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Abstract

The internal rate of return (IRR) is generally considered inferior to the net
present value (NPV) as a tool for evaluating and ranking projects, despite its inher-
ently useful comparability to the cost of capital and the return of other investment
opportunities. We introduce the “selective IRR,” a return criterion which, as a
selection of an extended set of possible IRRs, is NPV-consistent. The selective IRR
always exists, is unique, easy to compute, and does not suffer from drawbacks that
befall the project investment rate, the only other known NPV-consistent return
criterion.
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1 Introduction

Despite the well-known shortcomings of the internal rate of return (IRR) as a criterion
for evaluating the desirability of investment projects, it continues to be widely used in
practice (Schall et al. 1978; Stanley and Block 1984; Graham and Harvey 2001; Brounen
et al. 2004). Finance textbooks (e.g., Brealy and Myers 1991; Berk and DeMarzo 2007),
on the other hand, usually suggest that selecting profitable investments amounts to under-
taking projects with positive net present value (NPV). The greatest conceptual difficulty
for the practically important IRR criterion is its failure to generally provide a unique
value, against which to compare the company’s hurdle rate in order to arrive at a deci-
sion that is consistent with the NPV rule (Samuelson 1937).1 Multiple fixes have been
proposed in the literature to guarantee existence and uniqueness, but usually they entail
changing the underlying problem, e.g., by treating intermediate project cash flows differ-
ently according to their signs (resulting in the modified internal rate of return or MIRR;
DuVillard 1787), by truncating the time horizon so as to maximize NPV (resulting in
a different project; Arrow and Levhari 1969), or by changing the objective from value
maximization to growth maximization (Dorfman 1981). All of them are inconsistent with
the NPV rule.

In this paper, we propose a simple selective IRR criterion, which produces a unique
number, consistent with both the definition of IRR (in the sense that it is equal to
exactly one of its possible values) and the NPV rule. Our results are related to the
project investment rate (PIR) proposed by Teichroew et al. (1965) which while producing
NPV-consistent investment decisions is as a criterion generically different from any IRR
and also suffers from a ‘mixing inconsistency’ (see Ex. 8). The selective IRR amounts
to a single-valued selector defined on the set I of all possible (real-valued) IRRs, that
(for any hurdle rate r) picks either the least element of I which exceeds r when NPV is
positive or the largest element of I smaller than r when NPV is negative. Conceptually,
the selective IRR is obtained as the limit of a tâtonnement process (in the form of a
monotonic ratcheting procedure) that, starting with a given hurdle rate r, recursively
produces a new PIR given the previous PIR as hurdle rate, thus converging to an element
in I (or ±∞). When computing the selective IRR in this manner, the NPV is never
directly used, so one obtains a complementary investment criterion (which produces NPV-
equivalent decisions). The selective IRR can be used in an incremental fashion to make
pairwise NPV-consistent decisions between projects and thus to establish a preference
order over a project portfolio.

In addition to resolving the long-standing divide between IRR and NPV, the selec-
tive IRR, which can be viewed as a piecewise constant function of r, provides an inbuilt
robustness with respect to uncertainty in the hurdle rate. If a small random perturba-
tion is added to the hurdle rate, then the selective IRR will most likely remain exact
and deterministic, whereas the NPV generally becomes random. In addition, the use of
the selective IRR as investment criterion fits the empirical observation that firms tend to

1The “hurdle rate” is defined here as the incremental cost of capital (or marginal cost of capital),
that is the weighted average cost of capital for the additional capital required for the investment project
under consideration (Downes and Goodman 1998, pp. 265/273). There are other uses of the term hurdle
rate in the literature; see, e.g., Berk and DeMarzo (2007, pp. 738–739), Bodie et al. (1996, p. 247), or
Dixit (1992).
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choose hurdle rates which exceed their true costs of capital (Poterba and Summers 1995).
Indeed, firms can exaggerate their aspiration levels without effectively changing the se-
lective IRR.2 Doing this accounts (at least qualitatively) for some of the option value
embedded in an investment opportunity: if the exaggeration of the hurdle rate triggers
a jump in the selective IRR and thus a change in the investment decision, then, so the
heuristic goes, the investment is no longer attractive because the net present value at the
hurdle rate is not sufficiently positive to justify giving up the option of doing something
else, such as simply delaying the project.

1.1 Literature

The notion that obtaining a cash flow in the future is worth less than obtaining it in the
present can be traced back to discounting tables in the sixteenth century (Biondi 2006).
Gioja (1817, p. 316) provides the classic form of the compound interest formula, deter-
mining the present value of a future cash flow by discounting it with an interest rate;
he also provides the classic formula for the present value of an annuity (ibid., p. 319).
The modern prominence of the NPV criterion as a basis for investment decisions is due
to Fisher (1930). The NPV rule suffers from the drawback that by representing the net
dollar value of a project the magnitude of this value cannot be informative about the
rate of return, i.e., the amount gained for every invested dollar, which provides compa-
rability with investments in capital markets. Other shortcomings of the NPV rule stem
from its failure to include the value of various options embedded in a project (Ross 1995)
or from encouraging misrepresentation in the presence of asymmetric information in an
organization (Berkovitch and Israel 2004).3

The IRR, on the other hand, is implicit in the work of von Böhm-Bawerk (1889) who
postulated an investment rule so as to maximize the net cash flow for each invested dollar.
In its calculation “funds are assumed to earn, not the market rate of interest, but the
rate of profit internal to the firm” (Scitovsky 1971, p. 214). Keynes (1936) terms the
IRR therefore the marginal efficiency of capital.4 Lorie and Savage (1955) point out that
the rate-of-return method is “ambiguous or anomalous” (p. 237) in the case where the
NPV as a function of the discount rate r has multiple roots, so the IRR (as the discount
rate for which NPV vanishes) is not uniquely determined. One well-known attempt to
modify or decompose the cash-flow stream so as to guarantee a unique rate of return, was
introduced by Wright (1959), Flemming and Wright (1971), and independently by Arrow
and Levhari (1969), all of whom require that there be “costless extricability” or in other
words, that the project can be discontinued at any point in time, in which case the IRR
is unique at the NPV-maximizing time horizon. But this IRR, although unique, provides

2Magni (2009) adds that the use of hurdle rates effectively deals with the bounded rationality of
investors vis-à-vis the complexities of their investment decisions.

3For example, an option often embedded in an investment project is given by the ability to delay it,
which invalidates the standard NPV criterion (invest when NPV is positive) because the opportunity cost
of giving up the option by taking the investment decision is not considered (McDonald and Siegel 1986;
Ingersoll and Ross 1992). In an organization, managers may try to hide high NPV projects if they entail
less fixed capital than a project with lower (but still positive) NPV (Berkovich and Israel 2004).

4The marginal efficiency of capital is a special case of the “incremental IRR,” that is the IRR of the
difference of two cash-flow streams, also termed “rate of return over cost” by Fisher, when one of those
cash-flow streams vanishes (Alchian 1955).
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only minimal information about the return of the original project and is generally not
consistent with the NPV criterion (e.g., because it necessarily neglects any large capital
expenditures at the end of a project). Hildreth (1946) and Dorfman (1981) point out that,
under the additional assumption that projects are repeated indefinitely, selecting one with
the largest real part of the IRR would maximize overall growth, the exact growth path
being determined by all possible complex-valued IRR-values.5 This insight is achieved
by modifying both the objective and the project (from finite-horizon to infinite-horizon),
and therefore no significant connection to the NPV criterion can be expected.

The selective IRR in this paper is constructed using an idea by Teichroew et al. (1965)
whose project investment rate is obtained by keeping track of the cash-on-hand (termed
project balance) over time, until the end of the project horizon is reached. When com-
pounding the project balance forward, the investor uses an external rate (usually the
current hurdle rate) or an internal rate, depending on whether the current project bal-
ance is positive or negative, respectively. The project investment rate corresponds to
the unique internal rate that renders the final project balance zero and thus presents the
maximum load on negative project balances that the project can bear without turning
into a net loss. The advantage of the project investment rate over the IRR is that it
is unique and consistent with the NPV criterion. Its disadvantage is that it is different
from any IRR and therefore does not inherit the desirable conceptual interpretation as
marginal efficiency of capital, which is widely taught to practitioners of corporate finance
(see, e.g., Brealey and Myers 1991) and enjoys widespread popularity in practice (Schall et
al. 1978; Stanley and Block 1984; Graham and Harvey 2001). More seriously, the project
investment rate leads to a mixing inconsistency in the sense that the convex combination
of two positive-NPV projects with the same PIRs will generally have a larger PIR (see
Prop. 2). Thus, if the NPVs of the two projects are the same, then two different owners
could achieve a Pareto-improvement through cross-holdings. Our framework sidesteps
this issue by requiring PIRs to be “in equilibrium,” in the sense that the PIR remains
unchanged when conditioning it on itself as the external rate; this in turn pinpoints (for
this external hurdle rate) a unique “selective IRR” in the set of all possible IRRs.

