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On the non-existence of a projective (75, 4, 12, 5) set in PG(3, 7)

Aaron C.S. Chan James A. Davis Jonathan Jedwab

4 September 2009 (revised 25 October 2009)

Abstract

We show by a combination of theoretical argument and computer search that if a projective
(75, 4, 12, 5) set in PG(3, 7) exists then its automorphism group must be trivial. This corresponds
to the smallest open case of a coding problem posed by H. Ward in 1998, concerning the possible
existence of an infinite family of projective two-weight codes meeting the Griesmer bound.

Keywords Centraliser, conjugacy class, Griesmer bound, integer linear program, linear code,
prescribed automorphism group, projective code, projective set, rational canonical form, two-weight
code.

2000 Mathematics Subject Classification 05E20, 05B25, 94B05.

1 Introduction

The Griesmer bound gives a lower bound on the length n of an [n, k, d] code over GF(q). It was
proved originally for the value q = 2 [15] and later extended to values q > 2 [26]:

Theorem 1 (Griesmer bound). Suppose there exists an [n, k, d] code over GF(q). Then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

Considerable effort has been devoted to constructing linear codes that meet the Griesmer bound;
for example, see [3], [13], [17], [18], and [27].

Henceforth, let q be an odd prime power. The following problem was posed in 2001 by
H. Ward [28], who had raised the special case q = p in 1998 [27]: determine whether or not
there exists

a two-weight
[

3q2+3
2 , 4, 3q2−3q

2

]
code C over GF(q) with second weight 3q2−q

2 . (1)

(This problem was also proposed by the same author in a list of open problems, distributed at the
Third EuroWorkshop on Optimal Codes and Related Topics (Sunny Beach, Bulgaria, June 2001),
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but with the condition k = 4 accidentally omitted [R. Hill, personal communication, September
2008]; the problem is quoted in [2] in the form given on that list.) At the time the paper [28]
was written, the existence of such a code was known for q = 3 [24] and for q = 5 [1], [11], but
not for q > 5. Although a full classification is now known for q = 3 and q = 5 (see below), all
cases q > 5 remain open. Some necessary conditions on the code C of (1) were obtained by Ferret
[12, Appendix A], including Proposition 4 below.

If such a code C exists then it is optimal: for q > 3 the code meets the Griesmer bound, while for
q = 3 it is known that the smallest n for which an [n, 4, 9] code over GF(3) exists is 15 = 3.32+3

2 [18].
Furthermore, if C exists then it is necessarily projective, by taking j = 2 in Theorem 2.16 of [18]
to deal with the case q > 3, and by using the complete classification of [15, 4, 9] codes over GF(3)
given in [16] to deal with the case q = 3.

The existence of such a code C is equivalent to the existence of a projective
(

3q2+3
2 , 4, 3q+3

2 , q+3
2

)
set O in PG(3, q) (see Theorem 2), which in turn is equivalent to the existence of a certain partial
difference set, or alternatively a certain strongly regular graph [5, Theorem 3.2]. The automorphism
group H of the projective set O is a subgroup of PGL(4, q). The automorphism group of the code C
is isomorphic to the semidirect product of H with Gal(GF(q)/GF(p)) (see Section 2).

The case q = 3 of (1) concerns a projective two-weight [15, 4, 9] code over GF(3) with second
weight 12. There are exactly two inequivalent such codes: a first [24] for which H is isomorphic
to S6 [6], and a second [16] for which H has order 36 [2].

The case q = 5 of (1) concerns a projective two-weight [39, 4, 30] code over GF(5) with second
weight 35. There are exactly eight inequivalent such codes [3], for which H has order 1, 3, 4,
6, 6, 12, 12, and 18. Using the generator matrices given in [3], we find by direct checking that
the corresponding projective set O in each case has a distinct automorphism group H, which is
isomorphic to: the trivial group, Z3, Z2 × Z2, S3, Z6, A4, D6, and S3 × Z3 respectively.

