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(Revised January 25, 1960) 

CHAPTER 1. INTRODUCTION 

1.1. Results. It is the object of this paper to prove a theorem in homo- 
topy-theory, which follows as Theorem 1.1.1. In stating it, we use one 
definition. A continuous product with unit on a space X is a continuous 
map p: X x X -X with a point e of X such that p(x, e) = p(e, x) = x. 
An H-space is a space which admits a continuous product with unit. For 
the remaining notations, which are standard in homotopy-theory, we re- 
fer the reader to [15], [16]. In particular, Hm(Y; G) is the mth singular 
cohomology group of the space Y with coefficients in the group G. 

THEOREM 1.1.1. Unless n = 1, 2, 4 or 8, we have the following conclu- 
sions: 

(a) The sphere Sn-1 is not an H-space. 
(b) In the homotopy group r2~n3(Sn-1), the Whitehead product 

[tn-iyen-l is non-zero. 
(c) There is no element of Hopf invariant one [17] in w2rn1(Sn). 
(d) Let K = Sm U Em+n be a CW-complex formed by attaching an 

(m + n)-cell Em+n to the m-sphere Sm. Then the Steenrod square [31] 

Sqn: Hm(K; Z2)- Hm+n(K; Z2) 

is zero. 

It is a classical result that the four conclusions are equivalent [36], 
[31]. Various results in homotopy-theory have been shown to depend on 
the truth or falsity of these conclusions. It is also classical that the con- 
clusions are false for n = 2, 4 and 8. In fact, the systems of complex 
numbers, quaternions and Cayley numbers provide continuous products 
on the euclidean spaces R2, R4 and RI; from these one obtains products 
on the unit spheres in these spaces, that is, on S1, S3 and S7. (See [16].) 
The case n = 1 is both trivial and exceptional, and we agree to exclude 
it from this point on. 

The remarks above, and certain other known theorems, may be sum- 
marized by the following diagram of implications. 

20 
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Rn is a normed algebra over the reals at = n = 2, 4, or 8. 

Rn is a division algebra over the reals --- n =2 

Sn-1, with its usual differentiable n = 2 4 or 8 
structure, is parallelisable ) (6) 2 

Sn-1, with some (perhaps extraordinary) 
differentiable structure, is parallelisable 

s 0 t~(5) 
Sn-1 is an H-space 

There is an element of Hopf invariant one in 212n -(Sn) 

11(1) j~I(2) (3) (4) 
n = 2 or 4r n= 2m n # 16 n = 2,4, or 8. 

The implications (1), (2), (3) represent cases of Theorem 1.1.1 which 
are already known. In fact, (1) is due to G. W. Whitehead [36]; (2) is 
due to J. Adem [4]; and (3) is due to H. Toda [34], who used an elegant 
lemma in homotopy-theory and extensive calculations of the homotopy 
groups of spheres. 

The implication (4) is just Theorem 1.1.1. The implication (5) is due 
to A. Dold, in answer to a question of A. Borel. (We remark that Theo- 
rem 1.1.1 implies strong results on the non-parallelizability of manifolds: 
see Kervaire [22].) The implication (6) was proved independently by M. 
Kervaire [21] and by R. Bott and J. Milnor [8]. In each case, it was de- 
duced from deep results of R. Bott [7] on the orthogonal groups. 

A summary of the present work appeared as [3]. The first draft of this 
paper was mimeographed by Princeton; I am most grateful to all those 
who offered criticisms and suggestions, and especially to J. Stasheff. 

1.2. Method. Theorem 1.1.1 will be proved by establishing conclusion 
(d). The method may be explained by analogy with Adem's proof [4] in 
the case n # 2r. In case n = 6, for example, Adem relies on the relation 

Sq6 = Sq2Sq4 + Sq5Sq1. 

Now, in a complex K = Sm U Em+6, the composite operations Sq2Sq4 and 
Sq5Sq': Hm(K; Z2) - Hm+6(K; Z2) will be zero, since Hm+4(K; Z2) and 
Hm+'(K; Z2) are zero. Therefore Sq6: Hm(K; Z2) - Hm+6(Kf; Z2) is zero. 
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The method fails in the case n = 2', because in this case Sqn is not 
decomposable in terms of operations of the first kind. 

We therefore proceed by showing that Sqn is decomposable in terms of 
operations of the second kind (in case n = 2r, r > 4). (cf. [2, ? 1]). We 
next explain what sort of decomposition is meant. 

Suppose that n = 2k+1, k > 3, and that u e Hm(X; Z2) is a cohomology 
class such that Sq2(u)= 0 for 0 ? i ? k. Then certain cohomology opera- 
tions of the second kind are defined on u; for example, 

/34(U) e Hm+'(X; Z2) / SqlHnm(X; Z2) 

'1(u) e Hm3(X; Z2) i Sq2Hm+l(X; Z2) + Sq3Hm(X; Z2) 

and so on. In fact, in ? 4.2 of this paper we shall obtain a system of 
secondary operations Id as indexed by pairs (i, j) of integers such that 
o < i < j, j # i + 1. These operations will be such that (with the data 
above) (I,j(u) is defined if j ? k. The value of Pf(u) will be a coset in 
Hq(X; Z2), where q = m + (21 + 2' - 1); let us write 

,i, y(u) e H*(X; Z2) / Q*(X; i, j) . 

We do not need to give the definition of Q*(X; i, j) here; however, as in 
the examples above, it will be a certain sum of images of Steenrod opera- 
tions. (By a Steenrod operation, we mean a sum of composites of Steen- 
rod squares.) 

Suppose it granted, then, that we shall define such operations atif. In 
? 4.6 we shall also establish a formula, which is the same for all spaces 
X:- 

Sqn(u) = LJ; J9kai JkjiJ(U) modulo L ; J5 k ai .fkQ*(X; i, j) . 

In this formula, each at J kis a certain Steenrod operation. We recall that 
n = 2k+1, k > 3. 

Suppose it granted, then, that we shall prove such a formula. Then 
we may apply it to a complex K = Sm U El . If u e Hm(K; Z2), then 
Sq2 (U) = 0 for 0 < i < k. The cosets (i, (u) will thus be defined for jvk; 
and they will be cosets in zero groups. The formula will be applicable, 
and will show that Sqn(u)=O, modulo zero. Theorem 1.1.1 will thus fol- 
low immediately. 

1.3. Secondary operations. It is clear, then, that all the serious work 
involved in the proof will be concerned with the construction and proper- 
ties of secondary cohomology operations. Two methods have so far been 
used to define secondary operations which are stable. The first method 
is that of Adem [4]. This possesses the advantage that the operations 
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defined are computable, at least in theory. Unfortunately, it does not 
give us much insight into the properties of such operations. Moreover, 
not all the operations we need can be defined by this method as it now 
stands. 

The second method, which we shall use, is that of the universal ex- 
ample [6], [30]. This is a theoretical method; it gives us some insight, 
but it gives us no guarantee that the operations so defined are comput- 
able. Similarly, it sometimes shows (for example) that one operation is 
linearly dependent on certain others, without yielding the coefficients in- 
volved. 

Both methods show that secondary operations are connected with rela- 
tions between primary operations. For example, the Bockstein cobound- 
ary /4 is connected with the relation Sq'Sql = 0; the Adem operation 1 
is connected with the relation Sq2Sq2 + Sq3Sq'= 0. 

It may appear to the reader that what we say about " relations " in 
this section is vague and imprecise; however, it will be made precise later 
by the use of homological algebra [13]; this is the proper tool to use in 
handling relations, and in handling relations between relations. 

In any event, it will be our concern in Chapter 3 to set up a general 
theory of stable secondary cohomology operations, and to show that to 
every " relation " there is associated at least one corresponding sec- 
ondary operation. We study these operations, and the relations be- 
tween them. 

This theory, in fact, is not deep. However, it affords a convenient 
method for handling operations, by dealing with the associated relations 
instead. For example, we have said that 1 is "associated with" the re- 
lation Sq2Sq2 + Sq3Sq1 = 0. We would expect the composite operation 
Sq 3q to be "associated with" the relation 

( 1 ) (Sq3Sq2)Sq2 + (Sq3Sq3)Sq1 = 0. 

Similarly, we have said that /4 is "associated with" the relation Sq1Sql = 0. 
We would expect the composite operation Sq5/34 to be "associated with" 
the relation 

(2) (Sq5Sq1)Sq1 = 0. 

But since Sq3Sq2 = 0 and Sq3Sq3 = Sq5Sql, the relations (1), (2) coincide. 
We would therefore expect to find 

SqkI = Sq5/34 (modulo something as yet unknown). 

And, in fact, the theory to be presented in Chapter 3 will justify such 
manipulations, and this is one of its objects. 
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If we can do enough algebra, then, of a sort which involves relations 
between the Steenrod squares, we expect to obtain relations of the form 

bij ai, j(Dis j= 0 (modulo something as yet unknown). 
(Here we use "a" as a generic symbol for a Steenrod operation, and "'4" 
as a generic symbol for a secondary operation.) In particular, we shall 
in fact obtain (in ? 4.6) a formula 

E j J; J 5 k a , J, k"Di, J(u) = XSq2k+l(u) 

such as we seek, but containing an undetermined coefficient X. 
To determine the coefficient X, it is sufficient to apply the formula to a 

suitable class u in a suitable test-space X. We shall take for X the com- 
plex projective space P of infinitely-many dimensions. Our problem, then, 
reduces to calculating the operations qI>j in this space P. This is per- 
formed in ? 4.5. 

The plan of this paper is then as follows. In Chapter 2 we do the al- 
gebraic work; in Chapter 3 we set up a general theory of stable secondary 
operations; in Chapter 4 we make those applications of the theory which 
lead to Theorem 1.1.1. 

The reader may perhaps like to read ? 2.1 first, and then proceed 
straight to Chapters 3 and 4, referring to Chapter 2 when forced by 
the applications. 

CHAPTER 2. HOMOLOGICAL ALGEBRA 

2.1. Introduction. In this chapter, we make those applications of 
homological algebra [13] which are needed for what follows. From the 
point of view of logic, therefore, this chapter is prior to Chapter 4; but 
from the point of view of motivation, Chapter 4 is prior to this one. 

For an understanding of Chapter 3, only the first article of this chap- 
ter is requisite. 

The plan of this chapter is as follows. In ?? 2.1, 2.2 we outline what 
we need from the general theory of homological algebra, proceeding from 
what is well known to what is less well known. In ? 2.4 we state, and 
begin to use, Milnor's theorem on the structure of the Steenrod algebra 
A. In ? 2.5 we perform the essential step of calculating Exts,'(Z2, Z2) as 
far as we need it. This work relies on ? 2.4, and also relies on a certain 
spectral sequence in homological algebra. This sequence is set up in ? 2.3. 
In the last section, ? 2.6, we calculate Extst(M, Z2) (as far as we need it) 
for a certain module M that arises in Chapter 4. 

We now continue by recalling some elementary algebraic notions. 
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The letter K will denote a field of coefficients, usually the field Z, of 
residue classes modulo a fixed prime p. 

A graded algebra A over K is an algebra over K; qua vector space over 
K, it is the direct sum of components, A = Eq,0Aq; and these satisfy 
1 eAO, Aq qAr c Aq+r. The elements lying in one component Aq are called 
homogeneous (of degree q). We shall be particularly concerned with the 
Steenrod algebra [5], [12]. We shall give a formal, abstract definition of 
the Steenrod algebra in ? 3.5; for present purposes the following descrip- 
tion is sufficient. If p = 2, the generators are the symbols Sqk, and the 
relations are those which hold between the Steenrod squares in the (mod 
2) cohomology of every topological space. If p>2, the generators are the 
symbols i3p and PI, and the relations are those which hold between the 
Bockstein coboundary and the Steenrod cyclic reduced powers, in the (mod 
p) cohomology of every topological space. (Here we suppose the Bockstein 
coboundary defined without signs, so that it anticommutes with suspen- 
sion.) The Steenrod algebra is graded; the degrees of Sqk, ,jp and PI are 
k, 1 and 2(p - 1)k. 

A graded left module M over the graded algebra A is a left module [9] 
over the algebra A; qua vector space over K, it is the direct sum of com- 
ponents, M = 1qMq; and these satisfy Aq -Mr C Mq+r. The elements ly- 
ing in one component Mq are called homogeneous (of degree q). We shall 
write deg (m) for the degree of a homogeneous element m, and the use 
of this notation will imply that m is homogeneous. When we speak of 
free graded modules over the graded algebra A, we understand that they 
have bases consisting of homogeneous elements. 

We must also discuss maps between graded modules. A K-linear func- 
tion f: M - M' is said to be of degree r if we have f(Mq) c Mq'r. We 
say that it is a left A-map if we propose to write it on the left of its argu- 
ment, and if it is A-linear in the sense that 

f(am) = (-_1)qraf (m) (where a e Aq). 

Similarly, we call it a right A-map if we propose to write it on the right 
of its argument, and if it is A-linear in the sense that 

(aim)f = a(nf ) . 

There is, of course, a (1-1) correspondence between left A-maps and 
right A-maps (of a fixed degree r); it is given by 

f(m) = (-_ )r(M)f* (where m e Mq). 

The two notions are thus equivalent. 
Sometimes we have to deal with bigraded modules; in that case the 
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degree r which should appear in these signs is the total degree. 
It is clear that we can avoid some signs by using right A-maps; and in 

Chapter 3 we will do this. In the present chapter, however, it is con- 
venient to follow the received notation for the bar construction, so we 
will use left A-maps. The passage from one convention to the other will 
cause no trouble, as the applications are in characteristic 2. 

Let 

4 f I P Q 
be a diagram of A-maps in which f and f' have degree r, while g and g' 
have degree s. Then we say that the diagram is anticommutative if 

g'f= (-1)rsf g 

We now begin to work through the elementary notions of homological 
algebra, in the case when our modules are graded. We shall suppose 
given a graded algebra A over K which is locally finite-dimensional; that 
is, EqrA, is finite-dimensional for each r. We shall also assume that A 
is connected, that is, A0 = K. Let M be a graded module over A which 
is locally finitely-generated; this is equivalent to saying that zq:rMq is 
finite-dimensional. A free resolution of M consists of the following. 

(i) A bigraded module C = ES t Csuch that AqCst c Cst+q. We 
set C8 = EC8,,, and require that each C, is a (locally finitely-generated) 
free module over A. 

(ii) An A-map d: C - C of bidegree (-1, 0), so that dC8,, c C5,-,l. 
(Thus the total degree of d is -1). We write d,: C, C, C-, for the com- 
ponents of d. 