More recently, two “product approaches” have been proposed, based on a product
representation of the net present value V (x, r) of the cash-flow stream x at a given external
rate r in the form V (x, r) = α · β, where α = k − r is an excess return (of some internal
rate k relative to r) and β = V (c, r) is the net present value of an associated investment
stream c at the rate r. Given a nonzero excess return α of any potential IRR-value k
(relative to r), Hazen (2003) shows how to determine an investment stream c such that the
product representation holds. Conversely, given any investment stream of nonzero NPV β,
Magni (2010) shows how to find an excess return α such that the product representation
holds. Both product approaches conclude that the NPV is positive if and only if α and β
have the same sign. More specifically, they proceed as follows: in order to compute
the sign of V (x, r) = α · β, one of the factors (say, β 6= 0) is chosen in an essentially
arbitrary manner (except that it be nonzero), which then implies the other factor (say,
α = V (x, r)/β); the latter amounts to computing the NPV of x directly. Furthermore,
due to the arbitrary nature of the choice of one factor, no additional information can be

5Pierru (2010) provides a (limited) interpretation of complex-valued solutions for the IRR in terms
of returns of a two-asset portfolio; Osborne (2010) links the complex-valued solutions directly to the
computation of a normalized NPV.
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obtained that is intrinsic to the evaluation of the investment project. Still, the product
approaches remain useful for economic interpretation, e.g., when fixing one factor can
be motivated by additional outside information.6 Details about the product approaches
in a continuous-time setting are provided in Appendix A, which also generalizes Hazen’s
(2003) result to any internal rate k 6= r (as opposed to k being limited to potential IRR-
values), which makes it clear that any excess return α 6= 0 can be freely chosen together
with a suitable investment stream that enables the product representation. The selective
IRR introduced here provides intrinsic information about the return of the project. In
particular, for any external rate r there is a unique selective IRR i(r). The corresponding
excess return α = i(r) − r is such that α · V (x, r) ≥ 0 always (with a strict inequality
if and only if V (x, r) > 0). Hence, the selective IRR i(r) is an NPV-consistent return
criterion (see Appendix A), in the sense that the signs of the associated excess return
i(r)− r and of V (x, r) are identical.

1.2 Outline

Sec. 2 introduces notation and basic concepts. Sec. 3 highlights the drawbacks of available
return criteria for investment decisions, before Sec. 4 introduces the selective IRR and
examines its properties. Sec. 5 concludes.

2 Preliminaries

Let T > 0 be a fixed time horizon. Consider an investment project consisting of a deter-
ministic cash-flow stream x(t), which can also be represented by the (right-continuous)
cumulative cash flow

X(t) =

∫ t

0

x(s) ds,

for all t ∈ [0, T ]. This setup enables a uniform treatment of discrete-time and continuous-
time settings.7

Example 1 (Discrete Cash-Flow Stream). For positive integer T , a cash-flow stream with
concentrated payments xt at the discrete times t ∈ {0, 1, . . . , T} can be represented by the
vector x = (x0, . . . , xT ), where x0 = X(0) and xt = X(t)−X(t− 1) for t ∈ {1, 2, . . . , T}.8

A discrete-time cash-flow stream is therefore fully specified by its vector of cash flows;
this is used in the rest of paper.

6Magni (2010) introduces an “average IRR” (AIRR), k̄, such that k̄ = r + V (x, r)/β where β =
V (c, r) 6= 0 is the presentat value of a given investment stream; see Magni (2013) for a detailed comparison
with the standard IRR. The flexibility in computing an excess return that responds to some observed
investment stream (of interim project values) may be useful in certain applications such as real-estate
projects where estimates of those interim values may be available (Altshuler and Magni, 2012).

7The cumulative cash flow X is assumed to be a signed measure.
8In the general continuous-time framework, the discrete cash-flow stream corresponds to x(t) = x ·

∆T (t), where ∆T (t) ≡ (δ(t), δ(t − 1), . . . , δ(t − T )) has values of the same dimension, and δ(·) denotes
the Dirac distribution (Lang 1993, p. 298); it can be interpreted as a probability density with all its unit
mass concentrated at the origin.
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Given an external rate r, representing a cost of capital or a hurdle rate,9 the present
value of the cash-flow stream x is

V (x, r) =

∫ T

0

exp (−rt) dX(t). (1)

Analogous to Teichroew et al. (1965) let the project balance y(t, k, r), t ∈ [0, T ], be the
cumulative cash holdings under the cash-flow stream x(t), provided that (i) y(0−, k, r) = 0
and (ii) compounding takes place at the external rate r for positive holdings and at the
internal rate k for negative holdings. More precisely,

y(t, k, r) =

∫ t

0

(f(y(s, k, r), k, r) + x(s)) ds, ∀ t ∈ [0, T ], (2)

where

f(y, k, r) =

{

ky, if y < 0,
ry, otherwise.

If the cash-flow stream x is absolutely continuous, the integral equation (2) can be equiv-
alently written as an initial-value problem,

{

ẏ(t, k, r) = f(y(t, k, r), k, r) + x(t), ∀ t ∈ [0, T ],
y(0−, k, r) = 0,

(3)

and the corresponding project balance y(·, k, r) is continuous and differentiable almost
everywhere. The project balance represents the cumulative free cash flow, that is the
amount currently not invested in the project. When the project balance is negative, it
indicates a net investment at that point. When the project balance is positive, it can be
reinvested at the external rate.

Remark 1 (Continuous vs. Discrete Discounting). For discrete cash-flow streams, the
discount factor e−rt is replaced by the discrete-time discount factor 1/(1 + r̄)t, where r̄ =
er − 1 > −1 is the discrete-time discount rate and r ∈ R is the unique corresponding
continuous-time discount rate (with r = ln(1 + r̄)).10 The present value of the discrete
cash-flow stream x, represented by the cash-flow vector x = (x0, x1, . . . , xT ), is therefore

V (x, r) =
T
∑

t=0

x0
(1 + r̄)t

≡ V [x, r̄]. (1’)

Let y = (y0, y1, . . . , yT ) denote the vector of the discrete-time project balance. Then

yt = f(yt−1, 1 + k̄, 1 + r̄) + xt, t ∈ {1, 2, . . . , T},
y0 = x0.

(2’)

All of the results in this paper apply directly to discrete cash-flow streams if one considers
discrete time instances t ∈ {0, 1, . . . , T} and y(t, k, r) = yt as defined in Eq. (2’). To
connect to the extant literature and practical applications, discrete cash-flow streams are
often used in our examples.

9Poterba and Summers (1995) observe that, to evaluate investment projects, firms frequently use
hurdle rates which are quite different from their actual costs of capital.

10The only structural difference between continuous-time and discrete-time discount rates is that the
latter are restricted to be greater than −1 whereas the former can take on any real values.
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Figure 1: Relation between external rate, PIR, project balance, and present value.

Remark 2. Any measurable project balance z(·) = y(·, k, r) can be generated by some
cash-flow stream. Indeed, for a given z and (k, r) one obtains, by virtue of Eq. (2), the
cumulative cash-flow measure X(t) ≡ z(t) −

∫ t

0
f(z(s), k, r) ds. If z(·) is differentiable,

then x(t) ≡ ż(t)− f(z(t), k, r) for all t ∈ [0, T ] is the corresponding cash-flow stream.

A change in the external or internal rate has a one-sided effect on the project balance.

Lemma 1. At any time t ∈ [0, T ], the project balance y(t, k, r) is nonincreasing in k and
nondecreasing in r.

Proof. Since f is nonincreasing in k and nondecreasing in r, the monotonicity properties
of y follow directly from Eq. (2) for any fixed t ∈ [0, T ].

