meromorphic form (~ EQ((U/F)~{d})) of the type de- 

scribed in w 8, 0 < t o < l ,  and 

1 1 + t  o 
qv(x, y) = �89 og ~ = ~ (0 ,  to). 

Consider any point z on the geodesic line segment in the ~ metric between x = a and y. 

We know tha t  

<x, z> ~< e(x, z), <z, y> ~< ~(z, y), 
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by Proposition 4, and tha t  

@(x, z) +@(z, y) = @(x, y) ~ (x ,  y},  

by the assumption (10A) and the choices made. By the triangle inequality 

/.z, z} = e(x, z). 

We conclude tha t  the segment in U (between x and y) is also a geodesic ray in the Teich- 

miiller metric. Thus for any z on this segment 

z = wt'(a) with @(x, z) = �89 log 1 + t 
l - t "  

In  particular, 0 ~<t ~< t o implies tha t  t# is trivial; tha t  is, 

wt~(~) = ~, all ~ER. 

Since for fixed ~ e R, 

t ~ wt"(~) 

( lo.2)  

is a holomorphic function from the disc A into C, we conclude by the identity theorem for 

holomorphic functions tha t  (10.2) holds for all tEA ,  and tha t  t# is trivial for all tEA. Thus 

the assumption (10.I) for a single pair of points implies tha t  ~-1(0) is a Teiehmiiller disc in 

F(F). In  particular, this would imply tha t  the axis of a hyperbolic element g E P correspond- 

ing to a simple loop on U/P would be an invariant  line in the Teichmiiller metric for the 

element g in rood F. Thus g would be a hyperbolic element of mod P (Bers [9]). This con- 

tradicts Theorem 2. 

Remark.  The fact tha t  the fibers of z: F(F)-> T([') are not Teichmiiller discs has also 

been obtained by  Nag [29]. 

COROLLARY 6 (of the proof). The Teichmi~ller metric on any / iber  ~-l(v)  is not a con- 

stant multiple o/ the Poincard metric. As  a matter o//act,  i / w e  restrict attention to any segment 

o/ a Poincard geodesic in ~-1(~), then the two metrics are not constant multiples o[ each other 

on this segment. 

COI~OLLARY 7. Let F be a torsion [ree Fuchsian group o] type (p, n)=4=(O, 3). Let 

v e Q ( ( U \ A ) / F ) ,  where A =Pa,  a e  U, with [[~]] =1. Let 

B = {t e A; t~/]q)] is a trivial Beltrami coe//icient}. 

Then B is a discrete (possibly:empty) subset.o] the unit  disc A.  
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Remarks. (1) In particular, the Beltrami coefficient ~/]q] can not be locally trivial. 

(2) If gCF yields a hyperbolic element of rood F, then the axis of g is never in a single 

fiber in F(F). I t  would be interesting to describe the image of this axis in T(F). 

The above results have solved Problem C. 

We turn now to Problem B. Consider an arbitrary surface S of finite type (p, n) 

satisfying (2.1). Represent S as U/F with F a torsion free Fuchsian group. The matric 

defined in w 3 coincides with the projection to U/F of the Teichmiiller metric on ~-x(0) c F(F). 

Hence we have obtained 

COROLLARY 8. The metric ~ on U/F is complete and never a multiple of the Poincard 

metric on U/F, except if U/F is of type (0, 3). 

We formulate the above corollary as follows: 

THI~OR~M 4. Let S be a Riemann surface of non-excluded finite type (p, n) =4=(0, 3). Then 

S carries two canonically defined metrics on it: the Poincard metric Q of constant negative curva- 

ture - 4  and the Teichmi~ller metric ~ (which is the restriction to S of the Kobayashi metric on 

the punctured Teichmi~ller curve). These metrics are not constant multiples o/one another. 

However, there exists a universal constant c > 0  such that 

ce <~ <e,  

on S • S~(diagonal} .  The metrics ~ and ~ are invariant under con/ormal maps. 