Existence for each case q > 5 of (1) is currently unknown. The smallest open case, having
q = 7, concerns the existence of a projective two-weight [75, 4, 63] code over GF(7) with second
weight 70. We shall show by a combination of theoretical argument and computer search that if
any such code exists then the automorphism group H of the corresponding projective (75, 4, 12, 5)
set O in PG(3, 7) must be trivial.

In principle, this could be achieved by prescribing each possible non-trivial subgroup H of
PGL(4, 7) in turn as being contained in the automorphism group of O, and then showing by
exhaustive search that such a projective set O does not exist. However, there are a great many
subgroups of PGL(4, 7), and for some of those having small order a simple exhaustive search is
beyond computational reach. We shall show how to reduce drastically the number of subgroups
of PGL(4, 7) that need be prescribed, and furthermore how to simplify the search in the case of
subgroups of small order. Each search is then cast as an integer linear program, and solved using
open source software. This method is sufficiently powerful to handle all subgroups of PGL(4, 7)
except the trivial subgroup, for which the search space remains unfeasibly large.

The integer linear programs described in this paper were implemented in 2008 using the CBC
(COIN-OR branch and cut) solver [8] and Ubuntu 7.10 running on a computational cluster, and
verified in 2009 using GLPK (GNU Linear Programming Kit) [14] and Ubuntu 9.04 running on a
PS3 gaming machine.

A possible alternative analysis of the case q = 7 of (1) is suggested by van Eupen and Hill’s
nonexistence proof [10] for a [70, 6, 45] projective two-weight code C over GF(3) with second
weight 54. They showed that if such a code C exists then it can be shortened to a [69, 5, 45]
two-weight code C ′ over GF(3) with second weight 54, and classified all such codes C ′; they then
showed by exhaustive search that no such code C ′ can be a shortened code of the desired code C.
Ferret [12, Theorem A.2.8] likewise proved that if the code C of (1) exists then it can be shortened
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to a
[

3q2+1
2 , 3, 3q2−3q

2

]
two-weight code C ′ over GF(q) with second weight 3q2−q

2 , and characterised
the structure of such all such codes C ′ by reference to a dual (q + 3)/2-cap. However, for the
case q = 7 we found it computationally unfeasible to determine by exhaustive search whether a
[74, 3, 63] code C ′ with the specified structure can be a shortened code of the desired [75, 4, 63]
code C.

2 Definitions and notation

This section introduces definitions and notation used in the rest of the paper. For general back-
ground on coding theory, see [20] or [25]; for background on projective geometry, see [7] or [19]. An
[n, k, d] code over GF(q) is projective if no two columns of a generator matrix are scalar multiples of
each other. The code is two-weight with weights w1 and w2 if every non-zero codeword has weight
w1 or w2.

We will represent points of the projective space PG(k−1, q) either in the form p (without angle
brackets), or else in the form 〈v〉 for some non-zero column vector v ∈ GF(q)k. Given a non-zero
vector v ∈ GF(q)k, we write

v⊥ := {x ∈ GF(q)k | vTx = 0} (2)

for the set of vectors orthogonal to v, and

〈v〉⊥ := {〈x〉 | x ∈ v⊥ \ {0}} (3)

for the corresponding set of projective points of PG(k− 1, q); this set forms the hyperplane that is
dual to the projective point 〈v〉.

A projective (n, k, h1, h2) set O in PG(k − 1, q) is a proper non-empty subset of the points
of the projective space PG(k − 1, q) having |O| = n, such that every hyperplane of PG(k − 1, q)
contains exactly h1 or h2 points of O. Given such a set O with k = 4, we shall call the hyperplanes
containing exactly min(h1, h2) points of O small planes, and the hyperplanes containing exactly
max(h1, h2) points of O large planes. The following correspondence between projective sets and
projective two-weight codes is a slight modification of that given by Calderbank and Kantor [5],
based on a result due to Delsarte [9]:

Theorem 2. Let y1, . . . , yn be distinct non-zero vectors in GF(q)k. Then the following are equiv-
alent:

1. The k×n matrix having columns y1, . . . , yn generates a projective two-weight [n, k] code over
GF(q) with weights w1 and w2 (and therefore minimum distance min(w1, w2))

2. {〈y1〉, . . . , 〈yn〉} is a projective (n, k, n− w1, n− w2) set in PG(k − 1, q) with w1, w2 6= 0.