(iii) An A-map s: CO - M of degree zero. We require that the sequence 
dids 0 O- < eo CO CS1 <E.. Cs * 

should be exact, and we regard C as an acyclic chain complex. 
Next, let L and N be left and right graded A-modules. We have a 

group 
Hom' (C8, L) 

whose elements are the A-maps pt: C- L of total degree - (s + t), so 
that p(Cs, J) c Lt. t. Since C. is graded, we define 

HomA(Cs, L) = EtHoms(C5, L) 
and 
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HomA(C, L) = :, HomA(CS, L). 

We also have a group [13] 

NOAC = JssN0ACS; 

we bigrade it as follows; if n e N.,, c e Cs ,, we set 

n OA C e (NOAC)St+U . 

We may regard HomA (C, L) as a cochain complex and N OAC as a chain 
complex, using the boundaries 

(ds)* 
HomA (C0, L) -HomA(Cs-, L) HOMA(CS L)* * 

(d8) 
NOACO < -. (-NOACS-N1 

+ NOACS 

(Note that we have to define (ds)*y that is, 1 0 dsy by the rule 

(1 ? ds) (n 0 c) = (- 1)u(n 0 dsc) 

where n e Nu). We may write 8 = Es (ds)*, a = s (ds)* 
These complexes are determined up to chain equivalence by L, M, N. 

In fact, given resolutions C, C' of M, M', and given a map f: M- M' 
we may extend it to a chain map g: C C'; moreover, such a map is 
unique up to chain homotopy. Such chain maps (and homotopies) yield 
cochain maps (and homotopies) of HomA(C, L). We thus see that the 
cohomology groups of HomA(C, L) are independent of C (up to a natural 
isomorphism), and are natural in M. We write Extsjt(M, L) for 
Ker(ds+i)*/Im(ds)* in the sequence 

(ds)* ~~~~(ds+l)* 
Hom'(Cs 1, L) Hom'(Cs, L) Hom' (Cs+l, L) 

We also define 

Ext~s (My L) = StExtSat (M, L) 

Similarly for the homology groups of NOAC, which are written 
TorsAt(N, M) or TorsA(N, M). 

We shall be particularly concerned with the cases L = K, N = K. We 
grade L = K by setting Lo = K, Lq = 0 for q0. The structure of L=K 
as an A-module is thus unique (and trivial) since a(LO)=O if deg(a) > 0, 
while the action of Ao is determined by that of the unit. Similarly for 
N= K. 

In the case L = K, N = K we have a formal duality between Tor and 
Ext. In fact, if V is a finite-dimensional vector space over K, we write 
V* for its dual. If V is a locally finite-dimensional graded vector space 
over K, we set 
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V* = Eg(V.)* 

and regard this as the dual in the graded case. Thus K 0ACS and 
HomA (C8, K) are dual (graded) vector spaces over K; the pairing is given 
by 

h(k0Ac) = h(kc) 

for h e HomA(Cs, K), etc. The maps (d,)* and (d,)* are dual. Thus 

Torl,(K, M) and Ext, 'j(M, K) 
are dual vector spaces over K. 

We now introduce some further notions which are applicable because 
AO = K. We set I(A) = 1q>OAq; and if N is a (graded) A-module, we set 
J(N) = I(A) * N. (Thus J(N) is the kernel of the usual map N-o K0AN.) 
We call a map f: NU N' minimal if Ker f c J(N). We call a resolution 
minimal if the maps ds and e are minimal. The word " minimal " ex- 
presses the intuitive notion that in constructing such a resolution by the 
usual inductive process, we introduce (at each stage) as few A-free gene- 
rators as possible. 

It is easy to show that each (locally finitely-generated) A-module M 
has a minimal resolution. Any two minimal resolutions of M are isomor- 
phic. 

We note that if C is a minimal resolution of M, then 

Tor," (K, M) (K09AC)St 

Exts (M, K) Hom' (Cs, K). 

This is immediate, since the boundary a in K0AC is zero, and so is the 
coboundary 8 in HomA(C, K). 

This concludes our survey of the elementary notions which are needed 
in Chapter 3. 

2.2. General notions. In this section we continue to survey the gener- 
al notions of homological algebra that we shall have occasion to use later. 

We begin by setting up a lemma which forms a sort of converse to the 
last remarks of ? 2.1. It arises in the following context. Let 

M c- CO C1 < Csl 

be a partial resolution of M; and set Z(s) = Ker(ds) n J(Cs). Then there 
is a homomorphism 

0: Z(s) - Tor'+1 (K, M) 

defined as follows. Extend the partial resolution by adjoining some C, 11, 
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d,+1. Given z e Z(s), take w e Cs+1 such that d,+1w = z, and define 

0(Z) = {10AW} - 

We easily verify that 0 is well-defined, epimorphic, and natural for maps 
of M. 

Next, let {goj be a K-base for Tor A+1(K, M); choose z, e Z(s) so that 
0(zi) = gi. Let Cs+, be an A-free module on generators ci in (1-1) corre- 
spondence with the zi, and of the same t-degrees; and define 

ds+1 : Cs+1- Cs 
by 

dS+l(c%) = Zi 

LEMMA 2.2.1. The map ds+1 is minimal, and if ds is also minimal, 
then 

CS_1 <d Cs < d+-' CS+1 

is exact. In this case {1 0AcJ = Go. 

We shall use this lemma to construct minimal resolutions in a conveni- 
ent fashion. In this application, since ds will be minimal, 0 will be defined 
on Ker(ds). 

PROOF. By the construction, we have dsds+l = 0. Moreover, if 
CS1 < Cs + - Cs+ is not exact, we may add further generators to 
Cs+, (obtaining C'+1, df+1, say) so that the sequence becomes exact. By 
using the definition of 0, the condition 0(zi) = gi now yields 

{1 OAcj} = gi . 
We will now prove that d,+1 is minimal. In fact, take an element 

z = L(Xi + ai)ct 

of Ker(d,+1), with Xi e K, a, e I(A). Then, on extending our resolution to 
s+1 ~~~s+2 Cs < C so 

- 
< S+2 9 

we can find w such that d's+2w = z. Hence 

8(1 0AW) = Et(l 0A XEci) 

That is, E Bags = 0. Thus Xi = 0 for each i, and z lies in J(Cs+1). We 
have shown that ds+l is minimal. 

We now suppose that ds is minimal, so that Z(s) = Ker(ds). We wish 
to prove the exactness. Suppose, as an inductive hypothesis, that 

dS d~~s+1, dSlt ' Cs, t <d Cs + 1,t 
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is exact for t < n; this hypothesis is vacuous for sufficiently small n. One 
may verify that the kernel of 

0: Z(s) kTor'+1 (K, M) 

is J(ker(ds)). Hence any x in Z(s) n Cs, can be written in the form 

X = ,,Xz6 + E1(-1)8'f'afx, 

with X, e K, a, e I(A), x, e Ker(ds), s(j)=deg(a,). By the inductive hy- 
pothesis, xl = dcl+1w,, say; hence 

x = ds+1(EX~c + E~afw). 

This completes the induction, and the proof of Lemma 2.2.1. 
We next introduce products into the cohomology groups Ext. One 

method of doing this is due to Yoneda [37]. Let M, M', M" be three 
A-modules, with resolutions C, C', C". Let 

f:Cs Mf, g:C's, yM 

be A-maps of total degrees - (s + t), - (s' + t'), such that fds+, = 0 and 
similarly for g, so that f, g represent elements of 

Exts, (M, M ), Exts' (MI, Ml'). 

Then we may form an anticommutative diagram, as follows. 

M e CO < - . . .< 
Cs (ds+ C + '- < C 

+SI 
. 

yr+?-c0 ..f .S 
d'lf jfi jfs/ 

M" ON C1 < - ...< C',s . 

19 
Ml? 

The composite map (-1)(s+t)(s +t 'gfS, represents an element of 

Exts~s' t+t'(M Ml?) 

(The sign is introduced for convenience later.) By performing the ob- 
vious verifications, we see that this "composition" product gives us an 
invariantly-defined pairing from Exts' t' (M', M") and ExtS,1(M, M') to 
Exts~s' t+t (M, M"). This product is bilinear and associative. 

Our next lemma states an elementary relation between this product 
and the homomorphism 
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0: Z(s) TorA+1(K, M) 

introduced above. We first set up some data. 
Suppose given a K-linear function a : A - K, of degree -t'(t' > 0), and 

such that a(ab) =0 if a e I(A), b e I(A). That is, a is a primitive element 
of A*. It follows that a I I(A) is A-linear. Let us take a resolution C' of 
K, such that C' = A and e': C- K is the projection of A on A.. Then 
the composite 

di a 
C1 A -*K 

is A-linear, and defines an element 

hook e Extlit(K, K) 

depending only on a. 
Suppose given an element h of Exts1t (M, K); let C be a partial resolu- 

tion of M over A, and define Z(s) = Ker(ds) n J(Cs), as above. Let x be 
an element of Z(s) n C.,, and suppose that x can be written in the 
form x = 1ac,, where a, e I(A) and dscc e J(C,-8). For example, if ds, 
is minimal, then we can always write x in this form, by taking the ele- 
ments cf from an A-base of C,. In any case, we have 

{1 (0ACI} e Tor, (K, M) . 
LEMMA 2.2.2. 

(huh) (Ox) = ,(cxa,) (h {1 0ACi}) 

Here, of course, the product (hh) (Ox) can be formed because 
Exts+lt+t'(M, K) and Tor A+1,t+t, (K, M) are dual vector spaces; similarly for 
the product h {1 OAC} . 

PROOF. In order to obtain the product huh, it is proper to extend the 
partial resolution C and set up the following diagram, in which f is a 
representative cocycle for h. 

M y CO < .. . Cs 4ds+i S+ < ...... 

>/Ifa d~ jfi 

K< A < C1 - * 

K 
We see that 
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(-1) (S+1) (1+t') (huh) (Ox) 

= acIdf1(d41jx) = (-l)s+t afox = ()s+'afoEac = aEj-1)8")a(f~cj 

= (- 1Y) '(aaj(fce) where s(i) = (s + t)(1 + deg(aj)) 
But h{1( ACi} - (fcj), and the only terms which contribute to the sum 
have deg(as) - t'. This proves the lemma. 

We next introduce the bar construction, which gives us a standard 
resolution of K over A. Let us write MOD M' for M(&KM'. Then we set 

A = A/AO, (A)0 = K, (A)s = A(D(A)S-l (s > 0), 
B(A) = EJ0(A) , B(A) = A(B(A). 

Thus, B(A) is a free A-module, and B(A) - KOAB(A). We write the 
elements of (A)s and A? (A)S in the forms 

[a, I a2 1** I a.], a[al I a2 I 
... I a.] 

We also write a for a[ ]. We define an augmentation s: B(A) K by 
s(1) = 1, s(I(A)) = 0, s(AO(A)s) = 0 if s > 0. We define a contracting 
homotopy S in B(A) by Sao[al I a2, .. I a.] = 1 [ao I a, I a2 I... Ia.]. We de- 
fine a boundary d in B(A) by the inductive formulae d(l) = 0, dS+Sd = 
1 - e, d(am) = (- 1)"a(dm) (a e Aq). B(A) thus becomes a free, acyclic 
resolution of K over A. We take the induced boundary d in B(A); its 
homology is therefore TorA (K, K). 

Explicit forms for these boundaries are as follows (where a, e I(A) for 
i > 1.) 

dao [a, I a2 a... Ia.] = (- 1)E()aoal [a2 a.] 

+ E1<<s (-l)E(r)ao[alaI* I arar+i I1 as] 

d [a, I a2 la.] = rs (1) r) [aI I arar+ I ... I aj] 

where 
s(r) = r + Eo,,,deg(a) , C(r) = r+?,1<s deg(a,) 

It would therefore be equivalent to set 

I(A) = 1q>0Aq, I(A)0 = K, I(A)S = I(A)0DI(A)s-, B(A) = EJ(A)s 

anddefinetheboundary d: I(A)S I(A)s- in B(A) by the formula given 
above for d. 

It is now easy to obtain the vector-space dual (B(A))* of B(A). Let 
A* be the dual of A. We define A* = A*IA*; A* is dual to I(A); (A*)S is 
dual to (I(A))s. We may define 

F(A*) = Eso(A*)s; 
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F(A*) is dual to B(A). We write elements of F(A*) in the form 

[a, Ia. 2IH.. Ia 
where a, e A*. 

From the product map cp : A?( A A we obtain a diagonal map p=9*: 
A* )A* (A A*. (Here we define the pairing of A* 0 A* and A? A by 
(a? i,) (a ? b) = (aa) (,fb); we thus omit the sign introduced by Milnor 
[25]. Since the applications are in characteristic 2, this is immaterial). 
Let us write #(a) = Eual 0gall; we may now define the coboundary 

ds: (A*)s-1 ,(A*)s 
by 

ds [a, |2 a a-] = Ejrs;u(_1)8(ru) [a, a| * I a** a,-,1] 

where 
s(r, u) = r + deg(a',u) + 71<1<rdeg(ai). 

The coboundary ds is dual to dc; the cohomology of F(A*) is therefore 
ExtA(K, K). Of course, F(A*) is nothing but the cobar construction [1] 
on the coalgebra A*. 

There is a second method of introducing products, which uses the 
bar construction. In fact, we may define a cup-product of cochains 
in F(A*) by 

[a,1 I aV2 I 
... I ajS [a,,,l I as+2 a,** +,Its ] = [al I a2 a. **I G I aS+, a, **It+,,]. 

It is clear that it is associative, bilinear and satisfies 

8(xY)=(8x)Y + (-1)s+tx(8y) 

(where x = [a, I a2 I as], t =E<ffs deg(aj).) Therefore it induces an 
associative, bilinear product in the cohomology of F(A*), that is, in 
Ext A(K, K). Indeed, this cup-product of cochains even allows us to define 
Massey products [23] [24] [35], etc. 

We should show that this product coincides with the previous one (in 
case M = M' = M" = K.) Let 

f:AO(A)s)K 
be an A-linear map of degree -(s+t) such that fd,+, = 0. The previous 
method requires us to construct certain functions 

fs: A0(A)s+s' - AQ(A)s'. 
We may do this by setting 

fs,(ao[al I a2 ' * * * as+s,]) = (- 1)a[a a2 as81f [as,+ * as+sI] 
where e = (s + t)(s' + t') and t' = 5705s, deg(ai). From this it is im- 
mediate that the two products coincide. 
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A third method of defining products is useful under a different set of 
conditions. Before proceeding to state them, we give A? A the struc- 
ture of a graded algebra by setting 

deg (al? a2) = deg (al) + deg (a2) 

and 

(al1a2)(a3Oa4) = (-1)8(ala3Oga2a4) 
where 

e = deg (a2) deg (a3) 

Similarly, if M1, M2 are (graded) A-modules, we give M1 0 M2 the struc- 
ture of a graded A? A-module by setting 

deg (mln iM2) = deg (ml) + deg (M2) 

and 

(al1 a2) (ml 0 M2) = (- 1)8(alm,1 0 a2m2) 

where 
e = deg(a2) deg(ml) . 