Remarks. (1) If S is of type (0, 3), then ~ =~. 

(2) We have also established Theorem 4' of the introduction. ~ e  have also obtained 

PROPOSITION 6. Let S be a Riemann surface of finite type, and let xo 6 S. There exists a 

constant c 1 > 0 such that for all y ES with 9(x0, y) <el, there exists a unique (extremal) quasicon. 

formal mapping w with the properties 

(i) w is homotopic to the identity (on S), 

(ii) w(xo)=y, and 

(iii) whenever ~ satisfies (i) and (ii), then K(w) <~ K(~).  

Remarks. (1) The mapping w satisfies 

�89 log K(w) =~(xo, y). 

(2) In connection with Proposition 6, consider the Bers fiber space z: F(F)-~ T(F). 

1St  - 802908 Acta mathematica 146. I m p r i m 6  le 24 J u i n  1981 
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Fix x 0 E:r-l(0). I t  would be interesting to describe the shape of the sets 

{ye~-~(o); <v, ~o> = ~}, 

and 

where 

{y~et-l(0); <y, xo> = <y, 9xo>}, 

>0 ,  and geF ,  ~/#1. 

In particular, how does the constant cl depend on x o (and S)? 

w 11. Infinitesimal torms of the metrics on the fibers 

Let  F be a finitely generated torsion free Fuchsian group of the first kind. Let 

~: -P(F)+ T(F) be the associated Bers fiber space. We are interested in computing the in- 

finitesimal form of the Teiehmtiller metric on u-l(0) and comparing it with the Poincar6 

metric. We know that  for z o E U, 

e(Zo, Zo+t)= l ~  z +O(t~), t~o. 

To compute (z 0, z o + t>, we choose qo E Q((U/F)~(20>) such that  # = qS/] ~0 ] is locally trivial 

with respect to the group F. Then, of course, 

<~o, ~'~(Zo)> = I tl +o(t~), 

Since (see, for example, Bets [7]) 

we see that  

t~O. 

_ _ zo(zo-1)ff , #(~)d~Ad~ +o(t~) ' t~O, wt~(zo)-zo • ~ r 1 6 2  o) 

Itl I o( o: 
e(z~176 Im zol 2ztil) ~ftr r162162 1 o(t~), 

and hence (as a consequence of (8.1) and (5) of Lemma 1) that  

~< zo(z0-1) C ~  #(r 
2 Im zo.~. ~ jj~, <8 Im 

with equtdity in the first inequality for groups of type (0, 3). 

t-~0, 
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w 12. Absolutely extremal self-mappings 

The following theorem is due to Thurston [36]; see also Podnaru [31]. A proof appears 

in [32]. The proof given below is a slight modification of an argument of Bers (oral com- 

munication). Our proof does not rely on any ideas from the theory of measured foliations. 

THEOREM 5. Let w: S-+S be an absolutely extremal mapping with dilatation K > I .  

Then K is an algebraic integer. 

Proo/. First assume that  S is a compact Riemann surface of genus 1o ~> 2, and that  the 

initial (and hence terminal)differential of w is the square of an abelian differential, ~0 u. 

At a non-critical point P of w, there is a natural parameter z vanishing at P so that  (see 

Bers [9]) 

cf = dz near P. (12.1) 

If  ~ is such a natural parameter at w(P), then w is represented at P by 

Re ~ = K�89 Re z, Im ~ = K-�89 Im z. (12.2) 

The mapping w induces an automorphism T of the first homology group on S with 

integral coefficients: 

T: HI(S  ) --~ HI(S ). 

If  c is a closed curve on S, T sends the homology class of c into the homology class of the 

closed curve w(c). If  we choose a canonical homology basis for Hi(S), then with respect to 

this basis T is represented by a sympleetic matrix in particular, by  a matrix with integral 

entries. There is a canonical pairing between HI(S ) and ~,  the vector space of harmonic 

one forms on S: 

<c, o)> = f o~, ceHl(S), o.) 6 ~ .  
Jc 

Let T* be dual map to T: 

it satisfies 

that  is 

T*: 74 -~ ~/; 

<To, co> = <c, T*~o>; 

~r e o-_ yeT*w. (12.3) 
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In  particular, with respect to an appropriate basis for ~ (the basis dual to the one used 

for the symplectic representation for T), T* is represented by  the adjoint of T. 