Proof. Let v be any non-zero vector in GF(q)k. Then the weight of the codeword (vT y1, . . . , v
T yn)

is n − |〈v〉⊥ ∩ {y1, . . . , yn}|. This gives a correspondence between a projective two-weight code C
of length n over GF(q) with weights w1 and w2, and a projective (n, k, n − w1, n − w2) set O in
PG(k− 1, q) with w1, w2 6= 0. It remains to show that the existence of O implies that dim(C) = k.
Suppose, for a contradiction, that dim(C) < k so that there is a non-zero v ∈ GF(q)k for which
(vT y1, . . . , v

T yn) = (0, . . . , 0). Then |〈v〉⊥ ∩ {y1, . . . , yn}| = n, contradicting w1, w2 6= 0.
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By Theorem 2, the existence of the projective two-weight code C of (1) is equivalent to the existence
of

a projective
(

3q2+3
2 , 4, 3q+3

2 , q+3
2

)
set O in PG(3, q). (4)

In particular, in the case q = 7, the existence of a projective (75, 4, 12, 5) set in PG(3, 7) is equivalent
to the existence of a projective two-weight [75, 4, 63] code over GF(7) with second weight 70.

It can be shown that the set of points comprising the duals of the small planes of the projective
set O of (4) forms another projective set with the same parameters as O; in the terminology of [2],
it follows that the code C is formally projective self-dual (see also [27, p. 92]). We state and prove
the following consequence of this result:

Lemma 3. Suppose there exists a projective
(

3q2+3
2 , 4, 3q+3

2 , q+3
2

)
set O in PG(3, q). Then the

number of small planes is 3q2+3
2 .

Proof. Let j be the number of small planes. By counting each point of O in each plane of PG(3, q),
we obtain the relation

j

(
q + 3

2

)
+
(
q4 − 1
q − 1

− j
)(

3q + 3
2

)
=
(

3q2 + 3
2

)(
q3 − 1
q − 1

)
,

and so j = 3q2+3
2 .

Furthermore, given the projective set O of (4), we can constrain the number of small planes
containing a given line of PG(3, q):

Proposition 4 ([12, Lemma A.2.5]). Suppose there exists a projective
(

3q2+3
2 , 4, 3q+3

2 , q+3
2

)
set O

in PG(3, q), and let L be a line of PG(3, q) that intersects O in exactly i points. Then the number
of small planes containing L is 3− i.

Proof. Let j be the number of small planes containing L. By counting each point of O \L in each
plane through L, we obtain the relation

j

(
q + 3

2
− i
)

+ (q + 1− j)
(

3q + 3
2
− i
)

=
3q2 + 3

2
− i,

and so j = 3− i.

In particular, Proposition 4 implies that no four points of O are collinear.
Given a non-zero vector v ∈ GF(q)k and a matrix M ∈ PGL(k, q), we define the action of M

on the projective point 〈v〉 to be M〈v〉 := 〈Mv〉. For a set P of projective points of PG(k − 1, q),
we then define MP := {Mp | p ∈ P}. The automorphism group of P is

Aut(P ) := {M ∈ PGL(k, q) |MP = P},

namely the group of matrices of PGL(k, q) under whose action the set P maps to itself. If P is a
projective set then, by Theorem 2, we can interpret the points of P as the columns of a generator
matrix for a projective two-weight code C. The automorphism group of C is isomorphic to the
semidirect product of Aut(P ) with Gal(GF(q)/GF(p)) (where the Galois group takes account of
the action of a field automorphism applied to all co-ordinate positions of the codewords; see [2] for
further discussion). In the case q = p, which is our primary interest here, the automorphism group
of C is isomorphic to Aut(P ).
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Given a matrix A ∈ PGL(k, q), the centraliser of A is

C(A) := {M ∈ PGL(k, q) |MAM−1 = A},

namely the group of matrices of PGL(k, q) which fix A under the action of conjugacy. It is
straightforward to prove:

Lemma 5. Let P be a set of projective points in PG(k − 1, q) and let A ∈ Aut(P ). Then A ∈
Aut(MP ) for all M ∈ C(A).