We now suppose that A is a Hopf algebra [25] [26]. That is, there is 
given a "diagonal" or "co-product" map 

A: A-+AOA 

which is a homomorphism of algebras. It is required that * should be 
"co-associative", in the sense that the following diagram is commutative. 

A A (D AA 

AOA -*AOAOA 

(This diagram is obtained from that which expresses the associativity of 
a product map, by reversing the arrows.) Lastly, it is required that + 
should have a " co-unit", in a similar sense. 

Let C be a resolution of K over A. We may form COC, and give it a 
first grading by setting 

(CO C)Sf= ES+S1-S11CS Cs, 

Here, each summand is a (graded) module over A? A. We give CO C a 
boundary by the rule 

d(xoy) = dxoy + (-1)S+tx~dy (x e Cs,); 
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the complex C? C is acyclic. We may thus construct a map 

A :CCgC 
compatible with the map J of operations, and with the canonical isomor- 
phism K K? K. The map A induces a product 

p : HomA(C, K)O3HomA(C, K) - HomA(C, K). 
By performing the obvious verifications, one sees that this product 

yields an invariantly-defined pairing from Extst (K, K) and Exts'f"(K, K) 
to Exts+s' t+t'(K, K). This product is bilinear and associative. Moreover, 
if the diagonal map * of A is anticommutative, then one easily sees (as in 
[13, Chapter XI]) that this product is anticommutative, the sign being 

We should next show that this product coincides with the previous one, 
defined using the bar construction. In fact, if we take C ==B(A), we may 
construct a map A by using the contracting homotopy 

T = SQ1 + CQS 
in B(A) 0B(A); we use the inductive formulae 

A() 1 (g) 1, /AS = TA, 
A(am) = (*a) (Am) - 

Let us write #(a,) =-Ea'D 0a", leaving the parameter in this summation 
to be understood; and suppose deg (ar) >0 for 1? r < q. Then we find 

A[al I a2 1* aq]. = OEr:5q (-1)E[aI a21 a'] ( a'a' * *ajr+1 I * laj 
where e- = deg(a"')(1 + deg(a')). The resulting product p in 
HomA(B(A), K) coincides with the cup-product in F(A*) given by 

[a,1 I a:2 I.. I * a,|Q] [afr+1 I a~r+2 | * * |a,] = [al1 a2 I .. ja |Qr I ar+ I .. I aj ~q 

These two products in ExtA(K, K) thus coincide. From this we can 
make two deductions. First, the product defined using the diagonal map 
J in A is independent of *. Secondly, if the algebra A should happen to 
admit an anticommutative diagonal *, then the cup-products defined us- 
ing the bar construction are anticommutative. This would not be true 
for a general algebra A. 

Let us now assume that the diagonal * in A is anticommutative; let 
us set C = B(A), and let p: C?C - COC be the map which permutes 
the two factors and introduces the appropriate sign. We will define an 
explicit chain homotopy X between the maps 

A, pA : C *CC. 
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We do this by the following inductive formulae: 

X(1) 0 

XS= T(pA - A)S- TX 
X(am) = (-1) deg a#(a)X(m) . 

We will now assume K = Z2, since this is satisfied in the applications; 
we may thus omit the signs. We have the following explicit formula for 

X[a, Ia2lea,,]=: -tr~[a' a aIa',,~ta',,. -a'Ialala+lla] 
EO-<t~~~~~Xa'a' < r*a!' q12 t -r+l I ar'+2 I I a.] 

~~ a~~~~ 
a~~~~(a +a +***a"[arlIa ar2 . a"] 

(Here, of course, we have again used the convention that #(ar) = r r 

Passing to the complex B(A), and then to its dual F(A*), we obtain a 
product - in F(A*), satisfying the usual formula 

8(x -1y) = Sx -1y + X 18-18y + X - y + y - X. 

To give an explicit form for this product, we recall that if A is a Hopf 
algebra, then its dual A* is also a Hopf algebra, with q* for product and 
9* for diagonal. This gives sense to the following explicit formula. 

[a, a2 ... aP]l[1 132 ..q] 

1i7rsp[al a a2 I... I a 1 a(r 1 a| 2 fl2 I| a*| q)l3q ar+l I a*p] 
Here we have written the iterated diagonal P: A* > (A*)q in the form 

T(afr) = E a"r) O a( Q2) 8 ***(23a(q) 
the parameter in the summation being left to be understood. 

In particular, we have 

[a,1] - [a2] = [a1a2] 
[a,1 a a 2] - [a3] = [a1a3 I a2] + [a1 2a3] 

[a1 a 2] -1 [a3 a a4] = E [a'a3 I a('a4 a2] + E [a,1 I aa3 I 'aj. 

This concludes the present survey of general notions. 

2.3. A spectral sequence. In this section we establish a spectral se- 
quence which is needed in our calculations. It arises in the following 
situation. 

Let P be a (connected) Hopf algebra [26] over a field K, and let A be a 
Hopf subalgebra of F. We will suppose that A is central in F, in the 
sense that 

ab = (-1)tuba if a e At, b e P 
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This already implies that A is normal in F, in the sense that 
I(A) .F = FP I(A), 

where I(A) = E,,0A, (cf. [13, Chapter XVI, ?6]). We define the quotient 
i2 F P//A by 

F//A = F/(I(A).F) (cf. [13], loc. cit.) 
To simplify the notation, we define HS t(A) = Exts,'(K, K), HS(A) = 

Exts(K, K), where A is a connected, graded algebra over K. 
We now take the (bigraded) cochain complex F(F*), with the cup-pro- 

duct defined above. We filter it by setting 
[a, I a2 I .. I aS] e F(F*)(P) 

if ai annihilates I(A) for p values of i. 
THEOREM 2.3.1. This filtration of F(F*) defines a spectral sequence 

with cup-products, such that: 
( i ) E,. gives a composition-series for H*(F). 
(ii) E2 = H*(A)(8H*(f2). 

Here the ring-structure of the right-hand side is defined by 

(X0y)(ZOW) = (_1)(P+t)(q+u)(xz~yw) 

where y e HP't(f2), z e Hq u(A). 
(iii) The isomorphism 

-2 q _ Hq(A) ? K Hq(A) 

is induced by the natural map F(F*) F(A*). The isomorphism 

E2P" =- K ? HP(Q2) HP(Q2) 

is induced by the natural map F(f2*) , F(*). 
This spectral sequence was used in [2]; the author supposes that it 

coincides with that given in [13, Chapter XVI], but this is not relevant to 
the applications. 

In [13] it is assumed that F is free (or at least projective) as a (left or 
right) module over A. In our case, this follows from the assumption that 
r is a Hopf algebra and A a Hopf subalgebra. Thus, if {oJ} is a K-base 
for 2, with (o = 1, and if Tf is a representative for Ad in r, with y1 = 1, 
then {-i} is a (left or right) A-base for r (see [26]). This is the only 
use we make of the diagonal structure of F and A. 

We begin the proof of the theorem in homology, by considering the 
(bigraded) chain complex B(F). We filter it by setting 

[a, I a2 I 
... la] e B(F)( p 

if ai e I(A) for (s - p) values of i. Each B(F)(P) is closed for d; we thus 
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obtain a spectral sequence, whose term Ed gives a composition series for 
H(F) - Torl(K, K). We have to calculate E2. To this end, we begin 
by calculating the homology of certain subcomplexes of B(r). 

Let us consider 

A0(B)(P) + rPB(r0(P-) ) r -B(,0 )(P-1). 

Both are closed for d, and the first is also closed for S, hence acyclic. 
Consider 

C(P) = A0B(F)(P) + r1s(r)(P-lv1rPs(r)(P-1). 

LEMMA 2.3.2. 

Hs(C(P))!!: {( )p (s = ) 

0 (s = p) 

The isomorphism for s = p is obtained by projecting A to K and (F)P to 
(W)P. 

(Here, of course, the suffix s refers to the first grading.) 
PROOF. This is certainly true for p = 0, since A0 B(F)('0 = B(A). As 

an inductive hypothesis, suppose it true for p. Consider the following 
chain complexes. 

C' = 0rOB(r)(P)/(AOB(r)(P) + rP0B(P)(P-1)) 

C"l = (A0B(F)(P+l) + r?B(r)(P))/(A?B(r)(P) + rB(r)(P-1)) 
C(P+l) = (A?B(P)(P+1) + F?B(L)(P))/(r 0 B(L)(P)) 

We have an exact sequence 
0 ) C' 'c C" C(P+) 0 

and hence an exact homology sequence. We know that H*(C") = 0; we 
may find H*(C') by expressing C' as a direct sum. Let Qyi} be a right 
A-base for r, with y/1 = 1, as above; we may define an antichain map 
fAb: C(P) C' by 

f(x) = 7iX; 

fi is monomorphic (if i > 1) and 

C' = EiJAC'p) 
We deduce that 

H8(C') {(f)P+1 (s p) 
0 (s = p). 
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The isomorphism for s = p is obtained by projecting r to &2 and (r)P to 
(f2)P. Now, in the exact homology sequence, we have 

d: Hs+l(C(P+l)) HS(CI) 

from this we see that the lemma is true for (p+ 1). This proves the lem- 
ma, by induction over p. 

We now note that C(P) is a free (left) A-module, and 

B(r)(P)B(r)(P-l) =- K?AC(P); 

this isomorphism is a chain map. Therefore the term E1 of the spectral 
sequence is given by 

El q Hp+J(B(1P)(/B(r)P1) 
Hp+q(K(AC(P)) 

Torq (K, (K()p) 
Tor A(Kg K) (g)QP. 

The last step uses the fact that (2)p, qua H(C (P)), has trivial operations 
from A (see Lemma 2.3.2.) 

In order to calculate E2,q, we need explicit chain equivalences between 

B(A)?gr and B(r)(P)/B(r)(P-l) 

In one direction the map is easy. Let r : r &i2 be the projection. De- 
fine a map 

v: C 'P) B(A) (& (f)y 
by 

vabal I a2 ap+q] = a [a, aq] ? [raq+l 7*ap+q] 
Then v is a A-map, a chain map (if the boundary in B(A) 0 (&2)P is d 0& 1) 
and induces the isomorphism of homology established above. By the 
uniqueness theorem in homological algebra, the induced map 

V*: B(r)(P)IB(F)(P-1) B(A) (D (f)y 
is a chain equivalence. 

We have not yet made any essential use of the fact that A is central 
in 17. However, this fact is required; it ensures that H*(A) (which is anal- 
ogous to the homology of the fibre) has simple operations from Q2. We 
use it in constructing the equivalence in the other direction. 

We define a product 

M: B(A)0(P) B B(r) 
as follows, using shuffles [14]. Take elements 
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a [a, I a2 *.. I aq] e B(A) 
b [ bi I b2 I... I bp,] e B(r) 

Let C1, C2, ,..' cp+q consist of the ai and b, in some order; we require that 
the at occur in their correct relative order and that the b, occur in their 
correct relative order. We call such a set c = {Ck} a shuffle. Let us 
write E n I P instead of En if the proposition P has a complicated form. 
Then we define the signature (- 1)8'c) of a shuffle by 

;(c) = E(1 + deg(ai))(1 + deg(b)) I a, = ce, b, = cl, k > . 
We also set 

= X(1 + deg(ai))(deg(b)) 
We now define 

p(a[al I a2 I .. *aq] 0 b[b, I b2 I * I bp]) = ci-(1)8i(c)+ab [cl I C21 . . . ICp+q], 

LEMMA 2.3.3. dpi(x 0 y) = pi(dx 0 y) + (- 1)9+t a(x 0 dy) (where 
x e B(A)q, t) 

This lemma, of course, is the usual one for shuffle-products (see [14]); 
it depends on the fact that A is central in r. 

If we restrict y to lie in (L)P, and pass to the tensor-product with K, 
we obtain an induced map 

*:B(A) (&3(F)-"> B(F)'' 

Its explicit form is 

p*([al I a2 I * *aq]j [b, I b2 I * I bp]) = j(1Y (C)[Cl 0 C2 I 
. . Cp+q]. 

It satisfies 

dp*(xXy) = [t*(dxXy) + (-1)q+tla*(X dy) 

We define a K-map 1: ?2 F f by l(w%) = e/, where {Mw}, {yJi are bases 
for Q2, F over K, A, as above. We may now define 

A:B(A) X& (Q)p > C(P) 

by 

a'(XW y) = {a(AXXPY)} 

Then A' is a A-map, a chain map, and induces the correct isomorphism of 
homology, On passing to tensor products with K, we obtain an induced 
map 
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A':B(A)O(f2()- , B(F)'P)IB(F)(P-1) 

which, as before, is a chain equivalence. We even have * = 1. 
The equivalence ,4, then, is just the composite 

B(A) (g (f2)P X B(A) 0(IF)P B*, B(P)(p B(1r)(P)1B(r)(P-l) 

LEMMA 2.3.4. The following diagram is commutative. 

Eplq d> p lxq 
Ij*T {v** 

_ B(A) 0 (f2Y) o1qt1d Hq(B(A) 0 (2)P-1) 

(It is, of course, implied that this v** is the one defined for dimension 
(p-1).) 

PROOF. Take x e B(A)qt such that dx = 0, and y e (f2)P, so that xgy 
is a representative for an element of Hq(B(A) 0 (&2)P). Then the follow- 
ing elements represent v du' * {x D y}: 

>*dy* (10 (P) (x 0() V= >*p*((_l)q+tx 0 dlay) 
= (_ )q+t(Jerp-l)(Xe dly) 

= (-l)q+t(x ( drwly) 

= (-l)q+t(xody) 

This proves the lemma. 
We conclude that 

Epq Hq(B(A)) 03Hp,(B(f2))@ 

Inverse isomorphisms are induced by p ** and i**. We note that the iso- 
morphisms 

Hq(B(A)) Hq(B(A) (? K) Eoq 
Ep20 KO(3H,. (B(f2) )Hlp (B(M)) 

are induced by the natural maps B(A) B(F), B(r) B(&2). 
Let us now pass to the vector-space dual of this spectral sequence. It 

is obtained by giving F(F*) a filtration in which F(r*) 'P' is the annihilator 
of B(J)(P-1). This is the filtration originally described. The cup-products 
satisfy 

F(r*)(P' F(r*)(Pt) C F(r*)(P+P') . 

We thus have a spectral sequence with products. We have obtained 
the whole of Theorem 2.3.1, except that part which relates to the ring- 
structure of E2. 
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To obtain this ring-structure, we consider the isomorphism 

El =- HQ(F(A*)) 0 (*)P 

dual to * and v**. It may be described as follows. Let x be a cocycle 
of dimension q in F(A*), and let y be a cochain in (f2*)P. Let x' be a co- 
chain in F(F*) such that idx' = x, where i: A r is the inclusion. Then 
{x'-ry} is an element of El, independent of the choice of x'; and V**, 
the dual of v**, maps {x} 0y to {x'-.*y}. 