The project investment rate (PIR) of the cash-flow stream x on [0, T ] is defined as11

ϕ(r) = sup
{

k̂ ∈ R : y(T, k̂, r) ≥ 0
}

, (4)

using the convention that sup ∅ = −∞. Whenever ϕ(r) is finite, necessarily

y(T, ϕ(r), r) = 0, (5)

a relation which can be used to determine the PIR in most interesting cases (see Fig. 1).
The PIR is then the (maximum) internal rate which renders the project balance zero at
the end of the horizon. At a finite ϕ(r), the project is penalized for debt in a maximal
way, such that at the end of the horizon it is as if the project had never taken place: there
is no balance left to carry forward. From a formal viewpoint, one can define for any given
internal rate k a project financing rate (PFR) ψ(k) in a dual manner,

ψ(k) = inf {r̂ ∈ R : y(T, k, r̂) ≥ 0} , (6)

11For notational convenience, the dependence on the cash-flow stream x is dropped here and in similar
definitions below. If important for the context (such as in La. 3), notation of the form ϕx(r) emphasizes
the dependence on x.
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where one sets inf ∅ = +∞. The PFR is the minimum external rate that, for a given
internal rate, would guarantee the final project balance to be nonnegative. It is therefore
the largest lower bound on the rate at which net gains of the project can be reinvested
without the project turning into a loss at the end of its horizon. If ψ(k) is finite, then
necessarily

y(T, k, ψ(k)) = 0, (7)

so, comparing with Eq. (5), a finite PFR is in the preimage of any finite PIR and vice-
versa.12 By the properties of the supremum and infimum of a set, the PIR exists and is
unique as an element of R̄.13 Neither PIR nor PFR has to be finite.

Example 2. If x(t) ≡ 0, then ϕ(r) ≡ ∞ and ψ(k) ≡ −∞. To obtain these PIR and PFR
it is enough that x(t) be nonnegative on [0, T ].

Corresponding to the monotonicity of the project balance in (k, r) by La. 1, the PIR
and PFR must themselves be monotonic.

Lemma 2. The PIR ϕ(·) and the PFR ψ(·) are nondecreasing functions.

Proof. Fix two external rates, r̂ and r, such that r̂ > r. Furthermore, let

S =
{

k̂ ∈ R : y(T, k̂, r) ≥ 0
}

and Ŝ =
{

k̂ ∈ R : y(T, k̂, r̂) ≥ 0
}

.

By La. 1, y(T, k, r̂) ≥ y(T, k, r) for any given k and T , which implies (using the same
lemma) that S ⊆ Ŝ. Thus, by Eq. (4), ϕ(r̂) = sup Ŝ ≥ sup S = ϕ(r), which implies that
the PIR is a nondecreasing function. The proof for the PFR proceeds in an analogous
manner and is therefore omitted.

The monotonicity per se already implies a certain regularity, in that ϕ(·) and ψ(·) can
have at most countably many discontinuities (Rudin 1976, pp. 91/100).

Remark 3. A (pure) net investment is such that

y(t, k, r) =

∫ t

0

ek(t−s)x(s) ds ≤ 0,

for all t ∈ [0, T ]. In that case, the PIR k = ϕ(r) is independent of r and can be determined
uniquely by solving

V (x, k) =

∫ T

0

e−ksx(s) ds = 0,

provided that the situation is nontrivial such that X 6= 0. Similarly, a (pure) net financing
is such that y(t, k, r) ≥ 0 for all t ∈ [0, T ], and consequently V (x, r) = 0 yields a unique
and constant PFR r = ψ(k), as long as X 6= 0.

12That is, ψ(ϕ(r)) ∈ ϕ−1(ϕ(r)) and ϕ(ψ(k)) ∈ ψ−1(ψ(k)) (see also the implicit function theorem,
Rudin 1976, p. 224–225); neither ϕ(·) nor ψ(·) must be strictly monotonic, and if they are not, each being
single-valued they cannot describe the same curve in (k, r)-space.

13For details on the extended field of real numbers, R̄ = [−∞,+∞], see, e.g., Aubin (1977, Sec. 1.3). In
the discrete case (see Remark 1), the extended set of admissible discrete returns is [−1,∞] = exp(R̄)− 1.
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Example 3. Consider two discrete cash-flow streams by Dorfman (1981, p. 1012), rep-
resented by the cash-flow vectors x = (−1000, 1100, 0) and x̂ = (−1000, 0, 1166). Both
are net investments; their discrete PIRs are 10% and approximately 8%, respectively,
independent of the external rate. On the other hand, the discrete PFR for any of these
projects is −1 if the internal rate is less or equal than its PIR and +∞ for k̄ ≥ 5.25.14

Example 4. The well-known discrete “pump project” (Lorie and Savage 1955, p. 237;
Hirshleifer 1958, p. 349; Teichroew et al. 1965, p. 160) has a cash-flow vector of the
form x = (−16, 100,−100). It is neither a net-investment nor a net-financing project. As
long as the PIR and the PFR are finite, they can be obtained from Eq. (2’) in conjunction
with (5) or (7), respectively, that is by solving

y0 = −16, y1 = −16(1 + k̄) + 100, y2 = f(y1, 1 + k̄, 1 + r̄)− 100 = 0,

whence ϕ[r̄] = (5.25 r̄ − 1)/(1 + r̄) for r̄ > −1; or equivalently: ψ[k̄] = (1 + k̄)/(5.25− k̄)
for −1 < k̄ < 5.25 and ψ[k̄] = +∞ otherwise.

3 Drawbacks of Extant Return Criteria

3.1 Internal Rate of Return

The classical definition of internal rate of return (IRR) (or marginal efficiency of capital)
of a cash-flow stream x is as an external rate i such that V (x, i) = 0. Because this implicit
definition guarantees neither the uniqueness nor the existence of an IRR, consider the set

I(x) = {r ∈ R : V (x, r) = 0} (8)

of all possible such rates.15

Example 5. For cash-flow streams in Ex. 2 it is I(x) = R (when c = 0) or I(x) = ∅
(when c > 0). For the cash-flow stream in Ex. 4 it is I(x) = {1/4, 4}.

While the interpretation of a unique IRR as return is useful and widely accepted for
assessing the marginal efficiency of an investment, even then it is not immediately clear
why an investment criterion based on the comparison of IRRs should produce investment
decisions that are consistent with the NPV criterion; see also La. 3 for a PIR-based
approach to project selection.

Example 6. The IRRs for the discrete cash-flow streams in Ex. 3 are 10% for x and
(about) 8% for x̂. On the other hand, at r̄ = 5% one obtains V [x, r̄] < V [x̂, r̄], whereas
at r̄ = 10% it is V [x, r̄] > V [x̂, r̄].

The preceding example illustrates that to be compatible with NPV, any rate-of-return
investment criterion (in addition to being uniquely determined) should depend on the
external rate r (see also Exs. 7 and 12).

14The discrete PIR is defined as ϕ[r̄] = exp (ϕ(ln(1 + r̄)))−1 for any discrete-time discount rate r̄ > −1,
where r̄ = er − 1 for any (continuous-time) discount rate r ∈ R (see Remark 1). Similarly, the discrete

PFR is ψ[k̄] = exp
(

ψ(ln(1 + k̄))
)

− 1 for all k̄ > −1. Hence, a PIR of ϕ(r) = −∞ (resp., PFR of
ψ(k) = −∞) corresponds to a discrete PIR of ϕ[r̄] = −1 (resp., a discrete PFR of ψ[k̄] = −1).

15For a discrete cash-flow stream x with cash-flow vector x the set of discrete IRRs is given by I[x] =
{r̄ > −1 : V [x, r̄] = 0} (= exp(I(x))− 1), completely analogous to earlier definitions of equivalent
discrete-time concepts (see Remark 1 and footnote 14).

8



3.2 Project Investment Rate

Comparing the PIR ϕ(r) to the external rate r provides a sharp investment criterion,
equivalent to the rule that the cash-flow stream x is desirable at a given external rate r
if and only if V (x, r) ≥ 0.

Proposition 1. For any external rate r ∈ R, V (x, r) ≥ 0 if and only if ϕ(r) ≥ r. In
addition, V (x, r) = 0 if and only if ϕ(r) = r.

Proof. Fix an external rate r. Note first that by setting k = r, using the Cauchy formula
(see, e.g., Weber 2011, Ch. 2), it is

y(t, r, r) =

∫ t

0

(ry(s, r) + x(s)) ds =

∫ t

0

er(t−s)x(s) ds,

which implies
y(T, r, r) = erTV (x, r). (9)

Assume now that ϕ(r) is finite. Thus, if V (x, r) ≥ 0, then by Eqs. (5) and (9), y(T, r, r) ≥
0 = y(T, ϕ(r), r) and therefore, using Las. 1 and 2, ϕ(r) ≥ r. On the other hand,
if ϕ(r) ≥ r, then by Eq. (5) and La. 1, y(T, ϕ(r), r) = 0 ≤ y(T, r, r). Hence, by Eq. (9)
the present value V (x, r) ≥ 0. If ϕ(r) = ∞, then y(T, k̂, r) ≥ 0 for any k̂, so (setting k̂ = r)
Eq. (9) again implies the nonnegativity of V (x, r). Lastly, since y(T, r, r) = erTV (x, r),
by Eqs. (4)–(5): V (x, r) = 0 is equivalent to ϕ(r) = r, concluding the proof.