We will make use of the following result on the action of a matrix of PGL(k, q) on a hyperplane
of PG(k − 1, q).

Lemma 6. Let p be a point of PG(k− 1, q) and let M ∈ PGL(k, q). Then Mp⊥ =
((
MT

)−1
p
)⊥

.

Proof. Write p = 〈v〉 for some non-zero v ∈ GF(q)k, By (2) and (3),

p⊥ = 〈v〉⊥ =
{
〈x〉 | x ∈ GF(q)k \ {0}, vTx = 0

}
.

Therefore we have

Mp⊥ = {〈Mx〉 | x ∈ GF(q)k \ {0}, vTx = 0}

=
{
〈Mx〉 | x ∈ GF(q)k \ {0},

((
MT

)−1
v
)T

Mx = 0
}

=
{
〈y〉 | y ∈ GF(q)k \ {0},

((
MT

)−1
v
)T

y = 0
}

=
〈(
MT

)−1
v
〉⊥

=
((
MT

)−1 〈v〉
)⊥

=
((
MT

)−1
p
)⊥

.

This paper rules out the existence of a projective (75, 4, 12, 5) set O in PG(3, 7) whose auto-
morphism group H is a non-trivial subgroup of PGL(4, 7). By Theorem 2, this implies there is
no projective two-weight [75,4,63] code over GF(7) with second weight 70 whose automorphism
group is non-trivial. Section 3 describes how to cast the search problem for a projective set, whose
automorphism group contains a specified group H, as an integer linear program. In Section 4, we
note that to search for O we need examine only groups H of prime order having the form 〈M〉, as
M ranges over a set of representatives for the conjugacy classes of PGL(4, 7). This is sufficient to
eliminate all but six matrices M from consideration, having order 2 or 3. Section 5 calculates the
form of the centraliser of these six matrices, and constrains the positions of the points of O con-
tained in a single large plane. Section 6 uses an equivalence relation on the elements of PGL(3, 7),
by reference to the known form of the centraliser, to bring the search within computational reach.

3 Conversion of the search problem to an integer linear program

In this section we describe how to cast the search problem for a projective (n, k, h1, h2) set O in
PG(k − 1, q), whose automorphism group contains a specified subgroup H of PGL(k, q), as an

5



integer linear program. This follows the treatment of the papers [4], [21], and [22], which are based
on the method of Kramer and Mesner [23] for constructing designs with a prescribed automorphism
group. We begin with the simpler (but less efficient) case where no subgroup H is specified.

Proposition 7. The existence of a projective (n, k, h1, h2) set O in PG(k − 1, q) is equivalent to
the existence of a solution to an integer linear program having 2(qk−1)

q−1 variables.

Proof. We assign a variable xi ∈ {0, 1} to each point pi ∈ PG(k − 1, q), where xi = 1 if and only
if pi ∈ O. We assign a variable yj ∈ {0, 1} to each hyperplane p⊥j ∈ PG(k − 1, q), where yj = 1
if and only if the hyperplane p⊥j contains exactly h1 points of O. The conditions on O are then

equivalent to the following system of linear equations governing the 2(qk−1)
q−1 variables {xi, yj}:∑

i

xi = n,

(h2 − h1)yj +
∑

i: pi∈p⊥j

xi = h2 for each j.

(The first equation fixes the number of points of O as n. The second equation states that the
number of points of O contained in the hyperplane p⊥j is h1 in the case that yj = 1, and h2 in the
case that yj = 0.)

In the case where the automorphism group of the projective set contains a specified non-trivial
subgroup H of PGL(k, q), the efficiency of the integer linear program of Proposition 7 can be
improved:

Proposition 8. The existence of a projective (n, k, h1, h2) set O in PG(k−1, q) for which Aut(O)
contains a given non-trivial subgroup H of PGL(k, q) is equivalent to the existence of a solution to
an integer linear program having fewer than 2(qk−1)

q−1 variables.

