5. On the Nilpotency Indices of the Radicals of Group Algebras of p-Solvable Groups

By Shigeo Koshitani
Department of Mathematics, Tsukuba University
(Communicated by Kôsaku Yosida, m. J. A., April 12, 1977)

Let K be an algebraically closed field with characteristic $p>0, G$ a finite group of order $p^{m} g^{\prime},\left(p, g^{\prime}\right)=1, K G$ a group algebra of G over K, $J(K G)$ the radical of $K G$ and $t(G)$ the nilpotency index of $J(K G)$.

For a block B of $K G$ denote by $t(B)$ the nilpotency index of the radical $J(B)$ of B. G. O. Michler [6] showed that if a defect group D of B is cyclic and normal in G, then B is a serial ring and $t(B)=|D|$. In this paper we shall prove that when D is cyclic, B is serial if and only if $t(B)=|D|$.
D. S. Passman [9], Y. Tsushima [11] and D. A. R. Wallace [12] showed that $m(p-1)+1 \leqq t(G) \leqq p^{m}$ provided G is p-solvable. Recently K. Motose and Y. Ninomiya [8] proved that for a p-solvable group G of p-length $1, t(G)=p^{m}$ if and only if a p-Sylow subgroup P of G is cyclic. We shall generalize this result as follows: For an arbitrary p solvable group $G, t(G)=p^{m}$ if and only if P is cyclic. This is an affirmative answer to Ninomiya's conjecture announced in the Summer Algebra Symposium at Matsuyama in Japan (1974).

We call a module uniserial if it has a unique composition series of finite length. To being with we shall prove

Proposition 1. Let B be a block of $K G$ with a defect group D. If D is cyclic, then $t(B) \leqq|D|$.

Proof. We can assume that $J(B) \neq 0$. Put that $B=\sum_{i=1}^{n} \sum_{j=1}^{f_{i}}$ $\oplus K G e_{i j}$, where $\left\{e_{i j}\right\}$ are orthogonal primitive idempotents of $K G$ such that $K G e_{i 1} \cong K G e_{i j}$ for $j=1, \cdots, f_{i} ; i=1, \cdots, n$ and $K G e_{i 1} \nsubseteq K G e_{k_{1}}$ if $i \neq k$, and $e_{i 1}=e_{i}$ for $i=1, \cdots, n$. Let $C=\left(c_{i k}\right)_{1 \leq i, k \leq n}$ be the Cartan matrix for B and t_{i} the least positive integer such that $J(K G)^{t_{i}} e_{i}=0$ for $i=1, \cdots, n$. Then $t(B) \leqq \max \left\{t_{k} \mid 1 \leqq k \leqq n\right\}=t_{i}$ for some i and $t_{i} \leqq s_{i}$, where $s_{i}=\sum_{k=1}^{n} c_{i k}$. By [4, Satz 1], there is a pair of uniserial left $K G-$ modules $L_{i 1}, L_{i 2}$ such that $J(K G) e_{i}=L_{i 1}+L_{i 2}, L_{i 1} \cap L_{i 2} \cong K G e_{i} / J(K G) e_{i}$, $L_{i 1}$ and $L_{i 2}$ have no common composition factors except $K G e_{i} / J(K G) e_{i}$, and all composition factors of $L_{i 1}$ are nonisomorphic. Again, by [4, Satz 1], $s_{i}=r_{i 1}+\left(c_{i i}-1\right) r_{i 2}$, where $r_{i v}$ is the number of nonisomorphic composition factors of $L_{i v}$ for $v=1,2$, and $r_{i 1}+r_{i 2} \leqq n+1$. If we put that $c=\max \left\{c_{k k}-1 \mid 1 \leqq k \leqq n\right\}$, by [1, Theorem 1], $|D|=c n+1$. Therefore $t(B) \leqq|D|$.

Corollary 2. Let P be a p-Sylow subgroup of G. If P is cyclic, then $t(G) \leqq|P|$.

An artinian ring $R \ni 1$ is called serial if $R e$ and $e R$ are uniserial modules for any primitive idempotent e of R. Then we have

Theorem 3. Let B be a block of $K G$ with a defect group D. If D is cyclic, then the followings are equivalent.
(1) $t(B)=|D|$.
(2) B is a serial ring.
(3) The Cartan matrix for B has form

$$
\left[\begin{array}{cccccc}
c+1 & c & \cdot & \cdot & \cdot & c \\
c & c+1 & \cdot & & & \cdot \\
\cdot & \cdot & \cdot & \cdot & & \cdot \\
\cdot & & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & c \\
c & \cdot & \cdot & \cdot & c+1
\end{array}\right]
$$