Remark 4. One can formulate Prop. 1 equivalently in terms of the PFR, namely for any
internal rate k ∈ R: V (x, k) ≥ 0 if and only if ψ(k) ≤ k. We focus attention attention
on PIR as an investment criterion, as all results involving the PIR have an equivalent
formulation in terms of the PFR.

Remark 5. Prop. 1 (in conjunction with Remark 4) can be compactly stated as follows:
(ϕ(r)− r)V (x, r) > 0 for all r /∈ I(x) (resp., (ψ(k)− k)V (x, k) < 0 for all k /∈ I(x)). The
result implies in particular that V (x, r) > 0 ⇔ ϕ(r) > r (resp., V (x, k) ⇔ ψ(k) < k).

The decision between two mutually exclusive investment projects, x and x̂, needs
to be taken based on the return ϕx̂−x (incremental PIR) of the difference of the two
corresponding cash-flow streams.16 The idea is to evaluate the profitability of x̂ − x,
corresponding to an upgrade from x to x̂, since x̂ = x+ (x̂− x).

Lemma 3. Let x(t) and x̂(t), for t ∈ [0, T ], be two cash-flow streams, and let ϕx̂−x(r)
denote the return of the differential cash-flow stream, x̂ − x. Then V (x̂, r) ≥ V (x, r) if
and only if the incremental PIR ϕx̂−x(r) ≥ r.

Proof. The claim follows immediately from the fact that V (x̂, r) ≥ V (x, r) if and only
if V (x̂− x, r) ≥ 0.

16Without loss of generality one can restrict attention to the pairwise comparison of mutually exclusive
cash-flow streams. Arbitrary dependencies between cash-flow streams can be accommodated by defining
each possible choice and resulting cash-flow stream as an “alternative” that, by construction, is mutually
exclusive to any other such alternative.
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Figure 2: Concavity of the system function f(·, k, r) for k ≥ r.

Example 7. The (discrete) PIR of the difference of the discrete cash-flow streams in
Ex. 3 is ϕx̂−x[r̄] ≡ (1166/1100)−1 = 6%, so x̂ is preferable as investment (consistent with
the NPV criterion) if and only if the incremental PIR of 6% exceeds the external rate r̄.17

The PIR always exists, is unique, and depends on the external rate. Most importantly,
it is compatible with the NPV criterion for investment decisions. Yet it suffers from the
drawback that it endorses the mixing of profitable (i.e., positive-NPV) projects and tends
to reject the mixing of unprofitable projects. This is clarified by the following result.

Proposition 2. Let x(t) and x̂(t), for t ∈ [0, T ], be two cash-flow streams with identical
PIR ϕ(r) at a given external rate r. If ϕλ(r), for λ ∈ [0, 1], denotes the PIR of the
cash-flow stream λx+ (1− λ)x, then (ϕ(r)− r) (ϕλ(r)− ϕ(r)) ≥ 0.

Proof. Let y(t, k, r) (resp., ŷ(t, k, r)) be the project balance for the cash-flow stream x(t)
(resp., x̂(t)) on [0, T ] with PIR k = ϕ(r) (so y(T, k, r) = 0), and fix λ ∈ [0, 1]. Both y
and ŷ satisfy initial-value problems of the form (3).18 Similarly, the project balance y of

17It is important that x and x̂ be compared over the same time horizon T . Alluding to Hildreth (1946),
Dorfman (1981) pointed out that this may not be clear a priori. For example, for the cash-flow vector x =
(−1000, 1100, 0) it might be possible to reinvest the project balance at t = 1 at the same return k̄ = 10%,
that would result in the cash-flow vector x

′ = (−1000, 0, 1210) which is strictly greater than x̂, so by
Ex. 9 the incremental selective IRR becomes +∞ (meaning that x′ is strictly better than x̂), despite the
fact that the selective IRR corresponding to x

′ remains the same as the selective IRR corresponding to x.
18To simplify the presentation, the initial-value problem (3) is used instead of the integral equation (2);

if the cash-flow stream contains atoms (such as in the discrete case; see Ex. 1) the former is still valid
when interpreted in the context of the theory of distributions (Schwartz 1950).
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the cash-flow stream λx+ (1− λ)x̂ on [0, T ] satisfies the initial-value problem

ẏ = f(y, k, r) + λx+ (1− λ)x̂, y(0−, k, r) = 0.

On the other hand, setting z = λy + (1− λ)ŷ by the initial-value problem (3),

ż = λf(y, k, r) + (1− λ)f(ŷ, k, r) + λx+ (1− λ)x̂, z(0−, k, r) = 0.

Rewriting the system function f in the form

f(y, k, r) =

{

min{ky, ry}, if k ≥ r,
max{ky, ry}, otherwise,

it becomes apparent that f(·, k, r) is concave for k ≥ r (see Fig. 2) and convex for k ≤ r.
Hence,

ż ≥ f(z, k, r) + λx+ (1− λ)x̂, for k ≥ r,

and
ż ≤ f(z, k, r) + λx+ (1− λ)x̂, for k ≤ r.

C By virtue of the identical initial conditions, y(0−, k, r) = z(0−, k, r) = 0, therefore y
exceeds z at least weakly for k ≥ r, and vice-versa for k ≤ r. That is (k − r)(y − z) ≥ 0,
and in particular

(k − r)(y(T, k, r)− z(T, k, r)) ≥ 0.

Hence, La. 1 and Eq. (4) together imply that the PIR of λx+(1−λ)x̂, denoted by ϕλ(r),
is greater than (resp., less than) k = ϕ(r) for k ≥ r (resp., k ≤ r).

Prop. 2 states that two profitable cash-flow streams with the same return appear even
more profitable in terms of their returns if they are mixed. For unprofitable projects the
converse obtains. The following example illustrates this fact.

Example 8 (Mixing Inconsistency). Let r̄ = 10% be a given (discrete-time) external rate.
Consider two discrete cash-flow streams over the horizon T = 2, described by the cash-
flow vectors x = (−1100,−13200, 17424) and x̂ = (−14300, 18000,−924), respectively.
Their present values both equal 1300 and their discrete PIRs are both equal to 20%. The
convex combination of these cash flows, described by xλ = λx + (1 − λ)x̂, for λ ∈ [0, 1],
leaves the present value unchanged, but its discrete PIR ϕλ[r̄] exceeds ϕ0[r̄] = ϕ1[r̄] = 20%
for λ ∈ (0, 1); see Fig. 3.

A consequence of the last example is that a firm interested in maximizing the return
for its shareholders measured as PIR might be able to do so by engaging in a leveraged
buyout of a target that is inferior in terms of both return and present value. To see this, it
is enough to slightly decrease the present value and return of one of the projects in Ex. 8,
which at λ = 0.5 (because of the continuity of all measures in λ) would still yield a larger
PIR than each individual project by itself. The apparent Pareto-improvement from the
mixing of projects is inconsistent with the notion of an unbiased performance measure.

11



Figure 3: Mixing inconsistency of the project investment rate in Ex. 8.

4 Selective IRR as Investment Criterion

The idea for a return-based investment criterion that combines the advantages of IRR
(interpretation, historical significance, widespread use) and PIR (existence, uniqueness,
dependence on external rate) is based on an internal consistency that is achieved by
repeatedly ratcheting up (or down) a given initial external hurdle rate to a new rate, which
then becomes itself the external rate at which to evaluate a given investment project. To
arrive at the definition of a “selective IRR” as a consistent investment criterion, it is useful
to first bracket all reasonable rates of return for a project, given any external rate r.

Let i−(r) = sup{r̂ ∈ (−∞, r] : V (x, r̂) = 0} and i+(r) = inf{r̂ ∈ [r,∞) : V (x, r̂) = 0},
where as before sup ∅ = −∞ and inf ∅ = +∞. Now define the selective IRR as

i(r) =

{

i+(r), if ϕ(r) ≥ r,
i−(r), otherwise.

(10)

From Eq. (8), both i+(r) and i−(r) lie in the extended set of IRRs,

Ī(x) = I(x) ∪ {−∞,+∞}; (11)

moreover, these “bracket rates” bound the PIR. The two additional elements, −∞ and ∞,
in the extended set of IRRs Ī(x) are important to guarantee the existence of a selective
IRR. The extra elements also make perfect sense as illustrated in the next example.