Next, let x, z be cocycles in F(A*), representing elements of HQ' u'(A), 
Hqu(A). Let y, w be cochains in F(f2*), of bidegrees (p, t), (p', t'). Let 
x', z' be cochains in F(F*) such that i*x' = x, i*z' = z. Then 

**({x} 0 y) - **({z} X w) = {x'- * *y - z'. 7* w} 

Now let X be a cycle in B(A), of dimension q + q', and let Y be a chain 
in B(f2), of dimension p + p'. Inspecting the definition of the shuffle- 
product, we see 

{ XfC*Y *Z'e*MW -P ?*( {X} 0 Y) = (_l)(P+t) (q+u) ({Xz} {X})((yw)Y) 

That is, 

4*(@**({X} 0y)_ **({z} Ow)) = (- )(P+t)(q +u) {xz} ?yw 

We have shown that the isomorphism 

E l -= H (F(A*)) O (*)P 
preserves the ring-structure. Therefore the induced isomorphism of El 
does so. This completes the proof of Theorem 2.3.1. 

2.4. Milnor's description of A. In this section we recall J. Milnor's 
elegant description of the Steenrod algebra A [25], and begin to deduce 
from it the results we shall need later. 

We recall that the mod p Steenrod algebra A is a Hopf algebra; that 
is, besides having a product map q- A? A - A, it has a diagonal map 
*: A - A? A, and these satisfy certain axioms. The diagonal f may 
be described as follows. We have an isomorphism 

v: H*(X x Y; Z.) - H*(X; Zp)0OH*(Y; Z.) 

given by the external cup-product. The left-hand side admits opera- 
tions from A; the right-hand side admits operations from A? A, defined 
as in ? 2.3. There is one and only one function 

A : A O-A0A 
such that 
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>(ah) = A(a)>(h) 
for all X, Y, a and h. (This may be shown, for example, by the method 
of ? 3.9.) 

We make the identification (A? A)* = A* A*; A* thus becomes a 
Hopf algebra, whose product and diagonal maps are the duals of f and 
qp. We now quote Milnor's theorem [25] on the structure of A*, in the 
case p = 2. 

THEOREM 2.4.1. 
( i ) A* is a polynomial algebra on generators a,, i = 1, 2,..., of grad- 

ing 21 - 1. 

( ii ) qP*ek = l+ j=ktj%21 (where O = 1). 
(iii) e4(Sqk) = 1 and m(Sqk) = 0 for any other monomial m in the h. 
It is possible to describe the elements at very simply. In fact, consid- 

er H*(r, 1; Z2) for 7 = Z2; this is a polynomial algebra on one generator 
x of dimension 1. If a e A, then ax is primitive, so that 

ax = EC>oXiX2 with Xi e Z2 . 

We define of by t(a) = Xi. The elements of are thus closely connected 
with the Thom-Serre-Cartan representation [30], [12] of A. In fact, con- 
sider H*(r, 1; Z2), where w is a finite vector space over Z2; this is a poly- 
nomial algebra on generators x1, x2, ... I, xa of dimension 1. If a e A, we 
have 

a(XlX2... **x) = .((4.J **%)a)Xix2 X2.. *X21 

We now pass on to the study of certain quotient algebras of A. It 
is immediate that the generators hi of A* which satisfy 1 ? i ? n gen- 
erate a Hopf subalgebra of A*; call it A*. The dual of An* is a Hopf al- 
gebra Qn, which is a quotient of A. We have 

HSt(Qn) H (A) if t < 2n - 2 
For each n, Qn is a quotient of Qn+1. 

Now, suppose we are given an epimorphism 7r : r Q of connected 
Hopf algebras, and suppose that the dual monomorphism r*: Q* 0 r* 
embeds Q* as a normal subalgebra of r* (see ? 2.3). Then we may form 
the quotient r*P Q*, which is again a Hopf algebra; let us call its dual 
A, so that A* = p*//f*; then A is embedded monomorphically in F. 

LEMMA 2.4.2. If A, r, f2 are as above, then A is normal in r, and 
F//A f2. 

This lemma is an exercise in handling Hopf algebras [26]; we only sketch 
the proof. It is trivial that 
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I(A) - . c Kerr , rPI(A) c Kerr; 
we have to prove the opposite inclusions. We see that A is the kernel of 
the composite map 

r -,r~gr- regf; 
call this composite X. We see that if 

X(x) e Jr>mMr, f2 

then 

X(x) e AmO(&2 + Er>m r0 f2 

Now suppose wx = 0. By an inductive process, using x(x), we may sub- 
tract from x products yz with y e Am, m>0; we finally obtain a new x' 
with x(x') = 0. This shows that Ker 7 c I(A) -P; similarly for P-I(A). 

We may apply this lemma to the epimorphism Qn, - Q,1 introduced 
above. We see that in this application, r* and f* become A* and An*. 
Thus A* = r*//&2* becomes A*//An*-, that is, a polynomial algebra on one 
generator tn whose diagonal is given by 

tn = On ($1 + 1X n4 
We write Kn for the corresponding algebra A; it is a divided polynomial 
algebra. 

Since we propose to apply the spectral sequence of ? 2.3 to the case 
A = Kn, r= Qn, we should show that Kn is central in Qn. We may pro- 
ceed in the duals, by showing that the following diagram is commutative. 

An* )An* $2) An*IIAn*- 

A*//A* 0( A* 
(Here, of course, p is the map which permutes the two factors.) Since 
each map is multiplicative, we need only check the commutativity on the 
generators, for which it is immediate. 

The reader may care to compare the work of this section with that of 
[2, ? 5]. 

2.5. Calculations. In this section we prove what we need about the 
cohomology of the (mod 2) Steenrod algebra A. The result is:- 

THEOREM 2.5.1. 
( 0) H0(A) has as a base the unit element 1. 
( 1 ) HI(A) has as a base the elements hi = {[ ]} for i = O, 1, 2,.... 
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(2) In H2(A) we have hi+1h= 0. H2(A) admits as a base the products 
hjhi for which j ? i > 0 and j # i + 1. 

(3 ) In H3(A) we have the relations 

h+ 2h2= 
h 3 hz+2hA = 0 

If we take the products hkhjhi for which k > j > i > 0 and remove the 
products 

hj+lhjhi y hkhi+lhi, ht hi+2, hi+2hs, 

then the remaining products are linearly independent in H3(A). 
We propose to prove this theorem by considering a family of spectral 

sequences. The nth spectral sequence, say ,Er " will be obtained by ap- 
plying ? 2.3 to the algebras 

A = Kn, r = Qn t f2 = Qn-1 
In these spectral sequences, we know H*(Kn); we have Q1 - K1, so that 
H*(Q1) is known; we propose to obtain information about H*(Qn) by in- 
duction over n. 

We will now give names to the cohomology classes which will appear 
in our calculations. Let hn X be the generator {[f2i]} in H1(Kn); H*(Kn) is 
thus a polynomial algebra on the generators hni, where i = 0, 1, 2, 
We shall write h, (instead of hli) for the generator {[2]} in H1(Q1), or for 
its image in H'(Qn). 

We define the class gn-li in H2(Qn-1) by 
gn-li= n-hn= i 9 

where J: H1(Kn) H2(Qn-1) is the transgression. The class gn l, can be 
represented by the explicit cocycle 

8[n ] [ j | k] 

where the sum extends over j + k = n, j > 0, k > 0. 
Similarly, we can define a class fn-,,i in H3(Qn-1) by 

= z fn-i,i n njhn 9 

since h'n, is clearly transgressive. The class fn-l, can be represented by 
the explicit cocycle 

8(X - X + 8X -1X) = 3X -18X, 

where x = [s], so that 3x is the cocycle obtained above. The -1 product 
3x-1 3x can be expanded by the formula given at the end of ? 2.2. 

LEMMA 2.5.2. 
(i) We have gji = hi +hi, fA1 = hi+2hf + h 3. 
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(ii) If n > 1, then gnu is of filtration 1 in H*(Qn), hn i+1h + hnfihn+i 
is a cycle in nE'l1, and in nE'oo we have 

{gn i} = {hn i+lhi + hn~ ?n+il 
(iii) If n>1, then fnin is of filtration 1 in H*(Qn), h2 i+1h+?+h2 hn+i+ 

is a cycle in nEl'2 and in nE3 '2 and in nEo2 we have 
{fnu} = {h2 "+lhi+l + hnihn++ll} 

These conclusions follow from the explicit cocycles given above. For 
example, the explicit cocycle for gl, is 

[2i +1 2 t!{ 

the explicit cocycle for f1,i is 
[02 j 2 2 ] + [02i+ 1 + 1 +1 

the explicit cocycle for g9n differs from 

[ +n I 2 t ] + [1 1 en 

by a cochain of filtration 2; and so on. 
We will now begin the calculations. 
LEMMA 2.5.3. 

(i) The elements hi in Hl(Qn) are linearly independent. 
(ii) If n > 1, the elements {g4 in El,' are linearly independent. 
(iii) In H2(Qn), the elements gn,, and hjhi (where j > i > 0, j + i + 1) 

are linearly independent. 
(iv) H1(Qn) is spanned by the elements hi. 
PROOF. Part (i) is immediate, since no differential maps into nEl?. 
Part (ii) follows from Lemma 2.5.2 (ii), since no differential maps into 

nEl,1. 
Part (iii) is true for n = 1, since gl, k= hk+lhk. We proceed by induc- 

tion over n; let us assume that part (iii) holds for Qn-l. We must examine 
the differential 

Ed1: E E , 20 

It is described by 

nd2(hn ~ l) = gn-l, 

We conclude that:- 

(a) nE0l = O. 
(b) The classes {hjhi (for j ? i > 0, j + i ? 1) are linearly indepen- 

dent in nE <9O 
Using part (ii), we see that part (iii) holds for Qn. 
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Part (iv) follows immediately from the fact that ,El.., = 0. This com- 
pletes the proof. 

LEMMA 2.5.4. In H2(Qn) for n > 2 we have 

(i) hi+lhi= 0 
(ii) <hi,hi+1,hi> = hi+ 
(iii) <hi+1, hi, hi+1> = hi+2h. 
In H2(Q2) we have 
(iv) <hi+2, hi+1, hi> =g2, 

(v) hi+2hi =2,ihi+. 
PROOF. The following formulae show that h+lhi = 0, hih+l = 0 in 

H2(Qn) for n ? 2: 

3[e2 ] = [ +1 1 
t2 ] 

8[022 + 03.2'] = [ j2 2i+ . 

These formulae will also help us to write down explicit cocycles repre- 
senting the Massey products mentioned in the lemma. For example, 
<hi+2, hi+1, hi> is represented by the explicit cocycle 

[02 1 01 ]+ [ 1 2n , 

which coincides with that given above for g2,{. This proves (iv). 
To prove (ii) and (iii), we may quote the formula 

<x, Y, x> = (x -1 x)y ; 

or by substituting appropriate values in the proof of this formula, we 
obtain the following:- 

8[021 2'] - [022 + t3-2 2 + [J 1 2] + [2'+1 J 

1 2]= [ 1 t J + 4 43.2i] + [2 2+2 

These formulae prove (ii) and (iii). 
Since we now know H1(Qn), it it easy to check that the Massey products 

considered above are defined modulo zero. 
To prove (v), it is sufficient to make the following manipulation: 

hi+2hi = hi+2<hi+l, hit hi+,> 
= <hi+2, hi+l, hl>hi+l = g2,3h+1 

Alternatively, by substituting appropriate values in the proof of the re- 
lation 

a<b, c, d> = <a, b, c>d, 

we obtain the following:- 
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4[02 1 2 + 01 ] + [t a 22 

= i [ +2I 1%2i ] + 22 2i + 1 2t2% +1] + [t2 +2 2i +1] 

This formula proves (v). This completes the proof. 

LEMMA 2.5.5. 
(i) If n > 1, the elements h 2form a base for nE '2. 
(ii) If n > 1, the elements fin} in 1E,2 are linearly independent. 
(iii) If n > 2, the elements {gflJhi} for which j # i + 1 are linearly 

independent in E2,1 The same is true for n = 2, provided we exclude 
also the elements {g2,ihi+1}. 

PROOF. To prove part (i), it is sufficient to note that the differential 

n 2 : nE? 2 n 2 

is described by 

nd2(hn~hn.) = hnJgn-1J + hn ign-1, I 

Part (ii) follows from Lemma 2.5.2 (iii), since no differential maps into 
nEn . 

To prove part (iii), we note that the following formula holds in nE.2: 

{gn,} A {h=,n+lhihi + hn, jhn+,jhj 

Moreover, the only differential mapping into nEr' is 

d: E 0,2 E2,1 

which has just been described. It is now easy to obtain part (iii). This 
completes the proof. 

LEMMA 2.5.1. 
(i) If n > 1, the following elements are linearly independent in 

H3(Qn): the elements fni; the elements gnjhi for which j i + 1 ; the prod- 
ucts hkhJh, for which k > j > i > 0, with the following exceptions: 

hj+lhjhi y hkhi+lhi y hi+ 2h 
2 h422hi 

The same conclusion remains true for n=1 if we include the products 
hz2+2hs. 

(ii) H2(Qn) is spanned by the elements gn, kand hjh, (where j > i > 0, 
i # i + 1). 

PROOF. It is elementary to check part (i) for n = 1. We proceed by 
induction over n; let us assume that part (i) holds for Qn-1. We must 
examine the differentials 

d2 
. n1,1 0 p3,0 , 0,2 . p3,0 
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These are described by 

nd2(hnphi) = gn-l hi 9 nd3(hn i) 

We obtain the following conclusions. 
(a) nE' l has as a base the elements 

{gnu} = {hn,+jhj + hnihnf A- 

(b) nE 02 = 0. 
(c) In nE 30 the products hkhjhi named above are linearly independent. 

In the case n = 2, this conclusion remains true when we include also the 
products h+,2hz. 

Using Lemma 2.5.5 parts (ii) and (iii), we see that part (i) holds for 
Qn. (If n 2, we need to know that g2,,hi+l =h+2hi; this was proved in 
Lemma 2.5.4.) This completes the proof of part (i). 

Part (ii) follows immediately from the facts (a) and (b) established dur- 
ing the proof of part ( i ). 

Since HSt(Qn) HSt (A) as n o co (for fixed s and t), the work which 
we have done completes the proof of Theorem 2.5.1. 

2.6. More calculations. In this section we shall calculate Extst(M, Z2) 
for a certain module M which arises in the applications (and for a limited 
range of s and t). The results are stated in Theorem 2.6.2. 