Proof. For each point pi of PG(k − 1, q) and for any M ∈ H, the point Mpi is contained in O
if and only if pi is contained in O. Therefore we can merge the variables xi of a given orbit of
points under the action of H into a single variable xi. Similarly, for each hyperplane p⊥j and for
any M ∈ H, the hyperplane Mp⊥j contains the same number of points of O as p⊥j , so we can merge
the variables yj of a given orbit of hyperplanes under the action of H into a single variable yj .

We therefore assign a variable xi ∈ {0, 1} to each distinct point orbit

ri := {Mpi |M ∈ H}

as pi ranges over the points of PG(k− 1, q), where xi = 1 if and only if the point orbit ri ⊆ O. We
also assign a variable yj ∈ {0, 1} to each distinct hyperplane orbit

sj := {Mp⊥j |M ∈ H} (5)

as p⊥j ranges over the hyperplanes of PG(k − 1, q), where yj = 1 if and only if the hyperplane p⊥j
contains exactly h1 points of O. By a similar argument to that used in the proof of Proposition 7,
the conditions on O are then equivalent to the following system of linear equations governing the
fewer than 2(qk−1)

q−1 variables {xi, yj}: ∑
i

|ri|xi = n,

(h2 − h1)yj +
∑

i

|ri ∩ p⊥j |xi = h2 for each j.
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The number of variables required in the integer linear program of Proposition 8 can be significantly
fewer than 2(qk−1)

q−1 , giving substantially improved performance compared with the integer linear
program of Proposition 7. To find the hyperplane orbits sj of (5) efficiently, note that by Lemma 6

we can write sj =
{((

MT
)−1

pj

)⊥
|M ∈ H

}
for any point pj of PG(k− 1, q), which simplifies to

sj =
{(
MT pj

)⊥ |M ∈ H}.

4 Conjugacy classes of PGL(4, 7)

Henceforth, suppose that Ô is a projective (75, 4, 12, 5) set in PG(3, 7). We wish to show that

the integer linear program (described in the statement and proof) of Proposition 8 for
O = Ô has no solution, as H ranges over the non-trivial subgroups of PGL(4, 7).

In this section, we show that it is instead sufficient for H to range over a much smaller set of
subgroups.

Since Proposition 8 specifies that Aut(Ô) should contain (but not necessarily equal) H, it is
sufficient for H to range over the cyclic subgroups of PGL(4, 7) of prime order. Furthermore, for
any M ∈ Aut(Ô) and N ∈ PGL(4, 7), we have NMN−1 ∈ Aut(NÔ). Therefore, given a set S of
representatives for the 407 conjugacy classes of PGL(4, 7), it is sufficient to show that

the integer linear program of Proposition 8 for O = Ô has no solution, as H ranges
over {〈M〉 |M ∈ S and M has prime order}.

We next summarise the method described in [19, p. 42–43] for determining the required set S.
We firstly find a set of representatives for the 74 − 7 = 2394 conjugacy classes of GL(4, 7), using
the following well-known result:

Theorem 9. Given a non-constant monic polynomial f(λ) = f0 + f1λ+ · · ·+ fm−1λ
m−1 + λm of

degree m, write L(f) for the m×m companion matrix
0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .
0 0 0 0 . . . 1
−f0 −f1 −f2 −f3 . . . −fm−1

 .

The rational canonical form of a k × k matrix A over a field F is the unique matrix of the form
diag(L(ψ1), . . . , L(ψ`)), belonging to the same conjugacy class as A over F , such that ψ1, . . . , ψ`

are non-constant monic polynomials in λ whose degrees sum to k and which satisfy

ψi | ψi+1 for i = 1, . . . , `− 1. (6)

By Theorem 9, the set of 4 × 4 invertible rational canonical forms over GF(7) provides a set of
representatives for the 2394 conjugacy classes of GL(4, 7). To compute these rational canonical
forms, it is sufficient to factor each degree 4 monic polynomial g(λ) over GF(7) that is not divisible
by λ, and then to use each assignment of non-constant monic polynomials ψ1, . . . , ψ` satisfying (6)
and

∏`
i=1 ψi = g(λ) to form the rational canonical form diag(L(ψ1), . . . , L(ψ`)). We then reduce

the 2394 rational canonical forms to the desired set S by retaining a single element of each set
{R(cA) | c ∈ GF(7)∗}, where R(M) represents the rational canonical form over GF(7) of the
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matrix M (which can be calculated using the Maple function Frobenius). This retains exactly one
of at most six matrices that are conjugate in PGL(4, 7) but not in GL(4, 7).