Proof. If $D=1, B$ is simple artinian. So (1), (2) and (3) always hold. We can assume that $D \neq 1$. We use notations as in Proposition 1.
(2) $\bigsqcup(3)$: This follows from [7, Lemma 1].
(3) $\leftrightharpoons(1)$: By (3) and [1, Theorem 1], $s_{i}=c n+1=|D|$ for all i. From [5, Folgerung 4], B is serial. So $K G e_{i} \supseteq J(K G) e_{i} \supseteq \cdots \supseteq J(K G)^{|D|} e_{i}$ $=0$ is a unique composition series of $K G e_{i}$ for all i. Put that E $=\sum_{i=1}^{n} \sum_{j=1}^{f_{i}} e_{i j}$. Since $E \in Z(K G)$ and E is a unit element of B, $0 \neq J(K G)^{|D|-1} e_{1}=E J(K G)^{|D|-1} e_{1} E \subseteq E J(K G)^{|D|-1} E=(E J(K G) E)^{|D|-1}$ $=J(B)^{|D|-1}$. Hence from Proposition 1, $t(B)=|D|$.
(1) \leftrightharpoons (2): By the proof of Propositon 1 and (1), $t(B)=t_{i}=s_{i}=c n+1$ $=|D|$ for some i. This shows that $K G e_{i}$ is uniserial, and hence $J(K G) e_{i}$ $=L_{i 1}$ or $J(K G) e_{i}=L_{i 2}$ by [4, Satz 1].

Case 1: Assume that $J(K G) e_{i}=L_{i 1}$. Since $s_{i}=|D|$, by [4, Satz 1] and [1, Theorem 1], the number of nonisomorphic composition factors of $K G e_{i}$ is equal to $|D|-1=c n$. From the definition of $n, c=1$. So $K G e_{1} / J(K G) e_{1}, \cdots, K G e_{n} / J(K G) e_{n}$ appear as composition factors of $K G e_{i}$. Hence, by rearranging the numbers $1, \cdots, n$, the Brauer tree of B has form

Since $c=1, K G e_{k}$ is uniserial for all $k=1, \cdots, n$.
Case 2: Assume that $J(K G) e_{i}=L_{i 2}$. As in Case 1, the number of nonisomorphic composition factors of $K G e_{i}$ is equal to $(|D|-1) /\left(c_{i i}-1\right)$ $=c n /\left(c_{i i}-1\right) \geqq n$. So as in Case $1, c=c_{i i}-1$ and, by rearranging the numbers 1, \cdots, n, the Brauer tree of B has form

where $V_{\text {exc }}$ is the exceptional vertex. This shows that $K G e_{k}$ is uniserial for all $k=1, \cdots, n$.

Similarly, $e_{k} K G$ is uniserial for all $k=1, \cdots, n$. This completes the proof of Theorem 3 .

Now, using Theorem 3 and group theory we have the following main theorem of this paper. This is a generalization of [8, Corollary 1 (2)].

Theorem 4. Let G be a p-solvable group with a p-Sylow subgroup
P. Then $t(G)=|P|$ if and only if P is cyclic.
Proof. If P is cyclic, by [10, Theorem 3], $K G$ is serial. By applying Theorem 3 for each block of $K G, t(G)=|P|$.

Conversely, assume that $t(G)=|P|=p^{m}$. We use induction on $|G|$. If $G=1$, it is trivial. Assume that $G \neq 1$ and it is proved for p-solvable groups of orders $1, \cdots,|G|-1$. From [8, Corollary 1], we may put that $m \geqq 3$. Since G is p-solvable, G has a proper normal subgroup H such that $(|G: H|, p)=1$ or $|G: H|=p$. If $(|G: H|, p)=1$, by [9, Lemma 1.2] and [9, Proposition 1.5], $t(G)=t(H)$. So from the hypothesis of induction, H has a cyclic p-Sylow subgroup. i.e. P is cyclic. Therefore we can assume that $|G: H|=p$. By [9, Proposition 1.3] and [9, Lemma 1.2], $J(K G)^{p} \subseteq J(K H) K G=K G \cdot J(K H)$. So $J(K G)^{p \cdot t(H)} \subseteq J(K H)^{t(H)} K G$ $=0$. Hence $t(G) \leqq p \cdot t(H)$. From this and [9, Theorem 1.6], $t(H)$ $=p^{m-1}$. Thus from the hypothesis of induction, H has a cyclic p-Sylow subgroup of order p^{m-1}. Now, suppose that P is not cyclic. By [8, Corollary 1], P is not abelian. Since P has a cyclic subgroup of index p, by [2, Chap. 5 Theorem 4.4], P is one of the following types,
(i) $p \geqq 3$ and $P \cong M_{m}(p)=\left\langle a, b \mid a^{p}=b^{p^{m-1}}=1, a^{-1} b a=b^{p m-2+1}\right\rangle$,
(ii) $p=2, m=3$ and $P \cong D_{3}$ or Q_{3},
(iii) $\quad p=2, m \geqq 4$ and $P \cong M_{m}(2), D_{m}, Q_{m}$ or S_{m},
where M_{m} (2) is defined for $p=2$ in (i), D_{m} is a dihedral group, Q_{m} is a generalized quaternion group and S_{m} is a semi-dihedral group (cf. [2, Chap. 2, Chap. 5]).