We first obtain a lemma which is true for a general algebra A over Z2. 
Suppose given a primitive element a in A* (n > 0), that is, an element a 
such that 

boor == a(& + 10 ora 

According to ? 2.2, it defines an element hca in Ext"jn(Z2, Z2), which for ex- 
ample may be written {[a]}, using the cobar construction. 

In terms of a, we define a module M= M(a) as follows. Qua vector 
space over Z2, it has a base containing two elements inl, m2 of degrees 0, 
n. The operations A are defined by 

am, = (aa)m2 (a e An) . 
These operations do give M the structure of an A-module, since a anni- 
hilates all decomposable elements of A. 

The element m2 generates a submodule M2 of M isomorphic with Z2; 
we define Ml = M/M2, so that Ml Z2. We agree to write xW1' (i = 1, 2) 
for the element of Exts(M,, Z2) corresponding to the element x of 
Exts(Z2, Z2). 

From the exact sequence 
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0 - .M2 M )M l 0 
we obtain an exact sequence 

ExtA '1"(M1, Z2) < Exts4j(M2, Z2) Extst(M, Z2) * * - 

which one might use to calculate ExtsNt(M, Z2). 

LEMMA 2.6.1. The coboundary 8 is given by 

8(X(2)) - (xh )(1) 

(where x e Exts (Z2, Z2)). 

PROOF. Let us take two resolutions C, C' of Z2 over A, as follows: 

Z2 - A C( c. . ... < .(- c- 

Z2 A Cl ... ... < Cq (.. 

To calculate the cup-product with h<, we must construct a diagram, as 
considered in ? 2.2. 

e d d 
Z e A < Ci < C2 < . . C < ... 

ajJ/ jfo jfi f 
Z2 <Ae df C1 ' q<* 

Let us now define a boundary d on C + C' and an augmentation e: 
C + C' M by setting 

d(x, y) = (dx, d'y + fq i(x)) (x e Cq, q > 0) 
e(1,0 ) = ml, e(0, 1) = m2 

C + C' is a chain complex in which C' is embedded, with quotient C; the 
exact cohomology sequence shows that C + C' is acyclic. C + C' is thus 
a resolution of M; it contains C', which is a resolution of M2, and the 
quotient is C, which is a resolution of Ml. We obtain an exact sequence 
of cochain complexes 

04( HomA(C', Z2) - HOmA(C + C', Z2) - HomA(C, Z2) - 0. 

The corresponding exact cohomology sequence is the one required. The 
coboundary in 

HomA(C + C', Z2) - HOmA(C, Z2) + HOmA(C', Z2) 

is given by 

8(x, y) = (8x + Yfq-i, Sy) 



HOPF INVARIANT ONE 51 

(if y e HomA(Cql, Z2)). It follows immediately that in the exact coho- 
mology sequence we have 

8( I"(2) )= {yfql}(1) = (y}hj" 

This proves Lemma 2.6.1. 
We now suppose that A is the (mod 2) Steenrod algebra. Take an in- 

teger k > 2; we define a module M = M(k) as follows. Qua vector space 
over Z2, it has a base containing three elements n1, m2, m3 of degrees 0, 
2k, 2k+1. The operations from A are defined by 

am1 = (2 a)m (if deg (a) = 2k) 

am2 = 0 

am1 = (2k+la)m3 (if deg (a) = 2k+1) 

The elements M2, m3 generate submodules M2, M3 isomorphic with Z2; 

we write i2, il for their injections. We define M1 = M/(M2 + M3), so that 
M1 - Z2; we have an exact sequence 

?-- YMl+ M2 +,3 ) M 3) ml-3 i0 

We continue the previous convention about x''. 

THEOREM 2.6.2. In dimensions t < 3.2k, Ext (M, Z2) has as a base the 
elements 

j*h'l) (? < i:!~ k k-1) 
(2 ) k-l 

and Ext2(M, Z2) has as a base the elements 

j*(hjhj)(1) (O < i < I < k- 1, 1 i+ 1) 
(i2*)-'(hihk-1) (2) (O < i < k- 1, i # k -2) 
(i2 ) '(k-2hk) 

PROOF. We have a diagram 

0- , M2 + M3 , M - Ml 0 .1 .11 
O ) M2 - M/M3 ,)Ml ' ? 

Now, Lemma 2.6.1 applies to M/M3, with a = 5 k; thus 8(x(2') = (xhk) ('. 
By naturality, the same formula holds in the exact sequence 

... 8-- ExtS,(M2 + M3, Z2) - Extsjt(M, Z2) X Exts t(M1, Z2) .... 
Similarly, 
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a(3) 
J 

Xk+1 (1) 8 (xh,~)' 
It follows (using Theorem 2.5.1) that in this exact sequence, Coker 8 

and Ker 8 have the following bases, at least in degrees t < 3.2k. 

s = 1, Coker 8: V) (O? i < k-1) . 
s = 1, Ker8: &h-11 

s = 2, Coker 8: (hihi)(1) (0OE~<1<lk-19 1#i+l). 
s = 2, Ker 8: (Hhnh 7.) (2) (0O < i -_E k - 1 i # k -2), 

(h - 2hk) 

This proves Theorem 2.6.2. 
We have now completed all the homological algebra which is necessary 

for our applications. 

CHAPTER 3. SECONDARY COHOMOLOGY OPERATIONS 

3.1. Introduction. In this chapter we shall develop the general theory 
of stable secondary operations. The results at issue are not deep; the 
author hopes that this fact will not be obscured by the language neces- 
sary to express them in the required generality. 

The plan of this chapter is as follows. In ? 3.6 we give axioms for the 
sort of operations we shall consider; in Theorems 3.6.1, 3.6.2 we prove 
the existence and uniqueness of operations satisfying these axioms. In 
? 3.7 (and in Theorems 3.7.1, 3.7.2. in particular) we consider relations 
between composite operations. In ? 3.9 (and in Theorem 3.9.4 in particu- 
lar) we consider Cartan formulae for such operations. All the theorems 
mentioned above are essential for the applications. 

In an attempt to arrange the proofs of these theorems lucidly, we 
begin by giving a formal status to some of the ideas involved. These 
ideas concern cohomology operations (of kinds higher than the first), 
universal examples for such operations, the suspension of such opera- 
tions, and so on. Of course, these notions are common property; but by 
giving a connected account, we can build up the lemmas which we need 
later. This preliminary work occupies ?? 3.2 to 3.5. 

In ? 3.8 we give a short account of the application of homological al- 
gebra to the study of stable secondary operations. 

In this chapter, the following conventions will be understood. We shall 
assume that all cohomology groups have coefficients in a fixed finitely- 
generated group G; in ? 3.8 we assume that G is a field, and in ? 3.9 that 
G is the field Z,. We shall omit the symbol for the fixed coefficient group 
G, except where special emphasis is needed. 
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We shall assume that all the spaces considered are arewise-connected. 
There is nothing essential in this assumption, but it serves to simplify 
some statements. Symbols such as x0, y0 will denote base-points in the 
corresponding spaces X, Y. It is understood that the base-points in CW- 
complexes are chosen to be vertices. 

The study of stable operations forces us to work with suspension. We 
therefore agree that in ?? 3.2 to 3.8 the symbols H*(X), Hn(X) denote 
augmented cohomology (with coefficients in G). 

In ? 3.9, however, we have to work with products. In this section, 
therefore, the symbol Hn(X) denotes ordinary cohomology. We write 
H+(X) for n,>0Hn(X); since our spaces are arewise-connected, we may 
use H+ instead of augmented cohomology. 

We have to take a little care with signs. It is usual to write cohomol- 
ogy operations on the left of their arguments; we shall follow Milnor [25] 
in taking the signs which arise naturally from this convention. We shall 
also try to keep our theoretical work as free from signs as possible. For 
this purpose it seems best to write our homomorphisms on the right of 
their arguments, accepting the signs which arise naturally from this con- 
vention. 

In particular, we introduce a "right" coboundary 

8*: Hn(y) > Hn+l(X, y) 
whose definition in terms of the usual coboundary 8 is 

(h)8* = (_-l)n8(h) (where h e Hn(Y)). 

We shall use this signed coboundary in discussing suspension. For ex- 
ample, let Y be a space with base-point y.; let &2Y - L Y- q- Y be the 
path-space fibering introduced by Serre [29]. Then we define the "sus- 
pension" homomorphism 

(7 Hn +1(y) HnpQy) 

to be the composite map 

Hn+l(Y)< Hn+l(Y, y.) > Hn+1(LY, 2Y) 2- Hn(&Y) 

Similarly for the transgression z. 

3.2. Theory of universal examples. It is the object of this section to 
set up a general theory of universal examples for cohomology operations 
of higher kinds. This is done by making the obvious changes in the cor- 
responding theory for primary operations, which is due to Serre [30]. 
The considerations which guide our definitions are the following. We ex- 
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pect our operations to be defined on a subset of all cohomology classes; 
we expect their values to lie in a quotient set of cohomology classes; we 
expect them to be natural. 

It would be convenient, in some ways, if we set up our theory for the 
category of CW-complexes. However, it would be inconvenient in other 
ways, since we need to use fiberings (in the sense of Serre). The difficulty 
could be avoided by working in the category of CSS-complexes; but it 
seems preferable to work, at first, with concepts as geometrical as pos- 
sible. We therefore work in the category of all spaces. This forces us to 
use the device of replacing a space by a weakly equivalent CW-complex. 
We recall that a map f: X - Y (between arcwise-connected spaces) is said 
to be a weak homotopy equivalence if it induces isomorphisms of all 
homotopy groups. Two spaces X, Y are said to be weakly equivalent if 
they can be connected by a finite chain of weak homotopy equivalences. 
These notions have the following properties. For each space Y, there is 
a CW-complex X and a map f: X-) Y which is a weak homotopy equiv- 
alence; it is sufficient, for example, to take X to be a geometrical realisa- 
tion of the singular complex of Y, or of a minimal complex. Let Map (X, Y) 
denote the set of homotopy classes of maps from X to Y; if f: X - Y is 
a weak homotopy equivalence and W is a CW-complex, then the induced 
function f, : Map (W, X) - Map (W, Y) is a (1-1) correspondence. 

Our first definition is phrased so as to cover the case of cohomology 
operations in several variables; the reader may prefer to consider first the 
case of one variable. Let J be a set of indices j. We call S a natural 
subset of cohomology (in J variables, of degrees n>) if S associates with 
each space X a set S(X) of J-tuples {x>j (where xf e Hnj(x)) and satisfies 
the following axioms. 

Axiom 1. If f: X - Y is a map and {yaj e S(Y), then {yf *} e S(X). 
Axiom 2. If f: X- Y is a weak homotopy equivalence and {yjf *} e S(x), 

then {y>j e S(Y). 

Although we shall not assume that the indexing set J is finite, we shall 
assume that for each integer N we have no < N for only a finite number 
of j. 

For the next definition, we suppose given such a natural subset S. We 
call 1? a cohomology operation (defined on S, and with values of degree 
m) if 1 associates with each space X and each J-tuple {x>j in S(X) a non- 
empty subset D {x}j c Hm(X) which satisfies the following axioms. 

Axiom3. If f: X- Y is a map and {yj} e S(Y), then 

('1Y>} )f*C C 4?Yf*} - 
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Axiom 4. If f: X- Y is a weak homotopy equivalence and {ye} e S(Y), 
then 

There is nothing in our definition to limit the size of the subsets 'I' {xj. 
We therefore make the definitions which follow. They refer to cohomol- 
ogy operations defined on a fixed natural subset S. We write 1 c P if 
we have ' {x,} c N {x>} for each X and each {xOj in S(X). We call T mini- 
mal if there is no operation 1 such that 1Dc T and 4) # P. We are mainly 
interested in operations which are minimal. 

We now introduce the notion of a universal example. Let S be a natu- 
ral subset of cohomology (in J variables, of degrees n>). Let U be a space 
and {ujs a J-tuple in which u, e Hni(U). We say that (U, {us}) is a uni- 
versal example for S if {uj} e S(U) and the following axiom is satisfied. 

Axiom 5. For each CW-complex X and each J-tuple {x,} in S(X) there 
is a map g: X - U such that {jug*} = {x}}. 

LEMMA 3.2.1. For each space U and each J-tuple {uj} there is one and 
only one natural subset S admitting (U, {u>}) as a universal example. 

PROOF. The uniqueness of S is immediate; for if X is a CW-complex, 
S(x) is the set of J-tuples {ujg*}, where g runs over all maps from X to 
U; while if X is a general space, we may take a weak homotopy equiva- 
lence f: W - X such that W is a CW-complex; then S(X) is the set of J- 
tuples {x>} such that {xjf*} e S(W). 

This procedure also shows how to construct S from (U, {u>}); it is not 
hard to verify that the S so constructed is well-defined, is such that 
{u>} e S(U) and satisfies Axioms 1 and 2. 

For our next definition, let S be a natural subset admitting a universal 
example (U, {u>}). Let (D be a cohomology operation defined on S, and 
with values of degree m; let v be a class in Hm( U). We say that (U, {us}, v) 
is a universal example for 4 if v e 1 {ju} and the following axiom is satis- 
fied. 

Axiom 6. For each CW-complex X, each J-tuple {x,} in S(X) and each 
class y in (D {Jx} there is a map g: X - U such that {u, g*} = {xf}, vg* = y. 

LEMMA 3.2.2. For each space U, each J-tuple {us} and each class v 
there is one and only one cohomology operation 4 admitting (U, {uj}, v) 
as a universal example. 

The proof is closely similar to that of Lemma 3.2.1. 

If the space U is understood, we may write "{uj} is a universal ex- 
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ample for S"; similarly, if U and {uj are understood, we may write 
"v is a universal example for 1D". 

For our last lemma, suppose that S is a natural subset admitting a 
universal example {u>}, and that T is an operation defined on S. 

LEMMA 3.2.3. If v e P{uj and 1 is the operation given by the uni- 
versal example v, then 1 c T. 

The proof is obvious. 

This lemma shows that, if we wish to study the operations defined on 
such a natural subset S, it is sufficient to consider the ones given by uni- 
versal examples. 

3.3. Construction of universal examples. It is the object of this sec- 
tion to construct the universal examples on which our theory of secondary 
operations will be based. In fact, our secondary operations will be de- 
fined on natural subsets which can be described using primary operations. 
We shall show that these natural subsets admit universal examples, in 
the sense of ? 3.2. 

Our universal examples will be fiberings in which both base and fibre 
are weakly equivalent to Cartesian products of Eilenberg-MacLane spaces. 
It will be clear that the method of this section is only the beginning of 
an obvious induction; we might equally well construct an example-space 
of the (n + 1)th kind as a fibering with the same sort of fibre, but with 
an example-space of the nth kind as a base. However, we shall not do 
this. 