Now Re ~0 and Im~E~4,  and (12.1) together with (12.2) show tha t  for every closed 

c u r v e  c o n  ~ ,  

frcRe q~=K1/~ fcRe  ~. (12.4) 

Hence (12.3) shows tha t  

Similarly, 

T* (Re ~) = K�89 (Re  ~0). 

T* (Ira ~0) -- K-�89 (Ira ~). 

In  particular, K�89 is an eigenvalue of an integral matrix,  and hence must  be an algebraic 

integer. 

Now for the general case. Assume tha t  S has type (p, n). Let  :~ be the compactification 

of S. The mapping w extends to a formal Teichmiiller self-mapping of ~ (with the same 

dilatation). Let  xl, ..., x m consist of the poles and zeros of odd order of U, the initial dif- 

ferential of w. The mapping w permutes these points, and by  pasing to a power of w, we 

m a y  assume tha t  

w(x~) = xj, ] = 1  ..... m. 

As in Ahlfors [3], one constructs a four sheeted or two sheeted cover M of S which is rami- 

fied precisely over {x 1 ... . .  xm}. We lift w to a self-mapping W of M so tha t  

w ~ 

commutes. The easiest way to see tha t  W is absolutely extremal is to observe tha t  W k is a 

Teichmiiller mapping if and only if w ~ is a formal Teichmiiller mapping whose initial dif- 

ferential is permitted to have poles only at  xx .. . . .  xz, and K(W ~) = K(w ~) = K(w) 2 =K(W) 2. 

Hence by  Theorem 6 of Bers [9], W is absolutely extremal. The initial differential of w 

lifts to M. On M, it is holomorphic and has zeros of even orders only. Lifting it to another 

two sheeted cover, if necessary, this quadratic differential becomes a square of an abelian. 

This finishes the proof. 

Le t  us consider a more general situation. Let  w be a Teichmiiller self-mapping of a 

surface S. Assume tha t  the dilatation of w is K,  and tha t  the terminal quadratic differential 



ON THE NIELSEN--THURSTON--BERS TYPE OF SOME SELF-ltJAPS OF RIE~A~rN SURFACES 267 

Of W is a multiple (of absolute value one) of the initial differential. Assume tha t  one (and 

hence) both are squares of holomorphic abelian differentials (on a compact surface). Calling 

these abelian differentials ~ and ~ respectively, we have 

The analysis of the previous section goes through with the following replacing (12.4): 

f rcRe  ~p=K1/2 f c R e  ~o. 

Thus we conclude tha t  

and similarly 

T* (Re e~~ = K~ (Re ~), 

T* (Ira e~~ = K - i  ( Im ~). 

The generalization of Thurston's  (Theorem 5) result becomes 

T~EOR~M 5'. Let w: S ~ S  be a Teichmi~ller mapping with dilatation K > I .  Assume 

that the terminal di//erential y) o /w  is a multiple (e ~~ 0 E R) o/the initial di]/erential cf o/w: 

y) = e~O % 

Then 

( � 8 9  (Kli~ § K-1/2) • ~ " 20 2 q- ~(COS ~ ) ( K +  K- l ) - -4  

are algebraic integers. 