The specified integer linear program runs quickly for all groups 〈M〉 of order greater than 3,
leaving just seven groups to be checked. Four of these seven groups have order 3, and are generated
by

A1 =


3 0 0 0
0 0 1 0
0 0 0 1
0 6 0 0

 , A2 =


5 0 0 0
0 5 0 0
0 0 0 1
0 0 5 4

 , A3 =


3 0 0 0
0 3 0 0
0 0 0 1
0 0 3 2

 , A4 =


0 1 0 0
5 4 0 0
0 0 0 1
0 0 5 4

 ,
and the other three have order 2, and are generated by

A5 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , A6 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , A7 =


0 1 0 0
6 0 0 0
0 0 0 1
0 0 6 0

 .
The matrix A7 can be excluded by noting that it has order 2 but no fixed points, and so cannot
fix a set of size 75. It therefore remains to show that

the integer linear program of Proposition 8 for O = Ô has no solution when H = 〈Ai〉,
as i ranges over 1 ≤ i ≤ 6.

5 Potential base plane sets

In this section, we simplify the required computations for the six remaining groups 〈A1〉, . . . , 〈A6〉,
by constraining the positions of the points of the projective set Ô that are contained in a single
large plane.

Given that the automorphism group of Ô contains some group 〈A〉, Lemma 5 shows that we can
replace Ô by MÔ, for any M ∈ C(A), and the automorphism group of the replacement projective
set MÔ will still contain 〈A〉. It is therefore of interest to determine C(A) explicitly for each
A ∈ {A1, . . . , A6}. To do so, we solve the equation

MA = tAM

(interpreted in GL(4, 7)) as a set of linear equations in the entries of a 4× 4 matrix M over GF(7),
for each A ∈ {A1, . . . , A6} and each t ∈ GF(7)∗ in turn. Each solution set can be expressed in
terms of a number of free variables a, b, c, . . . . Since M must be invertible, we then impose the
condition det(M) 6= 0. For A ∈ {A1, . . . , A5}, it turns out that the determinant condition forces
t = 1; for A = A6, it forces t ∈ {1,−1}. The form of C(A) corresponding to these values of t,
but neglecting the determinant condition, is shown in Table 1. Using these explicit forms, we now
show that we can make the simplifying assumption that 〈[0, 0, 0, 1]T 〉⊥ is a large plane:

Lemma 10. Suppose that Aut(Ô) contains the group 〈Ai〉 for some i ∈ {1, . . . , 6}. Then we can
assume without loss of generality that 〈[0, 0, 0, 1]T 〉⊥ is a large plane.

Proof. By Lemma 3, the projective set Ô defines exactly 75 small planes. We claim there are 76
hyperplanes p⊥ of PG(3, 7) such that Mp⊥ = 〈[0, 0, 0, 1]T 〉⊥ for some M = Mp ∈ C(Ai). Therefore
we can replace Ô by MÔ, for some M ∈ C(Ai), so that 〈[0, 0, 0, 1]T 〉⊥ is a large plane; and by
Lemma 5, Aut(MÔ) contains 〈Ai〉.
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Representative Ai of a C(Ai) has the form
conjugacy class of PGL(4, 7)

A1 =


3 0 0 0
0 0 1 0
0 0 0 1
0 6 0 0



a 2b 3b b
4c d e f
5c 6f d e
c 6e 6f d



A2 =


5 0 0 0
0 5 0 0
0 0 0 1
0 0 5 4



a b c c
d e f f
3g 3h 3i+ j i
g h 5i j


Ai with order 3

A3 =


3 0 0 0
0 3 0 0
0 0 0 1
0 0 3 2



a b c c
d e f f
5g 5h 5i+ j i
g h 3i j



A4 =


0 1 0 0
5 4 0 0
0 0 0 1
0 0 5 4




3a+ b a 3c+ d c
5a b 5c d

3e+ f e 3g + h g
5e f 5g h



A5 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a b c c
d e f f
g h i j
g h j i