Example 9. (i) If, as in Ex. 2, x(t) ≥ 0 for all t ∈ [0, T ], then i(r) ≡ +∞. (ii) If x(t) < 0

12



for all t ∈ [0, T ], then i(r) ≡ −∞. (iii) If x(t) = t− 1, for all t ∈ [0, T ], and T = 2, then

i(r) =







+∞, if r < 0,
0, if r = 0,
−∞, if r > 0.

An unbounded selective IRR of i(r) = ∞ for a given r is by construction equivalent to
i+(r) = ∞ (by Eq. (10)) and V (x, r) > 0 (by Prop. 1). The latter means that increasing
the external rate beyond r cannot decrease the present value of the project to zero, i.e.,
for any r̂ ≥ r it is V (x, r̂) > 0. Similarly, if i(r) = −∞, then V (x, r̂) < 0 for all r̂ ≤ r.

Remark 6 (Discrete Selective IRR). For a discrete cash-flow stream x with cash-flow
vector x (see Remark 1) the extended set of discrete IRRs is

Ī[x] = I[x] ∪ {−1,∞}, (11’)

where I[x] = {r̄ > −1 : V [x, r̄] = 0} is the set of discrete IRRs (see footnote 15). With the
discrete bracket rates i±[r̄] = exp (i±(ln(1 + r̄)))− 1 the discrete selective IRR becomes

i[r̄] =

{

i+[r̄], if ϕ[r̄] ≥ r̄,
i−[r̄], otherwise,

(10’)

for all r̄ > −1, where ϕ[r̄] = exp (ϕ(ln(1 + r̄)))−1 is the discrete PIR of x (see footnote 14).

Lemma 4. For any external rate r ∈ R, it is i−(r) ≤ ϕ(r) ≤ i+(r).

Proof. Begin with the second inequality. By Prop. 1,

{r̂ ∈ [r,∞) : V (x, r̂) = 0} = {r̂ ∈ [r,∞) : ϕ(r̂) = r̂}. (12)

If i+(r) is infinite, there is nothing to show. If i+(r) < ∞, then there exists a finite
number r̂ such that i+(r) = ϕ(r̂) = r̂ ≥ r. Thus, by La. 2, ϕ(r) ≤ ϕ(r̂) = i+(r), which is
the second inequality. The first inequality follows from a symmetric argument.

We are now ready for a recursive construction of the selective IRR, as a limit of
ratcheted hurdle rates. This construction is independent of Eq. (10), but it leads to the
same result. The key for establishing convergence is the monotonicity and boundedness
of the resulting sequence of returns.

Proposition 3. For any external rate r ∈ R, it is ϕ(ϕ(ϕ(· · ·ϕ(r) · · · ))) → i(r).

Proof. We distinguish three cases, based on the sign of V (x, r). 1. If V (x, r) > 0, then by
Prop. 1 it is ϕ(r) > r. Consider now the sequence σ = (rn)

∞

n=0 with r0 = r and rn+1 =
ϕ(rn) for all n ≥ 0. Then by assumption, r1 ≥ r0. Furthermore, if rn+1 ≥ rn, then using
the monotonicity of ϕ(·) (by La. 2), rn+2 = ϕ(rn+1) ≥ ϕ(rn) = rn+1. Thus by induction,
rn+1 ≥ rn for all n ≥ 0. It is well known (see, e.g., Rudin 1976, Thm. 3.14) that the
monotonic sequence σ converges if and only if it is bounded. By definition of i+(·) and
Eq. (12), i+(r0) (which is equal to i(r) because r0 = r; furthermore i+(r) ≥ r) is the
largest lower bound of the set S(r) = {r̂ ∈ [r,∞) : ϕ(r̂) = r̂}, which must also be an
upper bound for σ, and σ therefore has a limit, r∞ ≤ i+(r). Thus, necessarily ϕ(r∞) = r∞,
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Figure 4: Computation of the selective IRR.

since otherwise r∞ could not have been the limit of σ. But this means r∞ is an element
of the set S(r), which in turn implies that r∞ = inf S(r) = i+(r). 2. If V (x, r) = 0, then
the claim follows trivially because r = ϕ(r) = i+(r) = i−(r). 3. If V (x, r) < 0, then the
claim follows using arguments that are symmetric to the case where V (x, r) > 0. This
completes the proof.

Fig. 4 illustrates the recursive ratcheting procedure. The last result implies the fixed-
point relation

ϕ(i(r)) = i(r), (13)

because V (x, r̂) = 0 if and only if ϕ(r̂) = r̂; furthermore, V (x, i(r)) = 0 by definition
of i(r). Thus, the selective IRR i(r) is a fixed point of the PIR map ϕ(·). The fixed point
is stable, i.e., can appear as a limit of a ratcheting procedure that starts elsewhere, if
(i(r) − i)(ϕ(i) − i) > 0 for all i 6= i(r) in some neighborhood of i(r).19 Fig. 4 shows the
stable fixed points i(r), i(r̂) and the unstable fixed point where i(·) jumps.

Example 10. Consider again the “pump project” of Ex. 4. The solution set of the
fixed-point problem ϕ[r̄] = r̄ is I[x] = {1/4, 4}. For r̄ = 1/7 < 1/4, one obtains ϕ[r̄] =
−7/32 < r̄, so by the recursive ratcheting procedure, i[r̄] = −∞. On the other hand, for
r̄ = 1/3 in (1/4, 4], one obtains ϕ[r̄] = 9/16 > r̄ and therefore i[r̄] = 4. More generally,

i[r̄] =







−1, if r̄ ∈ (−1, 1/4),
1/4, if r̄ = 1/4,
4, if r̄ > 1/4,

19If ϕ(·) is differentiable, then the fixed point i(r) is stable if ϕ̇(i(r)) < 1; it is unstable if ϕ̇(i(r)) > 1.

14



for any external rate r̄ > −1.

Remark 7 (Numerical Computation). In practice, finding the selective IRR i(r) for a
given cash-flow stream x at the rate r is simpler than determining I(x), because instead
of determining all roots k of V (x, k) it merely requires finding the next zero of the NPV
in a known direction of the external rate,20 depending on the sign of V (x, r), at the given
external rate r.21 If V (x, r) > 0 (resp., V (x, r) < 0), then i(r) is the closest element
in Ī(x) to the right (resp., left) of r.

The monotonicity properties of the PIR are inherited by the selective IRR.

Lemma 5. The selective IRR i(·) is a nondecreasing function.

Proof. Both i−(·) and i+(·) are nondecreasing functions, so i(·) is by Eq. (10), as compo-
sition of nondecreasing functions, also a nondecreasing function.

The usefulness of the selective IRR as an investment criterion rests on the following
result, which establishes that the external rate and the selective IRR necessarily bracket
the PIR.

Lemma 6. For any external rate r ∈ R, the PIR ϕ(r) lies between r and the selective
IRR i(r), that is (ϕ(r)− r)(i(r)− ϕ(r)) ≥ 0.

Proof. If ϕ(r) ≥ r, then by the proof of Prop. 3, i(r) = i+(r) ≥ ϕ(r) ≥ r. Similarly, if
ϕ(r) ≤ r, then i(r) = i−(r) ≤ ϕ(r) ≤ r. Combining both conclusions yields the inequality
in the lemma for any given external rate r.

By virtue of La. 6, ϕ(r) = r if and only if i(r) = ϕ(r). In other words, all the fixed
points of ϕ(·) are also fixed points of i(·); Prop. 1 implies that the NPV must therefore
vanish exactly at those fixed points. This together with the preceding lemma is enough
to establish the selective IRR as equivalent to the NPV criterion.

Proposition 4. For any external rate r ∈ R, V (x, r) ≥ 0 if and only if i(r) ≥ r. In
addition, V (x, r) = 0 if and only if i(r) = r.

Proof. By La. 6, i(r) ≥ r implies that ϕ(r) ≥ r. Conversely, if ϕ(r) ≥ r, then by the
proof of Prop. 3, i(r) = i+(r) ≥ ϕ(r) ≥ r. Hence, (i(r)−r)(ϕ(r)−r) ≥ 0 for all r. Lastly,
by Prop. 1 V (x, r) = 0 is equivalent to ϕ(r) = r, which by Prop. 3 implies that i(r) = r.
Conversely, if i(r) = r, then r ∈ I(x) and thus V (x, r) = 0, completing the proof.

The selective IRR works as investment criterion also in the somewhat pathological
case where V (x, r) is nonpositive for all r and V (x, r) = 0 for some r, shown below.

20One may use the well-known Pegasus method, an efficient variation of the Newton gradient method,
which avoids direct computation of the gradient (Dowell and Jarratt 1972).