Remarlc. For 0 ~ 0, we obtain as before tha t  ___ K�89 are algebraic integers. The same is 

true when 0 = 2 g  (as is to be expected); while for 0 = g ,  we obtain no information ( •  are 

algebraic integers). By  studying the action tha t  w induces on an invariant Teichmiiller disc, 

one can conclude tha t  

� 8 9  (1 +cos  0) 

is an algebraic integer. This s tatement  is equivalent to Theorem 5'. By  interpreting Theorem 

5' in terms of the action of w as an element of the modular group, we obtain 

T~EOREM 6. Let ZEMod (p, n) leave invariant the Teichmi~Uer disc D ~  T(p, n). Let T 

be the trace o/the MSbius trans[ormation ~, I D. Then T is a real algebraic integer, and 

)~ is elliptic -~ Z ] D is the identity or ] T ] < 2, 

Z is parabolic ~ Z ] D is not the identity and [ T I = 2, 

17 - 802908 Acta mathematica 145. Imprim6 le 24 Juin 1981 
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and 

g iz hyperbolic-~ ] T ] > 2. 

Let  c be an essential curve on a surface S of non-excluded finite type (p, n). We have 

associated two real numbers to this curve: 

and 

K = dilatation of absolutely extremal mapping corresponding to c, 

= exp 2/, 

where 1 is the length of shortest geodesic determined by c. To be more explicit, represent 

S by U/F with F torsion free of type (p, n). Then c corresponds to an element g E F, with 

g a hyperbolic element of mod F. Without loss of generality g has fixed points at  0, ~ and 

multiplier >1.  We have seen that  (Theorem 2 of w 9) that  there exists a point x0E F(F) 

such that  

a(g) = <Xo, gXo). 

Of course, the dilatation of the corresponding absolutely extremal self-mapping (of the 

surface of type (p, n + 1)) is 

K = exp (2<x 0, gxo) ). 

Maskit-Matelski [27] have shown that  there is a ~E T(F) with z=[~u0], p0EM(F), so that  

�89 log 2~/> �89 log 2~., all # E M(F), (12.5) 

where for /~eM(F) ,  ~ is the multiplier of g~=w~ogow~ 1. Recall the functions/1 and ]~ 

introduced in w 8. The number 2 is, of course, ~ . .  

PROeOSITIO~ 7. (a) I /  (p, n)=(O, 3), then 

K = L  

(b) For (p, n)=~(0,3), we have 

K < 2 .  

Proo/. Par t  (a) is  obvious. For part  (b), recall tha t  for all x 1 on the Poincar6 axis of 

g~0, w e  h a v e  

�89 log K = a('g) <~ <Xl, gxl> < 0(x!, gxi) = �89 log 2. 
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W e  have  a l r eady  r e m a r k e d  t h a t  K is an  a lgebra ic  integer.  The  n u m b e r  2 also satisfies 

an  e q u a t i o n - - a  t r anscenden ta l  equat ion .  T rans l a t e  so t h a t / t 0 = 0 .  Then  equa t ion  (12.5) 

t oge the r  wi th  the  fac t  t h a t  

~ =w~(2),  a l l # E M ( F ) ,  

shows t h a t  (see, for example ,  Bets  [7]) 

~ ( A - 1 )  I I 1 I d S A d ~ I = 0 ,  all  EM(F) .  
C(C- I) (C- 4) 

This is equ iva len t  to  t he  condi t ion  t h a t  the  Poincar6 series giving the  va r i a t ion  of the  

length  of the  geodesic corresponding to  g, 

7'(C) 
5 (rC)(rC- 1)(rC- 

vanishes  iden t ica l ly  (see Gard iner  [16]). 

I t  would  be of in te res t  to  de te rmine  if, in the  above  s i tua t ion ,  z - l ( 0 )  conta ins  a po in t  

where  a(g) is assumed.  The  precise re la t ion  be tween  the  two inva r i an t s  K and  2 should  be 

clarif ied b y  fu ture  inves t igat ions .  

Note added in proo] (March 12, 1981). Proposit ion 3 can be strengthened. The element 

0 E mod F is hyperbolic whenever Z e Mod 1 ~ is hyperbolic.  The arguments used to prove Pro- 

posit ion 3 yield, in certain cases, a relation between the axis of 0 and the axis of Z" Details  

will appear  elsewhere. 
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