Ai with order 2

A6 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



a b c d
b a d c
e f g h
f e h g

 or


a b c d
6b 6a 6d 6c
e f g h

6f 6e 6h 6g



Table 1: The form of C(A) for each A ∈ {A1, . . . , A6}. The centraliser C(Ai) comprises all
invertible matrices having the specified form, as a, b, c, . . . range over GF(7), up to multiplication
by a non-zero scalar.
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To prove the claim, we use Lemma 6 to replace the condition Mp⊥ = 〈[0, 0, 0, 1]T 〉⊥ by
(MT )−1p = 〈[0, 0, 0, 1]T 〉, or equivalently 〈MT [0, 0, 0, 1]T 〉 = p. It is therefore sufficient to ex-
hibit 76 distinct points p of PG(3, 7), each of the form 〈MT [0, 0, 0, 1]T 〉 for some M = Mp ∈ C(Ai).
This is easily done by computer for each Ai, since C(Ai) is known from Table 1.

Henceforth, assume that 〈[0, 0, 0, 1]T 〉 is a large plane, which we shall call the base plane.
The base plane is isomorphic to PG(2, 7). By the definition of projective set, the base plane

contains exactly 12 points of Ô, and by Proposition 4 no four of these points are collinear. We shall
call a set of 12 points of PG(2, 7), no four of which are collinear, a potential base plane set. The
set of points of Ô contained in the base plane must be the canonical embedding of some potential

base plane set B in PG(3, 7) (meaning the subset
{〈[

v
0

]〉
| 〈v〉 ∈ B

}
of PG(3, 7)).

(The set Ô∩〈[0, 0, 0, 1]T 〉⊥ of points of Ô contained in the base plane is related to the well-known
concept of a residual code in the following way. The matrixG, whose columns y1, . . . , y75 correspond
to the points of Ô, generates a two-weight [75, 4, 63] code C over GF(7) with second weight 70, as
described in Theorem 2. The submatrix G′ of G, whose columns yi satisfy [0, 0, 0, 1]yi = 0, generates
the residual code of C with respect to the codeword [0, 0, 0, 1]G. The projective points of PG(3, 7)
corresponding to the columns of G′ form the set

{
〈yi〉 | 〈yi〉 ∈ 〈[0, 0, 0, 1]T 〉⊥

}
= Ô∩ 〈[0, 0, 0, 1]T 〉⊥.

Projective two-weight codes have previously been constructed by reference to the structure of
certain residual codes, for example in [2].)

We now determine all potential base plane sets that are inequivalent under multiplication by an
element of PGL(3, 7). To do so, we recursively generate all inequivalent sets of i points of PG(2, 7),
no four of which are collinear, for i = 1, 2, . . . , 12. This requires repeated testing of whether there
exists an element of PGL(3, 7) that transforms a set B of i points of PG(2, 7) to another such
set B′. In most cases we can avoid the full test by first comparing the number of lines of PG(2, 7)
containing 0, 1, 2, and 3 points of B and B′, then similarly comparing B ∪ {p1} and B′ ∪ {p1} for
all points p1 of PG(2, 7), and then comparing B ∪ {p1, p2} and B′ ∪ {p1, p2} for all distinct points
p1, p2 of PG(2, 7). If any of the line counts for these pairs of sets disagree, the sets B and B′ must
be inequivalent. The time and space complexity of these comparisons can be reduced by hashing
all the line intersection data for each set B.

In this way, we find that there are exactly 395 inequivalent potential base plane sets B1, . . . ,B395.
The canonical embedding in PG(3, 7) of each potential base plane set can therefore be represented

in the form
{〈[

Nv
0

]〉
| 〈v〉 ∈ Bj

}
, for some N ∈ PGL(3, 7) and for some j in the range 1 ≤ j ≤

395. It is now sufficient to show that

the integer linear program of Proposition 8 for O = Ô has no solution when H = 〈Ai〉

and Ô contains the 12 points
{〈[

Nv
0

]〉
| 〈v〉 ∈ Bj

}
, as N ranges over PGL(3, 7)

and as i and j range over 1 ≤ i ≤ 6 and 1 ≤ j ≤ 395.