21The implied partition is reminiscent of the method proposed by Hartman and Schafrick (2004), which
splits the graph of V (·, r) horizontally according to the sign of its first derivative. Yet their method does
not yield a unique “relevant” IRR when r coincides with a local extremum of V , i.e., when ∂V

∂x

∣

∣

(x,r)
= 0.
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Example 11 (Hartman and Schafrick 2004, Ex. 2). Let x be a discrete cash-flow stream
with cash-flow vector x = (−1, 4,−4). Then Ī[x] = {−1, 1,∞} and the discrete PIR
is ϕ[r̄] = (3r̄ − 1)/(1 + r̄) for all r̄ > −1. The only fixed point of ϕ[·] is 1 (i.e., ϕ[1] = 1).
The selective IRR becomes

i[r̄] =

{

−1, if r̄ ∈ (−1, 1),
1, if r̄ ≥ 1.

Hence, i[r̄] < r̄ for all r̄ ∈ (−1,∞)\{1} and i[1] = 1. By Prop. 4, it is therefore V [x, 1] = 0
and V [x, r̄] < 0 for r̄ ∈ (−1,∞) \ {1}.

It is clear that the notion of an “incremental selective IRR,” defined as the selective
IRR of the difference of two cash-flow streams, can be used to decide between two mutually
exclusive investment projects, in analogy to La. 3.

Example 12. Just like the incremental PIR in Ex. 7 the selective IRR can be applied
“incrementally” to the difference of the discrete cash-flow streams in Ex. 3. One ob-
tains ix̂−x[r̄] ≡ 6%. Thus, x̂ is preferred over x if and only if ix̂−x[r̄] ≥ r̄, which holds if
and only if −1 < r̄ ≤ 6%.

The selective IRR cannot produce an inconsistency in the sense of Prop. 2 when
combining different projects with the same return. The fundamental reason is that the
intersection of the sets of IRR values for two different cash-flow streams x and x̂ stay IRR
values of any linear combination of these cash-flow streams; more specifically,

I(x) ∩ I(x̂) ⊆ I(µx+ µ̂x̂), (14)

for any µ, µ̂ in R.

Example 13. The mixing inconsistency in Ex. 8 does not appear when evaluating the
mixed cash-flow stream using the selective IRR. Denoting the latter iλ[r̄], it in fact does
not depend on λ ∈ [0, 1], which follows directly from Eq. (14) with (µ, µ̂) = (λ, 1− λ).

Remark 8 (Intrinsic External Rate). Analogous to PIR vs. PFR (see Remark 4), for a
given internal rate k there is, analogous to the selective IRR, the “intrinsic external rate”
j(k) is defined as

j(k) =

{

j+(k), if ψ(k) ≥ k,
j−(k), otherwise,

(15)

where j−(k) = sup{k̂ ∈ (−∞, k] : V (x, k̂) = 0} and j+(k) = inf{k̂ ∈ [k,∞) : V (x, k̂) = 0},
and as before sup ∅ = −∞ and inf ∅ = +∞. It is straightforward to show that the
intrinsic external rate can be viewed as the product of a ratcheting procedure, so that
in analogy to Prop. 3 one obtains ψ(ψ(ψ(· · ·ψ(k) · · · ))) → j(k). Finally, as in Prop. 4
j(k) can be used as a decision criterion where the relevant direction of the inequality is
analogous to the logic in Remark 4. That is, for any internal rate k ∈ R, V (x, k) ≥ 0 if and
only if j(k) ≤ k. Fig. 5 illustrates the ratcheting procedure, which is the dual equivalent
of the process depicted in Fig. 4. Note that j(k) has values in Ī(x) but that the stability
properties of the elements of I(x) are essentially reversed.22 Intuitively, an intrinsic

22In the differentiable case (with strict monotonicity, see also footnote 19), this follows from the inverse
function theorem (Rudin 1976, pp. 221/223), since ψ̇(k) ≡ 1/ϕ̇(ψ(k)).
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Figure 5: Computation of the intrinsic external rate.

external rate does one of two things based on given PFR ψ(k): for a profitable project, it
presents the fully ratcheted-down external rate lowering the project value towards zero;
for an unprofitable project, it is the fully ratcheted-up external rate raising the project
value towards its break-even point.

Remark 9. Similar to Remark 5 after Prop. 1, Prop. 4 can be compactly stated as follows:
(i(r)− r)V (x, r) > 0 for all r /∈ I(x) (resp., (j(k)− k)V (x, k) < 0 for all k /∈ I(x)). The
result implies in particular that V (x, r) > 0 ⇔ i(r) > r (resp., V (x, k) ⇔ j(k) < k).

Example 14. The intrinsic external rate for the discrete cash-flow stream in Ex. 10 is 23

j[k̄] =







1/4, if k̄ ∈ (−1, 4),
4, if k̄ = 4,
∞, if k̄ > 4,

for any internal rate k̄ > −1. Similar to the discussion in Remark 4 after Prop. 1, the
investment criterion of Prop. 4 can be equivalently reformulated as V [x, k̄] ≥ 0 if and only
if j[k̄] ≤ k. Because of the inbuilt ratcheting,24 for any profitable investment project the
internal reference rate must exceed the intrinsic external rate.

Remark 10 (Scaling Properties). Let x and x̂ be two cash-flow streams on [0, T ] so
that x̂ = µx for some µ 6= 0, and let y and ŷ denote the respective project-balance
functions. Then the following scaling (or homogeneity) properties hold: (i) V (x̂, ·) =
µV (x, ·); (ii) I(x̂) = I(x), (iii) If µ > 0, ŷ(t, k, r) ≡ y(t, k, r), ϕx̂(r) ≡ ϕx(r), and ix̂(r) ≡
ix(r); (iv) If µ < 0, ŷ(t, k, r) ≡ µy(t, r, k), ϕx̂(r) ≡ ψx(r), and ix̂(r) ≡ i−x(r). The proofs
for these properties are straightforward and therefore omitted. Property (iv), which results
from f(µy, k, r) = µf(y, r, k) for µ < 0, can be best appreciated by the following example.

23The discrete intrinsic external rate j[·] is obtained (using discrete-time equivalents j±[·] and ψ[·])
using a procedure analogous to Remark 6 for the discrete version of the selective IRR.

24The ratcheting process is such that k0 = k and ψ(kn) = kn−1 for n ≥ 1.
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Properties (i) through (iv) in Remark 10 describe how the performance measures
behave when the investment projects are scaled (for µ > 0) or when the perspective shifts
to a counterparty (for µ < 0) that views payables as receivables and vice-versa.

Example 15. Consider the discrete cash-flow stream x as in Ex. 4 and x̂ = −x with
associated cash-flow vector x̂ = (16,−100, 100). Then ŷT = −yT , and consequently
ϕx̂[r̄] = (1 + r̄)/(5.25− r̄) which directly corresponds to ψ[·] for x as computed in Ex. 4.
While the set of possible IRRs is invariant to scaling the cash-flow stream with any nonzero
factor, in the computation of the selective IRR the stability properties of the fixed points
of ϕx̂(·) are reversed when µ < 0, so

ix̂[r̄] =







1/4, if r̄ < 4,
4, if r̄ = 4,
+∞, if r̄ > 4,

for any external rate r̄ > −1.

Remark 11 (Robustness). For a given cash-flow stream x, assume that the set I(x) of
potential IRR-values is finite.25 For any possible external rate r ∈ R let d(r, x) = {|r− r̂| :
r̂ ∈ I(x)} be the distance of this rate to the closest potential IRR-value. If the external
rate r is uncertain in the sense that it can be considered as the realization the random
variable r̃ which follows some continuous cumulative distribution function (corresponding
to a probability density without atoms), then Prob(d(r̃, x) > 0) = 1. Hence, because the
selective i(r) can have (finite-size) jumps at most on I(x), with probability one it will be
possible, once the realization r is known, to find a neighborhood Nε = (r− ε, r+ ε) (e.g.,
with ε = d(r, x)/2) such that i(r̂) = i(r) for all r̂ ∈ Nε. In other words, almost surely the
selective IRR will be insensitive to small variations of the external rate.

5 Conclusion

As mentioned in Sec. 1, the internal rate of return (IRR) is used widely in practice, often
because of its direct comparability to asset returns in financial markets. For example, it
appears naturally as “yield to maturity” of a fixed-income security, i.e., the rate of return
of an interest-bearing investment held to its maturity date at T . The well-known problems
with the IRR resulting from its generic nonexistence or nonuniqueness disappear by using
instead the selective IRR, which always exists and selects, for any external rate r, a unique
element of the extended set Ī(x) of possible IRRs (including ±∞) for a given cash-flow
stream x. The construction of the selective IRR is based on the project investment
rate ϕ(r) and therefore inherits its NPV-consistence, in the sense that the difference
between i(r) (resp., ϕ(r)) and r has the same sign as the NPV of the project.