We say that {D is a primary operation (acting on J variables of degrees 
nj, and with values of degree m) if it has the following properties. 

(1 ) T{x} is defined for every J-tuple {x j such that x, e Hnj(X). 
(2) The values 1 {x1} of 1 are single elements of Hm(X). 
Let K be a set of indices k. When we speak of a K-tuple {ak} of pri- 

mary operations, we shall understand that each a, acts on J variables 
whose degrees nj do not depend on k. We shall also suppose that for each 
integer M we have mk < M for only a finite number of k in K. 

We define the natural subset T determined by {ak} as follows: T(X) is 
the set of J-tuples {x>j such that xf e Hnj(X) and ak {xj = 0 for each k 
in K. It is clear that T is indeed a natural subset. 

We shall call a cohomology operation (D secondary if it is defined on a 
natural subset T of this kind. We shall prove that every natural subset 
T of this kind admits a universal example; this is formally stated as Theo- 
rem 3.3.7, 
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We must begin by considering universal examples for primary opera- 
tions. Suppose given integers n, > 0, for j e J. Then we can form a 
Cartesian product 

X = X eJXj 

in which Xj is an Eilenberg-MacLane space of type (G, n,). Let xj be the 
fundamental class in Hnj(Xj; G); let wf: X -o Xj be the projection map 
onto the jth factor; then we have classes xj7rw in H*(X). Suppose given 
a space Y and classes yj in Hnj(Y). We will say that Y is a generalised 
Eilenberg-MacLane space (with fundamental classes yj) if Y is weakly 
equivalent to a product such as X in such a way that the classes y, cor- 
respond to the classes x>17r. 

LEMMA 3.3.1. If Y is a generalised Eilenberg-MacLane space, W is 
a CW-complex and w, e Hni( W) for each j, then there is one and only one 
homotopy class of maps f: W - Y such that yf * = wj for each j. 

This follows immediatly from the corresponding fact for Eilenberg-Mac- 
Lane spaces. 

Next, let Y and W be generalised Eilenberg-MacLane spaces, for the 
same integers nj, and with fundamental classes yj, wj. We call a map 
f: Y-e W a canonical equivalence if wJf * = y, for each j. Such a map 
is necessarily a weak homotopy equivalence. 

Let Y be a generalised Eilenberg-MacLane space, for integers no > 1; 
Y is thus weakly equivalent to a product X = X EjX of Eilenberg-Mac- 
Lane spaces. Then, if the base points are chosen consistently, the loop- 
space &2 Y is weakly equivalent to &2X, which is homeomorphic to X jefXj; 
thus f2Y is a generalised Eilenberg-MacLane space. In each loop-space 
DX, we take the fundamental class xf given by 

JXQ = (X>) 

where a denotes "suspension". In f2X we have fundamental classes 
X1 wU>, and in f2Y we have the corresponding fundamental classses yQ. 

We have said that we propose to construct our universal examples as 
fiberings. All our fiberings will be fiberings in the sense of Serre [29]. 
We must recall that the notion of an induced fibering is valid in this con- 
text. 

Let X, B be spaces with base-points x0, b.. Let f: X, x0 - B, b. be a 
map, and let wr: E m B be a fibering (in the sense of Serre). Let f -E be 
the subspace of X x E consisting of pairs (x, e) such that fx = we. We 
define maps t,: f -E X and f: f -E > E by t,(x, e) = x, f](x, e) = e; 
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we thus obtain the following commutative diagram. 

f-E E 

t1 ft 
X f B 

LEMMA 3.3.2. The map t- is a fibering (in the sense of Serre). The 
map f maps the fibre zr -tx0 of -v homeomorphically onto the fibre ir-'b, 
of r. 

The verification is trivial. The original reference for this lemma, so far 
as the author knows, is [10]. 

The next lemma states that this construction is natural, in an obvious 
sense. Suppose given the following diagram. 

E E' 

B, b9 - B', bo 

X, Xo - X', oX 

LEMMA 3.3.3. We can define a map 

?s er:f-E (f')-E' 

by the rule (; 0 s) (x, e) = (ax, se). This map makes the following dia- 
gram commutative. 

E 2-El 

f -E 
to's 

(f ')-E' 

X t Xi 

The verification is trivial. The diagram shows in particular, that the 
effect of e ? e on the fibres is the same as that of e, up to the homeomor- 
phisms of Lemma 3.3.2. 

We can now describe the fibre-spaces which we shall use as universal 
examples. Suppose given, as above, a fixed K-tuple {ak} of primary 
operations, such that each ak acts on J variables of degrees nj and has 
values of degree mk. We suppose nj > 0, mk > 1. We call t: E - B a 
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canonical fibering associated with {ak} if it satisfies the following condi- 
tions. 

( 1 ) The fibering t: E B is induced by a map p: B, bo- Yy0 from 
the fibering 7w: LY - Y. 

(2) The spaces B and Y are generalised Eilenberg-MacLane spaces 
with fundamental classes bj and y, of degrees ni and mk. 

( 3 ) We have ykp = ak{bJ} . 

We remark that if these conditions are fulfilled, then the fibre F= t-lb, 
of t is a generalised Eilenberg-MacLane space. In fact, the map P_ 
maps Fhomeomorphically onto i2 Y, by Lemma 3.3.2; and by our remarks 
above, S2Y is a generalised Eilenberg-MacLane space, with fundamental 
classes y7 of degree mk -1. Therefore F is also a generalised Eilenberg- 
MacLane space, with fundamental classesfk corresponding to the y' un- 
der the map _. 

LEMMA 3.3.4. The class fk8* in H*(E, F) is the image of ak{bj} under 
the composite homomorphism 

H*(B) < H*(B, bo) t H*(E, F) 
This is immediate, by naturality. 

LEMMA 3.3.5. For each {ak} and each corresponding space Y there 
exists a canonical fibering associated with {ak} in which the space B is 
a CW-complex. 

This is clear; for we can construct B to be a CW-complex, and there is 
then a map p: B - Y of the sort required. 

Our next theorem will assert that all the canonical fiberings associated 
with {ak} are "equivalent", in a suitable sense. In fact, let tV: E - B 
and v': E' - B' be two such fiberings; then we define an equivalence 
between them to be a diagram 

F > F' 

E E' 

B >B? 
in which A: F F' and f: B. bo - B', b' are canonical equivalences, in 
the sense explained above. Such a diagram, of course, induces an iso- 
morphism of the exact homotopy sequences, so that e will be a weak 
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homotopy equivalence. 

THEOREM 3.3.6. Any two canonical fiberings associated with the same 
{ak} may be connected by a finite chain of equivalences. 

PROOF. Let E', E" be two such canonical fiberings. Let t: E - B be 
another canonical fibering, constructed using spaces B and Y which are 
CW-complexes. It is sufficient to show how to connect E to E' by a chain 
of equivalences, since we may connect E to E" similarly. We may con- 
struct canonical equivalences 

13: B. bog B', bo. I Y. You Y', Lo 

so that b?,S*=bj, yy *=y,. It follows that p',-.,. Let h: I x B/I x bo Y' 
be a homotopy between them; we may write hi'=p'j3, hi=ryH, where 
i and i' are the embeddings of B in I x B/Ix bo. Using Lemma 3.3.3 we 
obtain the following chain of equivalences. 

E = W-LY i(k?L i hhLY? i< l (p'/3)-LY' 8S 
(p?)-LY = E' 

Thus E, E' can be connected as required. This completes the proof of 
Theorem 3.3.6. 

For our next theorem, let t: E - B be a canonical fibering associated 
with {aj}; we define a J-tuple {ej} of classes in H*(E) by ej = bie*. 
Let T be the natural subset determined by {ak}, as defined at the begin- 
ning of this section. 

THEOREM 3.3.7. The natural subset T admits the universal example 
{ej}. 

PROOF. We must begin by proving that {ej} e T(E). In fact, we have 

ak{ej} = ak{bjlt }= (ak{bj})t* YkP*V -* YkZ (Pl) - 

But since LY is acyclic, we have Ykr* = 0 and hence ak {ej} 0 O. Thus 

{ej} e T(E) . 
It remains to show that if X is a CW-complex and {xj e T(x), then 

there is a map g: X ) E such that {ejg*} = {xj}. For this purpose we 
introduce the following lemma. 

LEMMA 3.3.8. If X is a CW-complex and f: X - B is a map such that 
ak {bjf*} = 0, then there is a map g: X - E such that tvg = f. 

From this lemma, the theorem follows immediately. In fact, suppose 
we have a CW-complex X and a J-tuple {x~} such that ak iXJ} = 0; then 
we can construct f: X-)B such that bjf* = x, and g: X E such that 
zrg = f; it follows that 
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ejg* = bang* = bjf* = xj. 

PROOF OF LEMMA 3.3.8. By Theorem 3.3.6, it is sufficient to consider 
the case in which Y is a Cartesian product of Eilenberg-MacLane spaces; 
say Y = X kEK Yk, where Yk is of type (G, mk). We can now consider the 
canonical fibering E in a different way. We have a map p: B - Y; its kLh 
component is 7Wkp: B - Yk. We may define Ek = (kp)-LYk; the product 
Et= XJCEKEJC is fibred over the base B' = XkEKB. Let A: B - B' be the 
diagonal map; then A-E' coincides with E, up to a homeomorphism. It 
is therefore sufficient to lift the map f in each factor Ek separately. But 
to this there is only one obstruction; and up to a sign, the obstruction is 

Yk P f = (ak{bj})f 
* = ak{bjf *} = 0 . 

The lifting is therefore possible. This completes the proof of Lemma 3.3.8. 
and of Theorem 3.3.7. 

3.4. Suspension. In this section we discuss the suspension of cohomol- 
ogy operations, and show that if 1D admits a universal example, so does 
its suspension. This is formally stated as Theorem 3.4.6. We also show 
that the application of this principle does not enlarge the class of univer- 
sal examples considered in ? 3.3. 

In this section the symbol sX will denote the suspension of X, so that 
sX = I x X/(0 x X, 1 x X). We shall also use s to denote the canonical 
isomorphism 

s HH+1(sX) Hn(X) 

which we define to be the following composite map. 

H,,+'(sX) < H11+1(sX, So,) >H"+'(tX, X) <0*Hn(X). 

Here, tX is the cone on X, so that tX = I x X/0 x X; the embedding of 
X in tX, the base-point so, in sX and the map from tX to sX are the ob- 
vious ones. 

Let S be a natural subset of cohomology (in J variables, of degrees nj). 
Then we can define a natural subset sS (in J variables, of degrees nj-1) 
by taking Ss(X) to be the set of J-tuples {jxs}, where {xj} e S(sX). We 
call sS the suspension of S. 

Similarly, let (D be a cohomology operation defined on S, and with val- 
ues of degree m. Then we can construct an operation (Ds, defined on s 
and with values of degree (m - 1), by setting 

Dfs {is} = (F {x} )s 

We call (Ds the suspension of I>. 
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For our first lemma, let {ak} be a K-tuple of primary operations, and 
let T be the natural subset determined by {aj}. 

LEMMA 3.4.1. The natural subset determined by {ak} is Ts. 

The verification is trivial. 

LEMMA 3.4.2. If S is a natural subset and {xj e Ss(X), then {-xj e 
Ss(X). 

If (D is a cohomology operation defined on S, while {xj e SS(X) and 
y e (s{ x}, then -y e s{I-xj}. 

To prove this lemma, one merely considers the map v: sX sX defined 
by 

V(t, x) =(-,x) . 

For the sake of similar arguments later on, we set down the following 
lemma, which is well known. 

LEMMA 3.4.3. The set of homotopy classes 

Map [sX, sx0; Y, y0] 

is a group. Let p be the function which assigns to each homotopy class 
of maps g: sX, sx0 - Y, y0 the induced map g*: H*(Y) .H*(sX); then 
P is a homomorphism. 

Our next results relate the notions of "suspension" and "universal 
example". 

LEMMA 3.4.4. There is a (1-1) correspondence between maps f: Xx 
f2Y, wo and maps g sX, sx0 Y. yo. For corresponding maps we have 
g*s = af *: H*(Y) H*(X). 

This lemma is well-known. The (1-1) correspondence is set up by 
the equation 

(f(x))(u) = g(u, x) (where u e I.) 

The equation g s = af* is proved by passing to cohomology from the 
following diagram. 

X- tX - sX 
fj hj j 

2 Y- LY--- Y 

Here, the map h is defined by 
(h(u, x))(v) = g(uv, x) (where u, v e I.) 
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For our next lemma, we suppose that the space X is 1-connected, so 
that i2X is 0-connected. Similarly, in Theorem 3.4.6 we shall assume 
that U is 1-connected. 

LEMMA 3.4.5. If {xj e S(x), then {xja} e SS(i2X). If (further) (D is 
defined on S, then 

(OD '{x} ) c Ds {xa} 

This is immediate, by considering the map g: si2X X corresponding 
tof= 1: Q2X-2X. 

THEOREM 3.4.6. If the natural subset S admits the universal example 
(U, {uj}), then Ss admits the universal example (f U, {uj} ). In this 
case Ss(X) is a subgroup of lJjHn-'(X). 

If the cohomology operation (D admits the universal example (U, {us}, 
v), then (s admits the universal example (i2U, {ups}, va). In this case 
(s{0} is a subgroup of Hm-1(X), IS{Zx} is a coset of V{0} and 1?s is a 
homomorphism. 

This theorem follows easily from Lemmas 3.4.3 to 3.4.5. 

Our next theorem will show that if U lies in the class of universal ex- 
amples considered in ? 3.3, then the universal example &2U lies in the 
same class. For this purpose we need two lemmas. 

LEMMA 3.4.7. If w: E, e0 - B, b0 is a fibering (in the sense of Serre) 
then Mr : f2E - 72B is a fibering (in the sense of Serre) with fibre f2F. 

The verification is trivial. The next lemma concerns induced fiberings, 
so we adopt the notation of Lemma 3.3.2. 

LEMMA 3.4.8. There is a canonical homeomorphism h: 2(f-E) - 

(i2f)-(72E) which makes the following diagram commutative. 

&2E 
Qnf_)l \\(a f)- 

/h \ 
fl(f-E) _(f)-(_E) 

\tf / 
n'ca /t~t 

f2X 
The verification is trivial. 

THEOREM 3.4.9. If tr: E, eon B, b0 is a canonical fibering associated 
with {ak}, and if we take in S2B, S2F the fundamental classes bior- fk, 

then &i2v: f?E - &7B is (up to a canonical homeomorphism) a canoni- 
cal fibering associated with {as}. 
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PROOF. Suppose that E is induced by a map p: B, b0 Y, y0. There is 
an obvious homeomorphism between the fiberings &2(LY) Qt- >2 Y and 
L(&2Y) --- > &2Y; both fiberings have fibre i22Y, but the homeomorphism 
induces a non-trivial automorphism a of i22Y, defined by 

[(ao) (u)] (v)- [wo(v)] (u) (where u, v e I). 