6 Equivalence classes of PGL(3, 7)

According to the current problem statement, we need to run the integer linear program a total of
|PGL(3, 7)| = 5,630,688 times for each pair of values (i, j). In this section, we show how to use the
known form of C(Ai) to reduce this number and so make the search computationally feasible.

Fix A ∈ {A1, . . . , A6}, and suppose that Aut(Ô) contains 〈A〉. Define an equivalence relation
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on the elements of PGL(3, 7) by N1 ∼ N2 if and only if
w

N2N
−1
1 x

y

0 0 0 z

 ∈ C(A) for some w, x, y ∈ GF(7), z ∈ GF(7)∗ (7)

(interpreting the matrix product N2N
−1
1 in PGL(3, 7)), where the form of C(A) is known from

Table 1.

Now fix B ∈ {B1, . . . , B395}, and suppose that Ô contains the 12 points
{〈[

N1v
0

]〉
| 〈v〉 ∈ B

}
for some N1 ∈ PGL(3, 7). Let N2 ∈ PGL(3, 7) belong to the same equivalence class as N1, so that
(7) holds for some w, x, y, z, and write the 4× 4 matrix appearing in (7) as M = M(N2). Then

{〈[
N2v

0

]〉
| 〈v〉 ∈ B

}
=


〈

w

N2N
−1
1 x

y

0 0 0 z


 N1v

0


〉
| 〈v〉 ∈ B


= M

{〈[
N1v

0

]〉
| 〈v〉 ∈ B

}
.

So, for any N2 ∈ PGL(3, 7) in the same equivalence class as N1, there is a matrix M = M(N2) ∈

C(A) such that MÔ contains the 12 points
{〈[

N2v
0

]〉
| 〈v〉 ∈ B

}
and, by Lemma 5, such

that Aut(MÔ) contains 〈A〉. It is therefore sufficient to test just one representative N of each
equivalence class of PGL(3, 7). The resulting search procedure, in pseudocode form, is:

for i from 1 to 6 do
T ← a set of representatives for the equivalence classes of

PGL(3, 7) with respect to C(Ai)
for j from 1 to 395 do

for N ranging over T do
run the integer linear program of Proposition 8 with

O ← Ô, H ← 〈Ai〉, and Ô ⊃
{〈[

Nv
0

]〉
| 〈v〉 ∈ Bj

}
end do

end do
end do

It is now computationally feasible to complete this search, establishing:

Theorem 11. There is no projective (75, 4, 12, 5) set in PG(3, 7) whose automorphism group is a
non-trivial subgroup of PGL(4, 7).

By Theorem 2, this implies:

Corollary 12. There is no projective two-weight [75, 4, 63] code over GF(7) with second weight 70,
whose automorphism group is non-trivial.
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7 Comments

The projective two-weight code C of (1) exists for q = 3 and q = 5 (see Section 1): there are
two inequivalent two-weight [15, 4, 9] codes over GF(3) with second weight 12, and there are eight
inequivalent two-weight [39, 4, 30] codes over GF(5) with second weight 35. Furthermore, nine of
these ten codes have a non-trivial automorphism group.

Does the code C of (1) exist for infinitely many prime powers q? The work described in this
paper was motivated by the hypothesis that an example of such a code could be found for q = 7 by
assuming the existence of a non-trivial automorphism group; we have shown, using an equivalent
formulation involving a projective set, that this is not the case. While it is possible that there
are examples of such codes for q > 7, a complete search for q = 9 or q = 11 remains well out of
computational reach using the methods of this paper. We might instead ask whether one or more
of the above nine codes (having a non-trivial automorphism group and q = 3 or q = 5) belongs
to an infinite family of optimal or near-optimal projective two-weight codes different from that
specified in (1).
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