Case 1: Assume that $p=2$. Since H has a cyclic 2-Sylow subgroup, by [2, Chap. 7 Theorem 6.1], H has a normal 2-complement L. L is characteristic in H and H is normal in G, and hence L is normal in G. This implies that L is a normal 2-complement of G. So from [8, Corollary 1], $t(G) \neq 2^{m}$ since P is not cyclic. This is a contradiction.

Case 2: Assume that $p \geqq 3$. We can put that $P=M_{m}(p)$. We use
notations P_{i} and N_{i} for G as in [3, §1]. Since $Z(p)=\left\langle b^{p}\right\rangle$, by [2, Chap. 6 Theorem 3.3], $b^{p} \in 0_{p^{\prime}, p}(G)=P_{1}$. If $a \in P_{1}$, by [8, Corollary 1] and the hypothesis that P is not cyclic, $\left\langle a, b^{p}\right\rangle$ is a p-Sylow subgroup of P_{1}. So from [8, Corollary 1] and [9, Theorem 1.6], $t\left(P_{1}\right)<p^{m-1}$. By [9, Proposition 1.5] and [9, Lemma 1.2], $t(G)=t\left(P_{2}\right)$ and $t\left(N_{1}\right)=t\left(P_{1}\right) . \quad$ By [9, Proposition 1.3] and [9, Lemma 1.2], $t\left(P_{2}\right) \leqq p \cdot t\left(N_{1}\right)$. Thus $p^{m}=$ $t(G)<p p^{m-1}=p^{m}$. This is a contradiction. So we can assume that $a \notin P_{1}$. Thus we can put that $P_{1} / N_{0}=\left\langle b N_{0}\right\rangle$ or $\left\langle b^{p} N_{0}\right\rangle$. Denote by $\Phi(X)$ the Frattini subgroup of X for a finite group X. Put that $\Phi\left(P_{1} / N_{0}\right)$ $=F / N_{0}$ and $S=\left\{x \in G \mid x^{-1} y x F=y F\right.$ for all $\left.y \in P_{1}\right\}$. If $P_{1} / N_{0}=\left\langle b N_{0}\right\rangle$, $F=\left\langle b^{p}\right\rangle N_{0} . \quad$ So from $a^{-1} b^{i} a=b^{i} b^{p m-2 i}, a^{-1} b^{i} a F=b^{i} F$ for all i. If P_{1} / N_{0} $=\left\langle b^{p} N_{0}\right\rangle, F=\left\langle b^{p^{2}}\right\rangle N_{0}$. Since $Z(P)=\left\langle b^{p}\right\rangle, a^{-1} b^{p i} a F=b^{p i} F$ for all i. In any case $a \in S$. Hence, by [3, Lemma 1.2.5], $a \in P_{1}$. This is a contradiction. This finishes the proof of Theorem 4.

Added in proof. After submitted this paper the author received from Mr. K. Motose a preprint entitled "On radicals of principal blocks", in which it is quoted the validity of Proposition 1. Further it is reported in the same paper that our Theorem 4 has been proved by Y. Tsushima independently, however, it seems to us that Tsushima's proof is different from ours.

References

[1] E. C. Dade: Blocks with cyclic defect groups. Ann. of Math., 84, 20-48 (1966).
[2] D. Gorenstein: Finite Groups. Harper and Row, New York (1968).
[3] P. Hall and G. Higman: On the p-length of p-soluble groups and reduction theorems for Burnside's problem. Proc. London Math. Soc., 6, 1-42 (1956).
[4] H. Kupisch: Projektive Moduln endlicher Gruppen mit zyklischer p-SylowGruppe. J. Alg., 10, 1-7 (1968).
[5] --: Symmetrische Algebren mit endlich vielen unzerlegbaren Darstellungen II. J. Reine Angew. Math., 245, 1-14 (1970).
[6] G. O. Michler: Green correspondence between blocks with cyclic defect groups I. J. Alg., 39, 26-51 (1976).
[7] K. Morita: On group rings over a modular field which possess radicals expressible as principal ideals. Sci. Rep. of Tokyo Bunrika Daigaku, A4, 177-194 (1951).
[8] K. Motose and Y. Ninomiya: On the nilpotency index of the radical of a group algebra. Hokkaido Math. J., 2, 261-264 (1975).
[9] D. S. Passman: Radicals of twisted group rings. Proc. London Math. Soc., 20, 409-437 (1970).
[10] B. Srinivasan: On the indecomposable representations of a certain class of groups. Proc. London Math. Soc., 10, 497-513 (1960).
[11] Y. Tsushima: Radicals of group algebras. Osaka J. Math., 4, 179-182 (1967).
[12] D. A. R. Wallace: Lower bounds for the radical of the group algebra of a finite p-soluble group. Proc. Edinburgh Math. Soc., 16, 127-134 (1968).