The selective IRR does not suffer from the drawbacks that plague other rate-of-return-
based criteria such as the mixing inconsistency uncovered in Sec. 3.2. Its computation is
simpler than determining the set I(x) (see Remark 7). It is also arguably more robust than
NPV in the following sense (with details in Remark 11): Pick a random nominal rate r0;
with probability 1 there exists ε > 0 such that i(r) = i(r0) for all r ∈ (r0−ε, r0+ε). That

25This holds for any discrete cash-flow stream over a finite time horizon. More generally, it is enough
for the robustness argument here if I(x) is countable.
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is, except for a measure-zero set of external rates, the selective IRR will be exact even in
the presence of some uncertainty. On the other hand, given a noisy external rate the NPV
of a project is generically be inexact (with probability 1), and, because of the nonlinearity
of V (x, r) in r, it cannot simply be replaced by its expected value. The selective IRR can
be used to measure the sensitivity of an investment decision with respect to changes in
the external rate, just like the traditional IRR (Berk and DeMarzo 2007, p. 150).

It is useful to note that the selective IRR i(r) is compatible with the standard Keyne-
sian notion of marginal efficiency of capital (Dorfman 1981) and that it does depend on
the external rate of return. The latter can be viewed as a public signal that allows the co-
ordination of firm and outside capital, in order to determine an appropriate internal rate
of return. More specifically, it is possible to interpret the selective IRR as equilibrium of
an alternating-offer bargaining game (without delay between rounds) between two firms
and a venture capitalist. The latter operates on a capital market with risk-free rate of
return r0 = r. The two firms have identical investment projects, here assumed profitable
and described by the cash-flow stream x on [0, T ]. They Bertrand-compete on the rent
they are willing to provide to the investor on borrowed capital. As a result the firms offer
the project investment rate rn+1 = ϕ(rn), based on the last offer rn of the venture capi-
talist who in turn responds by asking for that maximal rate, after which the firms revise
their offers, and so forth, until they arrive at the selective IRR i(r) = limn→∞ rn as the
limit of this ratcheting procedure, further described in the proof of Prop. 3. The initial
rate r therefore serves as a coordination device for the selection of a Nash equilibrium in
a set of equilibria which (via bijection) directly corresponds to the extended set Ī(x) of
possible selective IRRs, defined after Eq. (10). In this context, the selective IRR behaves
in analogy to an (ideal) equilibrium refinement which always produces a unique value.26

The well-known drawbacks of the NPV rule (Ross 1995; footnote 17) apply also to
the (by Prop. 4 equivalent) selective-IRR criterion. However, in the absence of interest-
rate uncertainty those drawbacks can be eliminated by solving all stochastic optimization
problems (e.g., related to the optimal stopping problem to determine the timing of the
investment) and then applying the NPV criterion or the selective-IRR criterion to the
resulting expected cash-flow stream. The two investment criteria should be viewed as
complementary, since cash-flow streams of the same NPV can have dramatically different
returns.27 When it comes to choosing between the two criteria, scalability of an investment
opportunity is the key. If the investment is not scalable, then for a given external rate
the NPV provides a notion of its present value, while the selective IRR fails to capture
the size of the gain. If it is, then the selective IRR provides a notion of the achievable
return on capital invested, not reflected in the NPV.

26Kreps (1990, Ch. 5) points to equilibrium multiplicity as one of the major drawbacks of game theory
and consequently to equilibrium refinement as a potential saviour. However, the issues with IRR as
investment criterion are even more serious than equilibrium multiplicity is for games, since I(x) not only
might not be a singleton, but might even be empty. By contrast the selective IRR always exists and is
unique as an element of Ī(x) = I(x) ∪ {−∞,∞}.

27For example, given a fixed external rate r̄ > −1 the discrete cash-flow stream x(t) on [0, 1], represented

by the vector x = (− 1+r̄
k̄−r̄

, 1+k̄+r̄+k̄r̄
k̄−r̄

), satisfies the “isoperimetric constraint” of having the constant

value V [x, r̄] = 1 while at the same time the selective IRR is i[r̄] = k̄, for any k̄ > r̄ > −1.
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Appendix A: NPV-Consistency

Let x be a cash-flow stream on [0, T ]. As alluded to in Sec. 1.1, a return criterion ρ(r)
is termed NPV-consistent if the excess return α = ρ(r) − r has the same sign as the net
present value of x for any external rate r, i.e.,28

(ρ(r)− r)V (x, r) > 0 ∀ r /∈ I(x). (16)

The definition of NPV-consistency in Eq. 16) guarantees that investment decisions based
on a mere comparison of the return criterion ρ(r) with the external rate r yields identical
results as the classical NPV-rule. By virtue of Remark 5 (after Prop. 1) and Remark 9
(after Prop. 4) the project investment rate (PIR) ϕ(·) and the selective IRR i(·) are
NPV-consistent return criteria, in the sense that Eq. (16) holds for all ρ(·) ∈ {ϕ(·), i(·)}.

The product approaches by Hazen (2003) and Magni (2010) represent the NPV as the
product of the excess return α and the present value of some invested capital, related to
the project balance by Teichroew et al. (1965). Below we formulate these approaches in
continuous time generalizing the first, and then compare both to PIR and selective IRR.

A.1 Factorization of NPV With Given IRR

Hazen (2003) uses the concept of an investment stream (Lohmann 1988), defined rel-
ative to a given IRR, to formulate an NPV-equivalent investment rule. Specifically,
Hazen (2003, p. 35) introduces the notion that a discrete investment stream c with cash-
flow vector c = (c−1, . . . , cT ) yields a (discrete) cash-flow stream x with cash-flow vector
x = (x0, . . . , xT ) at return k ∈ I[x] if the following three relations are satisfied,

x0 = kc−δ −
c0 − c−1

δ
, (17)

xt = kct−δ −
ct − ct−δ

δ
, ∀ t ∈ {1, . . . , T − 1}, (18)

xT = kcT−δ −
cT − cT−δ

δ
, (19)

where c−1 = cT = 0 and δ = 1 in Hazen’s paper.29 First, if we split the time interval
[−δ, T ] for δ = T/N in N + 1 intervals, [−δ + iδ,−δ + (i + 1)δ] for i ∈ {0, . . . , N}, then
Eqs. (17)–(19) translate to

xt = kct−δ −
ct − ct−δ

δ
, ∀ t ∈ {τ : τ = −δ + iδ, i ∈ {0, . . . , N + 1}, δ = T/N}, (20)

28To keep the exposition simple, we restrict attention to the case where the external rate r is given.
The situation is (anti-)symmetric when the internal rate k is assumed given, e.g., with the inequality in
Eq. (16) reversed.

29Hazen’s investment stream (c0, . . . , cT−1) omits the zero boundary elements c−1 and cT . The latter
carry no extra information, except that they make it possible to combine Eqs. (17)–(19) into Eq. (20).
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Figure 6: Product approach by Hazen (2003).

where c−δ = cT = 0. For N → ∞ and thus δ ↓ 0+, Eq. (20) becomes

x(t) = kc(t)− ċ(t), ∀ t ∈ [0, T ], (21)

with the boundary conditions c(0) = 0 and c(T ) = 0. In our continuous-time setting, one
obtains the linear initial value problem (IVP),

ċ(t)− kc(t) = −x(t), ∀ t ∈ [0, T ], c(0) = 0, (22)

with an additional endpoint condition c(T ) = 0. The unique solution of the IVP (22) is
obtained via the Cauchy formula (see, e.g., Weber 2011, p. 25),

c(t) = −ekt
∫ t

0

e−ksx(s)ds.

Hence, the investment stream c(t) represents the future value, at time t ∈ [0, T ], of the
“t-truncated” cash-flow stream x|[0,t], defined at time t as x multiplied with the indicator
function 1[0,t], i.e., the cash-flow stream x is restricted to be nonzero at most on the
interval [0, t].30 The endpoint condition,

c(T ) = −ekT
∫ T

0

e−ktx(t)dt = −ekTV (x, k) = 0,

amounts to requiring that the present value V (x, k) vanishes, or equivalently, that

k ∈ I(x),

i.e., k must be an internal rate of return of the cash-flow stream x. From the above it
follows that c yields x at rate k if and only if k ∈ I(x) and x(t) = ektV (x|[0,t], k) for
all t ∈ [0, T ]. This essentially corresponds to Hazen (2003, Thm. 2), where c(t) is the
IRR-implied outstanding capital (at time t).