Under this automorphism, the class -yYku2 in the fibre of f2k corresponds 
to the class yka2 in the fibre of wr'. 

We now remark that the fiberings induced by Qp from i22c and from w' 
must still be homeomorphic. The first is homeomorphic to S2tr: f2E-42B, 
by Lemma 3.4.8. The second is a canonical fibering, induced by 72p, and 
satisfying 

(yku) (tgp)* = ate{bl} 

(as we see using Lemma 3.4.5.) It is thus a canonical fibering associated 
with {as}. It is now easy to check that the kth fundamental class in its 
fibre corresponds to -fuk in f2F. This completes the proof. 

3.5. Stable operations. In this section we shall study stable operations, 
and prove two lemmas needed in ? 3.6. 

In ? 3.4 we defined the suspension of natural subsets and of cohomology 
operations. We use this notion to make the following definitions. 

A stable natural subset S associates to each (positive or negative) in- 
teger 1 a natural subset SI in such a way that S1=(Sl+l)s. We may take 
our notations for degrees so that the variables in SI are of degrees nj+1. 
We admit, of course, that the natural subsets SI may be trivial if 1 is 
large and negative. A similar remark applies to the next definition. 

A stable cohomology operation (defined on such an S) associates to 
each integer 1 a cohomology operation (DI defined on SI in such a way that 
(V = (0+1)S. We may take our notations for degrees so that (V has 
values of degree m + 1. 

We also allow ourselves to write S(X) - U1S5(X), and to regard FD as 
a function defined on S(X) by the rule (D I SI = (DI. This is done in order 
to preserve the analogy between 1 and symbols such as Sq', which denote 
operations applicable in each dimension. We may call SI, (DI the com- 
ponents of S, (D. 

As a particular case of the above, we have the notion of a stable pri- 
mary operation a in one variable. Its 1th component is a primary operation 

at: Hn+i(X) ) H74+1(X); 
we assign to a the degree (m - n). By Theorem 3.4.6, a' is a homomor- 
phism. Since natural homomorphisms can be composed and added, we 
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easily see that the set of stable primary operations in one variable is a 
graded ring. We write A for this ring, or AG if we wish to emphasise its 
dependence on the coefficient group; we call A the Steenrod ring. If X 
is any space, then H*(X) is a graded module over the graded ring A. If 
f: X Y is a map, then f*: H*(Y) H*(X) is an A-map (of degree 
zero). 

Let X be an Eilenberg-MacLane space of type (G, n), with fundamen- 
tal class x; and let C be a free A-module, on one generator c of degree n. 
We can define an A-map 0: C - H*(X) by cO = x. It is both clear and 
well-known that 0 | Cmn: Cm n, Hm(X) is an isomorphism if m < 2n (and a 
monomorphism if m = 2n). 

Similarly, let Y be a generalised Eilenberg-MacLane space, with funda- 
mental classes yj of degrees nj. Set L = MinjEJnj. Let C be a free A- 
module on generators cj of dimension nj. We can define an A-map 0: Coo 
H*(Y) by cjO = yj. Then, as before, 0 Cm: Cm ) Hm(Y) is an isomor- 
phism if m < 2v (and a monomorphism if m = 2v). 

It follows, incidentally, that every stable primary cohomology opera- 
tion in J variables is of the form a {xj} = EJEJajxJ, where the sum is 
finite and the coefficients aj lie in the Steenrod ring. 

We next take a K-tuple {ak} of stable primary operations. Each stable 
operation ak has components ak; we shall suppose that a' acts on J vari- 
ables of degrees nj + 1 and has values of degree mk + 1. (We suppose, as 
always, that for each integer N we have nj < N for only a finite number 
of j and mk < N for only a finite number of k.) 

Such a K-tuple evidently determines a stable natural subset T; we de- 
fine T1 to be the natural subset determined by {al}. We shall call a 
stable cohomology operation 1D secondary if it is defined on a stable sub- 
set T of this kind. 

In considering such stable secondary operations, it is natural to intro- 
duce a sequence of canonical fiberings E1 in which E1 is associated (in the 
sense of ? 3.3) with the K-tuple {ak}. For such fiberings to exist we re- 
quire 1 + nj > 0, 1 + mk > 1; so we should assume that 1 > - v, where 
v = MinjEJkEK(nj, mk - 1) - 

The next lemma will show that if a relation (between stable secondary 
operations) holds in the canonical fibering E1 (where 1 is sufficiently large), 
then it holds universally. 

We will assume that T1 is the natural subset determined by {a,}, as 
above, and that X is a stable operation such that XI is defined on T1 and 
has values of degree q + 1. We will also assume that X satisfies the fol- 
lowing axiom. 
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Axiom 1. If g: X ) Y is a map such that g*: Hr(Y) Hr(X) is an 
isomorphism for r < q + 1, and if {yj e Tt(Y), then 

(XI{})g* = x{IYjg } - 

Of course, this axiom is slightly stronger than Axiom 4, ? 3.2; however, 
it is satisfied in the applications. 

Let El be a canonical fibering associated with {ak}, and let el be the 
fundamental classes in E,. 

LEMMA 3.5.1. If 0 e XI{ee} for one value X of 1 such that X > 
Max(- , q - 2v), then 0eX {xI} for all 1, all Xand all {xj} in T1(X). 

PROOF. We first note that if 0 e XI {et}, then 0 e XI {xj} for all X and all 
{xJ} in T1(X); this is immediate, by naturality. We will show that if this 
holds for some 1 (where 1 > X) then it holds also for 1 + 1. We may find 
a space X and a map g: sX , El+1 such that 

g*: Hr(Ez+1) - Hr(sX) 

is an isomorphism for r < q + 1 + 1; for it is sufficient to take X to be 
&2E1+1, and g to be the map which corresponds to f = 1 in Lemma 3.4.3. 
We now have 

O e Xl {e+lg*s} = (+l+{e+lg*})s 

= (Xl+l{el+l})g*s (by Axiom 1.) 

Hence 0 e Xl+11{e~l}. 
This proves that 0 e X1 {xj if 1 > X. The corresponding result for 1< X 

follows immediately, by suspension. 

Our next lemma gives information about the group H1+,(Ez), at least 
if 1 is sufficiently large. We suppose given a K-tuple {ak} of stable pri- 
mary operations, as described above; we may express each ak in the form 

ak{xJ} = E ejl~k, J XJ 

where the sum is finite and the coefficients 1kJ lie in the Steenrod ring 
A. Let C0, C1 be free A-modules on generators c0, J, clk of degrees nj, Mk. 
We can define an A-map d: C1 - CO by setting 

C1,kd = jEJ3k,JCOi I 

Let us take a value of t such that 1 > - v, and let zr: E B be a 
canonical fibering associated with the K-tuple {ak} . We can define A-maps 

00: CO H*(B), 01: C1 - H*(F) 
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by setting 

co io = b., c1,01 =( 1) f 
We take the "total degree" of c8,t to be t - s(s = 0, 1), so that both 00 
and 01 have degree 1. The sign in the definition of 0, is essential in order 
that 01 should be compatible with a; see Theorem 3.4.9. 

Finally, we recall the following convention. Let 

4 M P N 

> >Q 

be a diagram of A-maps in which f and f ' have total degree r, while g 
and g' have total degree s. Then we say that the diagram is anticom- 
mutative if 

fg = ( 1)rsgf 

LEMMA 3.5.2. With the above data, we have the following anticom- 
mutative diagram. 

C1,q 
01 > Hl+q-l(F) 

COq Hl+q(B) Ht+q(B, bo) > Hl+q(E, F) 

If q < 1 + 2v, we have also the following anticommutative diagram. 

. -+* , H1 (B) ) Hl+(E) H +q(F) >HI++l(B) 

0? - 01T Too d {O 

... > COq C1,q+1 > Co,q+1 

The horizontal sequence in this diagram is exact; the maps 00 and 0, 
marked as isomorphisms are such; the remaining map 00 is a monomor- 
phism. 

PROOF. We take first the anticommutativity of the first diagram. By 
using Lemma 3.3.4 and the definitions of the various homomorphisms, it 
is easy to check that the two ways of chasing clk round the diagram 
agree, up to the sign (-1)1. The corresponding result for a general ele- 
ment of C1 now follows by linearity over A. 

In the second diagram, the squares are provided by the first diagram. 
We have already noted the behaviour of maps such as 00 and 01. The 
exact sequence is due to Serre [29]; it is valid up to H21+21-l(F) because 
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B and F are (1 + v - 1)-connected. We can add the last z, since it is de- 
fined on the whole of H21+2v-l(F). This completes the proof. 

3.6. Axiom for stable secondary operations. In ?? 3.2, 3.4 we were 
concerned with operations in general. It is the object of this section to 
give a system of axioms for stable secondary operations. This work is 
essential for the applications. After giving the axioms, we state 
Theorems 3.6.1 and 3.6.2, which assert the existence and (essential) 
uniqueness of operations satisfying the axioms. We then give some 
explanation of the axioms. Finally, we prove the two theorems. 

It is generally understood that a secondary operation corresponds to a 
relation between primary operations. For example, the Massey product 
[23] [24] [35] corresponds to the relation (uv)w = u(vw); the Adem opera- 
tion [4] corresponds to the relation Sq2Sq2 + Sq3Sq1 = 0; and so on. We 
aim to get a hold on stable secondary operations by dealing with their as- 
sociated relations. The essential feature of our axioms is that they axio- 
matise the connection between the secondary operation and its associated 
relation. 

The notion of a "relation" between primary operations will be formal- 
ised in a suitable way. In fact, we shall replace the notion of a "relation" 
by the notion of a pair (d, z), of the following algebraic nature. The first 
entry d is to be a map d: C1 - Co. Here, the objects CO and C1 are to be 
graded modules over the Steenrod ring A (see ?? 2.1, 3.5); they are to be 
locally finitely-generated and free, and d is to be a right A-map such 
that (Co0t)d c C1i,. Following ? 3.5, we ascribe to cas, the "total degree" 
t - s. The second entry z is to be a homogeneous element of Ker d. 

We must next explain the connection between pairs (d, z) and relations 
in the intuitive sense. The equations 

Sq'Sql = 0, Sq2Sq2 + Sq3Sq1 = 0, 
Sq'Sq4 + Sq2Sq3 + Sq4Sql = 0 

are relations in the intuitive sense. More generally, suppose given an 
integer q and a finite number of elements ak, fl, in A such that 

EkEKaklk = 0, deg(ak) + deg(flk) = q + 1 . 

Then the equation Ek6Kak3k = 0 is a (homogeneous) relation in the in- 
tuitive sense; we shall associate it with the pair (d, z) constructed in the 
following way. We take CO to be free on one generator co in COo; we take 
C1 to be free on generators c1,k in Clt(k), where t(k)=deg(fJ). We define 
d: C1 - Co by Clskd = fkcO; we define z by z = EkE akcl k. We thus have 
zd 0, z e C1,q+i. 
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Our axioms will ensure that if an operation 1) is associated with such 
a pair (d, z), then it is defined on classes x in H1(X) such that 8Ck(x) = 0 
for each k, and has values in 

H1 +q(X)/AKaH1 +qrk(X) 

where rk = deg (ak). (Note that a relation of degree (q + 1) corresponds 
to an operation of degree q.) 

The reader may like to keep in mind some explicit examples of pairs 
(d, z), to illustrate the considerations of this section. 

We next remark that, according to our axioms, stable secondary opera- 
tions are defined, not on J-tuples {xj of cohomology classes, but on right 
A-maps s C: - H*(X). There is no essential difference hence; if we 
take a base of elements co j in the free module C0, then an A-map 
s: CO > H*(X) is determined uniquely by giving the images (co,)e of the 
base elements; and these classes (c0,j)s in H*(X) may be chosen at will, 
provided that they have the correct degrees. We set up a (1-1) corre- 
spondence between J-tuples {x} and maps s by writing 

xJ = (co,)s . 

It is always to be understood that operations (D {x} are to be identified 
with operations 1'(s) in this way. 

We now give the axioms. We will say that ? is a stable secondary 
operation associated with the pair (d, z) if it satisfies the following 
axioms. 

Axiom 1. 1'(s) is defined if and only if s: C0 - H*(X) is a right A-map 
such that de = 0. 

For the next axiom, suppose that the total degrees of s, z are 1, q. Let 
f: C1 - H*(X) run over the right A-maps of total degree 1, and let 
Ql+q(z, X) be the set of elements zf in Hl+q(X). 

Axiom 2. (s) e Hl +q(X)/QI+q(z, X). 

For the next axiom, let g: X-+ Y be a map, and let s: C0o H*(Y) be 
a right A-map such that de = 0. 

Axiom 3. ((?(s))g* = >(esg*) . 
It is understood that the g* on the left-hand side of this equation de- 

notes a homomorphism of quotient groups, induced by the homomorphism 
g* of cohomology groups. 

For the next axiom, let sX be the suspension of X, and let s: H*(sX) 
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H*(X) be the suspension isomorphism, as in ? 3.4. Let s: C0 H*(sX) 
be a right A-map such that de = 0. 

Axiom 4. (ID(s))s = (es). 
The s on the left-hand side of this equation is to be interpreted like 

the g* in Axiom 3. 

For the next axiom, let (X, Y) be a pair of spaces, and let s: CO H*(X) 
be a right A-map of degree 1 such that de = 0 and si* = 0. We can now 
find right A-maps r): CO - H*(X, Y) and C: C1 - H*( Y)(of total degree 
1) to complete the following anticommutative diagram. 

H*(Y) <2 H*(X) < H*(X, Y) H*(Y) <2 H*(X) 

d C 
Co < ' C 

Axiom 5. (F(s))i* = [z?] mod (QI+9(z, X))i*. 
It is understood that [z4] denotes the coset containing z?. We easily 
check that this coset is independent of the choice of Y and C. 

The following theorems may help to justify this set of axioms. 

THEOREM 3.6.1. For each pair (d, z), there is at least one associated 
operation (. 

THEOREM 3.6.2. If 1', T are two operations associated with the same 
pair (d, z), then they differ by a primary operation, in the sense that 
there is an element c in (Coker d)q such that ID(s) - T(s) = [ce]. 

We note that these theorems do not depend on any choice of bases in 
CO and C1; however, we may of course use bases in the proofs. 

We will now comment on the effect of these axioms. Let us take bases 
cO,, c1,k in CO, C1; suppose that the total degrees of cOJ,clk are nj, mk-1. 