30The investment stream, as solution to the IVP (22), is closely related to the project balance by
Teichroew et al. (1965), as solution to the IVP (3) in Sec. 2, since y(t, r, r) ≡ −c(t).
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Using integration by parts, one finds (taking into account the boundary conditions
c(0) = c(T ) = 0) that 31

V (x, r) =

∫ T

0

e−rtx(t)dt =

∫ T

0

e−rt (kc(t)− ċ(t)) dt

= kV (c, r)−

∫ T

0

e−rtċ(t)dt

= kV (c, r)−

(

e−rT c(T )− c(0)−

∫ T

0

(−r)e−rtc(t)dt

)

(23)

= (k − r)V (c, r).

Hence, if c yields x at rate k, then

V (x, r) = (k − r)V (c, r) (*)

for any rate r. This corresponds to Hazen (2003, Thm. 1), where the factor α = k − r
is the “excess return” and β = V (c, r) the “invested capital.” Thus, the present value of
the cash-flow stream x can be expressed as a product,

V (x, r) = α · β. (**)

The main result (Hazen 2003, Thm. 4, parts (i) and (ii)) is that V (x, c) > 0 if and only
if α and β have the same definite sign. The case where β > 0 is called “net investment”
and the case where β < 0 is called “net borrowing”. We note that both α and β depend
on k and r, and that β also depends on the entire cash-flow stream x. Fig. 6 provides an
overview of the product approach by Hazen (2003) for reaching a decision about whether
to invest in a project with cash-flow stream x at the given external rate r.

A.2 Factorization of NPV With Given Investment Stream

Stated in continuous time, Magni (2010) allows for the choice of an absolutely continuous
investment stream c(t), t ∈ [0, T ], of nonzero NPV, and introduces a return-on-investment
stream R = ċ + x and a return function K(t) = R(t)/c(t), which is defined as long
as c(t) 6= 0. With this, one obtains

V (x, r) = V (R, r)− rV (c, r) = (k̄(c, r)− r)V (c, r), (***)

using the “Chisini mean” (Chisini 1929, p. 108; Magni 2010, p. 159)

k̄(c, r) =
V (R, r)

V (c, r)
=
V (Kc, r)

V (c, r)
,

provided that V (c, r) 6= 0 by assumption. The value k̄(c, r) is referred to as the “average
internal rate of return” (AIRR). It depends on the external rate r and the chosen invest-
ment stream c. In the definition of the AIRR there is the issue that K(t) is not defined
whenever c(t) = 0, which is briefly mentioned by Magni (2010, Remark 1). Yet it turns

31This factorization was introduced (in discrete time) by Lohmann (1988, p. 321).

22



out that it only matters that the NPV β = V (c, r) of the chosen investment stream c at
the external rate r is nonzero. Eq. (***) is of the same form as Eq. (**) earlier, with
excess return α = k̄(c, r) − r and β = V (c, r), where c is given. Because β (assumed
nonzero) is fixed by the choice of c and Eq. (**) links α, β and V (x, r), Magni (2010,
p. 160) points out that therefore one needs to set

α =
V (x, r)

β
,

for the factorization in Eq. (**) to hold. As in Sec. A.1, the main result (Magni 2010,
Thm. 2, parts (i) and (ii)) is that V (x, c) > 0 if and only if α and β have the same definite
sign. The factors α and β depend on r and the chosen investment stream c. Fig. 7(b)
provides an overview of the product approach by Magni (2010), termed below “approach
B,” for evaluating the cash-flow stream x at the external rate r.

A.3 Comparison to NPV-Consistent Return Criteria

We now compare the product approaches outlined earlier to PIR and selective IRR as
investment criteria in terms of NPV-consistency.

Approach A. By generalizing the product approach by Hazen (2003) in Sec. A.2, we now
show that it is possible to fix α in Eq. (**) to an arbitrary nonzero value, which we refer
to as “approach A.” For this, consider any absolutely continuous investment stream c on
[0, T ] which satisfies an initial condition of the form c(0) = c0, where the constant c0 is
chosen such that c(T ) = erT c0 in view of Eq. (23). With this, the unique solution to the
IVP (22) becomes (via the Cauchy formula):

c(t) =

(

c0 −

∫ t

0

e−ksx(s)ds

)

ekt, ∀ t ∈ [0, T ].

Hence, at t = T the investment stream satisfies

c(T ) =

(

c0 −

∫ T

0

e−ktx(t)dt

)

ekT = (c0 − V (x, k)) ekT ,

or equivalently,
(

ekT − erT
)

c0 = ekTV (x, k). (24)

The interpretation of this condition is that the future value of the project at rate k (with
cash-flow stream x) is equal to what the initial value c0 of the investment stream would
pay at rate k (in the future, at time T ) if it was borrowed at rate r.

Hence, as long as k 6= r, the investment stream

c(t) =

(

V (x, k)

1− e−(k−r)T
−

∫ t

0

e−ksx(s)ds

)

ekt, ∀ t ∈ [0, T ],

by Eq. (23) also satisfies Eq. (*), i.e.,

V (x, r) = (k − r)V (c, r). (*)
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(a)

(b)

Figure 7: Product approaches for V (x, r) = α · β: (a) fixing α; (b) fixing β.

For this now arbitrary rate k 6= r the same investment rule applies as in Hazen (2003,
Thm. 4, parts (i) and (ii)). In the terminology of Eq. (**) this amounts to saying that if
we fix an arbitrary α 6= 0 and

V (x, r) = α · β, (**)

then β = V (x, r)/α = V (c, r) and we should invest if α · β > 0. It is not possible to glean
additional information from the constant k, other than that it is different from the known
external rate r and that the investment stream c has been chosen as a function of r and k
so as to be compatible with x.32

Approach B. Just as approach A fixes α 6= 0 in Eq. (**), the product approach by
Magni (2010), referred to as “approach B,” fixes β 6= 0 through the choice of an investment
stream c. In the case where β = V (c, r) = 0 nothing can be concluded because the AIRR
is not well-defined as a return criterion. The use of approach B to evaluate a given
cash-flow stream x is summarized in Fig. 7(b).

Comparison to NPV-consistent return criteria. So far, we have shown that it is possible,
by either one of the two product approaches, to represent the NPV V (x, r) of the cash-
flow stream x as a product of two factors as in Eq. (**), in terms of α (excess return)
and β (value of outstanding capital), choosing one of the factors which then implies the

32The case where k = r, or equivalently α = 0, deserves special attention. Since x and r are fixed,
V (x, r) can in general be nonzero. When k = r, Eq. (**) cannot possibly hold as long as β is finite.
Moreover, as k → r the investment stream becomes unbounded, i.e., |β| = |V (c, r)| → ∞ as k → r. In
particular, nothing about the sign of V (x, r) can be concluded in that case.
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(a)

(b)

Figure 8: NPV-consistent return criteria: (a) PIR; (b) selective IRR.

other factor. There may be practical reasons to suggest fixing one factor. For example,
Hazen (2003) by requiring that k be an internal rate of return of x, it is V (x, k) = 0
and with c0 = 0 satisfies condition (24) for any r, so the investment stream c becomes
independent of r. The interpretation of an investment stream for each element k ∈ I(x)
may add some complementary insights; it effectively considers α, β pairs whose product
is constant. Similarly, Magni (2010) allows for any investment stream, which in some
situations may be practically observed as invested capital accompanying the cash-flow
stream x. Thus fixes β = V (c, r), which implies an excess return α = V (x, r)/β, provided
β 6= 0. While both approaches therefore add some flexibility to the interpretation of
project return, they lack intrinsic guidance about which return characterizes the cash-
flow stream x in the absence of additional arguments and information.

The product approaches are in general not NPV-consistent in the sense of Eq. (16): in
approach A, α 6= 0 is arbitrary and therefore generally of a different sign than V (x, r); in
approach B, β 6= 0 is arbitrary, so that α = V (x, r)/β is a of different sign than V (x, r)
whenever β = V (c, r) < 0. Hence, unlike PIR and selective IRR (see Fig. 8), in the
absence of any additional information, the sign of the excess return α in the product
approaches cannot be used as a decision criterion.33

33Since one of the factors in Eq. (**) is chosen freely (nonzero) using heuristics, the remaining factor
must carry all the decision-relevant information. Moreover, computing the remaining factor generally
involves computing the NPV as a subtask. For example, under approach B, instead of the investment
stream c (a function) one can just choose any β 6= 0 (a constant, which defines an equivalence class of
investment streams), compute the “excess return” α = V (x, r)/β, and then decide to invest in a project
with cash-flow stream x if α · β > 0. Yet, for the mere purpose of deciding whether x presents an
attractive investment opportunity (or not) it would be even more straightforward (involving strictly less
computation) to determine the sign of V (x, r) directly.
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