We may write 
(Cl,k)d = EjrJjkJCoj , Z = EkEKakclk 

where ak, lkJ lie in A. We may define a stable primary operation ak (in 
J variables) by 

ak1{XJ} = EEj1kJXJ 

Then (as we easily check) Axiom 1 is equivalent to saying that 1) is de- 
fined on J-tuples {XJ such that x e HI +nj(X) for each j e J and ak {XJ} =0 

for each k e K. 
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Axiom 2 states that the " indeterminacy" of 1' is Ql+q(z, X); with the 
above notation, we have 

Ql+q(z, X) = EkKakHMk(X) 

It is easy to see that any operation whose indeterminacy is given in this 
way satisfies Axiom 1, ? 3.5. 

Axiom 3 states that 1D is natural. Axiom 4 states that 1D is stable, in 
the sense of ? 3.5. It is now clear that every 1' satisfying our axioms is 
a stable secondary operation in the sense of ? 3.5. 

Axiom 5 may be regarded in two ways. On the one hand, it is a ver- 
sion of one of the Peterson-Stein relations [28], and is of some use in 
applications. On the other hand, it serves to prescribe the universal ex- 
ample for 1', without making explicit mention of any such thing. This is 
made precise by Lemma 3.6.3; we shall need the following notation. Let 
1D be an operation satisfying Axioms 1-4, and let ak be as above. Let V, 
a' be the 1U" components of the stable operations 4', a, (as in ? 3.5); and 
let E be a canonical fibering associated with the K-tuple {a' }, as in ?? 3.3, 
3.5. (For this purpose we assume that 1 > - v, where i. is given by 
v = MinjejkEK(nj, mk - 1).) We may refer to E as a "canonical fibering 
associated with d". Let the maps 00, 01 be as in Lemma 3.5.2; and let 
SE. Co - H*(E) be the A-map corresponding to the J-tuple {e,}, so that 
SE = 00SCot*. We may regard SE as analogous to the "fundamental class" 
in an Eilenberg-MacLane space. We have ak{ej} = 0, or equivalently 
dSE = 0, So that 4(SE) is defined. 

LEMMA 3.6.3. V satisfies Axiom 5 if and only if 

z01 e (VI(SE))i* . 

PROOF. Suppse V satisfies Axiom 5; then we may apply Axiom 5 to 
the following diagram (in which the square is provided by Lemma 3.5.2): 

H*(F) AH*(E) i H*(E, F) 2 H*(F) H*(E) 

wrap H*(B, bo) 

H*(B) 
00 

d cT < e1 

The conclusion which we obtain is 



72 J. F. ADAMS 

zol e (4 (-SE))i 
* 

Conversely, suppose that (V satisfies this condition; we have to verify 
Axiom 5. It is sufficient to do so when the pair (X, Y) is a pair of CW- 
complexes. In this case, suppose given s and Y2 C0 -* H* (X, Y), as in 
Axiom 5. Since B is a generalised Eilenberg-MacLane space, we can con- 
struct a map f: X, Y - B, b, so that the composite map 

C0 ? H*(B) < H*(B, bo) 
f 

H*(X, Y) 

coincides with Y). By Lemma 3.3.8, we can lift f to g: X, Y - E, F. We 
can now take ? to be the composite map 

Cg H*(F) 9 H*(Y) . 

But with this choice of C, we have 

zC e (4)z(s))i*, 

by applying g* to the original condition. This completes the proof. 
PROOF OF THEOREM 3.6.1. Suppose given a pair (d, z). Let us take 

bases c0,, cC1k in C0, C1; and let us keep the other notations introduced in 
the comments on the axioms, so that the K-tuple {ar} is as above. Let 
El be a canonical fibering associated with the K-tuple {al}. Let us fix on 
a value X of 1 such that X > Max (- v, q - 2v). By Lemma 3.5.2, we may 
choose a class v in Hx+.(E,) so that 

vi* = z01. 

Since we shall later wish to quote the part of the argument which starts 
at this point, we give it the status of a lemma. 

LEMMA 3.6.4. With the data above, there is at least one operation 4) 
associated with (d, z) (in the sense of Axioms 1-5) and such that 
(EA, {el}, v) is a universal example for VA. 

It is clear that this lemma implies the theorem. 
PROOF OF LEMMA 3.6.4. We have canonical fiberings -r,: El B, as- 

sociated with K-tuples {a'} (at least for 1 > - ). By Theorem 3.4.9, 
tr1+1: f2E,+1-42B,+ is a canonical fibering associated with {al}; by 

Theorem 3.3.6, it is equivalent to -r,: El B, We choose a finite chain 
of equivalences connecting them. Our next step is to choose a sequence 
of classes vz e Hl+q(E,) so that vA = v and so that the class vW+lu in 
Hl+q(f7E,1+) corresponds to v1 in Hl+q(E,) under the finite chain of 
equivalences. This choice is clearly possible and unique, because the 
suspension 
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a Hr + (El + 1) Hr(&2Ez+ 1) 

is an isomorphism for r < 2(1 + 4). Let V>(for 1 > - ) be the operation 
given by the universal example (El, {el}, vl). Then it is clear that the 
operation given by vl(namely V) coincides with that given by v +la (namely 
((D)+1)8). To obtain a stable operation (1 (in the sense of ? 3.5) we need 
only define its components (F' for 1 < - i by the inductive formula 

(<> = (<l +1)S (for each 1). 
We have now defined the operation <1 required; it remains to verify that 

it has the desired properties. We have ensured that v is a universal ex- 
ample for <>. Further, we have satisfied Axioms 3 and 4 (since <1 is 
natural and stable) and also Axiom 1 (since (DI is defined on the natural 
subset determined by {al}). 

We next consider the equation 

vli* z z01 . 

It holds for 1 = X, by hypothesis; we may deduce that it holds for all 1 
(such that 1 > - ), since the suspension 

a: HrT+(F1+1) - Hr(&2F+ 1) 

is an isomorphism for r < 2(1 + 4). 
We can now verify Axiom 2. By suspension, it is sufficient to do this 

for 1 > - v. In this case, Theorem 3.4.6 shows that the values of (VI are 
cosets of (V'(O); we will show that (V'(O) - Ql+q(z, X). It is sufficient 
to do this in the case when X is a CW-complex. In this case, any element 
of VDl(O) can be written in the form vlg*, where g: X-Ez is a map such 
that {ezg*} = 0. Since el = b-r*, we have {b't-t*g*} = 0, and therefore 
tDg: X - B, is homotopic to the constant map at b,. Covering this homo- 
topy, we find a map h: X Fz such that g^-ih: X El. We now have 

vlg* = vli*h* = zOih* . 

Since 0ih*: C1- H*(X) is an A-map of degree 1, we have shown that 
4Il(0) C Ql+q(z, X). Since any A-map f: C1 H*(X) of degree 1 may be 
written in the form 0jh* by a suitable choice of h, we easily see that 
(VI(O) D Q l +q(z, X). This completes the proof of Axiom 2. 

It remains only to verify Axiom 5. But this follows immediately from 
Lemma 3.6.3, at least if 1 > - v; and the case 1 < - v may be deduced 
by suspension. This completes the proof of Lemma 3.6.4 and of Theorem 
3.6.1. 

PROOF OF THEOREM 3.6.2. Suppose that 1', P are two operations as- 
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sociated with the same pair (d, z). Let us keep the general notation used 
above; let X be a value of 1 such that X > Max(-v, q - 2v), and let E 
be a canonical fibering associated with {al}. By Axiom 5 and Lemma 
3.6.3, we have 

Z01 e (1(SE))i* 

Let v be a class in 'I(sE) such that vi* = z01. Similarly, let w be a class 
in T(sE) such that wi* = z01; then (v-w)i* = 0. By Lemma 3.5.2, there 
is an element c in (Co)q such that v - w = cO,-m,*. This shows that 

I'(SE) - p(SE) - [CSE] = 0 

Let us define a stable operation X by 

X(6) = (s) -T(s) - [ce] 

then X satisfies the conditions of Lemma 3.5.1; therefore X(s) = 0. This 
completes the proof of Theorem 3.6.2. 

It is clear that operations satisfying Axioms 1-5 are linear, in the sense 
that 

(D(s + s') = m(s) + I(s'). 

In fact, Theorem 3.4.6 shows that this is true for operations constructed 
by the method of Lemma 3.6.4; and Theorem 3.6.2 enables us to deduce 
the corresponding result for any operation (D. 

3.7. Properties of the operations. In this section we shall prove cer- 
tain properties of the stable secondary operations described in the last 
section. In content these properties are relations which hold between 
certain sums of composite operations, such as EreRaar(. and EreRI>rar; 

here, the ar are primary operations, and the (Dr are secondary operations. 
We shall give these properties a form in keeping with our algebraic ma- 
chinery. They are stated as Theorems 3.7.1 and 3.7.2; these results are 
essential for the applications. 

We shall not discuss operations of the form IDT, since such operations 
are tertiary, not secondary; 4INP{xj is only defined if akT {xj = 0 for 
various ak. 

We first suppose given an A-map d: C1 , C0 (of the usual kind) and 
finitely many elements Zr in Ker d and of degrees qr. Suppose that 

Z = 
ErERarZr 

where are A and deg (ar) + qr- q. Suppose that operations (Dr corre- 
spond to the pairs (d, Zr); then we have the following result. 
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THEOREM 3.7.1. There is an operation 1D associated with (d, z) and 
such that 

ErER[ar(Dr()] -= [I?(s)] mod ErarQ'+qr(Zr, X) 

for each X and each A-map s: C H*(X) (of degree 1) such that ds=O. 

We remark that Ql+q(z, X) C ErarQ +'r(Zr X); this is easily verified. 
We may call the group ErarQl+qr(Zr, X) the total indeterminacy of the 
operations ar/Ir and 1'; the expressions in square brackets denote cosets 
of this group. It is worth noting, for the applications, that if the set R 
contains only one member r, then 

Ql+q(z, X) - arQ +qr(zr X). 

PROOF OF THEOREM 3.7.1. Let E = E, be a canonical fibering associat- 
ed with d, for some X>Max(- v, q- 2v). Let Vr be an element in (Fr('SE) 
such that vri* = ZrO1. Define v by v = ErERarvr; then v e Hx+q(E) and 
vi* = z01. By Lemma 3.6.4 there is an operation <1 associated with (d, z) 
such that v e 1'(SE). We thus have 

[ID(SE)] - ErER [arTIr(SE)] = 0 

By Lemma 3.5.1 we have 

[(' )- ErER[arr(S)] = 0 

This completes the proof. 

For the next theorem, we suppose given the following anticommutative 
diagram, in which d and d' are A-maps of the usual kind, while p, and pi 
are A-maps of degree r. 

dj jd' 

PO CO 

Let z be an element of Ker d, of total degree q, and let 1 be an operation 
associated with (d, z). Then we have the following result. 

THEOREM 3.7.2. There is an operation V' associated with (d', zp1) such 
that 

4J(poos?) - [V(s')] mod Qz+g+r(Z, X) 

for each X and each A-map s': C? )H*(X)(of degree 1) such that d's'=O. 
We remark that <>(pos') is defined and that Q +q+r(z?, X) c QZ+q+r(z, X); 

this is easily verified. 
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EXAMPLE. Consider the case in which C0, C' are free on single gener- 
ators c0, c' of degree zero, and po is defined by c0p0 = ac', where a e A,. 
We may replace the map s' by a class x' in H*(X), and our conclusion 
becomes 

4,(ax') = [4,'(x')] 
For later use, we give the first step in the proof the status of a lemma. 

Let X be a value of 1 such that X > Max(-v', q + r - 2v'); let E' = E 

be a canonical fibering associated with d'. 

LEMMA 3.7.3. There is a class v' in Hx+4+r(E') such that 
v' e (D(POSE') , V'i = ZP1O1 . 

This is immediate, by applying Axiom 5 (for ID) to the following anticom- 
mutative diagram. 

H*(F?) H*(E?) i H*(E', F') H*(F) H*(E') 

*'>, H*(B', b?) 

H*(BP) 
0 T 
Po d {p 

Co P 

PROOF OF THEOREM 3.7.2. Let v' be as in the lemma. By Lemma 3.6.4, 
there is an operation V associated with (d', zp1) and such that v' e V(SE'). 

It is now easy to check that the operation 
Vs)= .F(Po)s-) - 

satisfies the conditions of Lemma 3.5.1. Therefore 

?(KPOs-?[s'( )] = 0. 
This completes the proof. 

Theorem 3.7.2 has a converse, which we state as Lemma 3.7.4. Sup- 
pose given the following diagram, in which d and d' are A-maps of the 
usual kind, while po is an A-map of degree r. 

C1 C1 

d| d' 
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Let z, z' be elements of Ker d, Ker d' of total degrees q, q + r, and let 
1', 1" be operations associated with the pairs (d, z), (d', z'). Assume the 
following conditions:- 

( i) Wherever V(s') is defined, ID(p0s') is defined. 
(ii) For one value X of 1 such that X > Max(- V, q+r-2v') we have 

for each A-map s': C0 H*(X) of degree X such that V(s') is defined. 
Then we have the following conclusions. 

LEMMA 3.7.4. With the above data, there is an A-map pl: C1 C' (of 
degree r) such that pld' = (- 1)rdp, and z' = zp1. Moreover, we have 

for A-maps s' of any degree. 
PROOF. Our first step is to deduce from (i) that Im(dp,) c Im d'. Let 

Et = .Et be a canonical fibering associated with d'; then d'sE, = 0, and 
hence dpOs, = 0; using Lemma 3.5.2, we see that 

(Im dpo)t c (Im d'), 
if t < 1 + 2v'. Since 1 is arbitrary, we have Im(dpo) c Im d'. 

We can now construct some map pl: C1 C' (of degree r) such that 
p1d' = (- 1)rdpo. Let E' = EI be a canonical fibering associated with d'. 
By Lemma 3.7.3, there is a class v' in HA+q+r(EP) such that 

v' e Jj(PosE1) , v'i* = zp'O 

On the other hand, there is a class w' in HA+q+r(E ) such that 

w' eI9 V(SE') C (POSE'), W i* = Z'01 

By Axiom 2 for 1', we have an A-map f: C1H*(E') such that w'-v'= 
zf; thus (z' - zp')O' = zfi*. Using Lemma 3.5.2, we can define an A-map 
g C1 C Ker d' such that 

g1 I C1,ft = fi* l C1,t for t < q +1. 

We now have z'-zp. = zg. We can take p1 = P + g. 
It is now clear that Ql+q+r(zP, X) c Ql+q+r(z, X) for each 1, so we may 

apply Lemma 3.5.1 to the operation 

X(E')= I@(Po)s') - 

and show that it is zero. This completes the proof. 
We now give a subsidiary result, which may however serve to justify 

some of our concepts. We shall suppose that the coefficient group G is a 
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field, that (P is an operation associated with a pair (d, z), and that 
1 > Max (- v, q - 2v) (with the notations used above); in other words, 
we shall only prove this result in a stable range of dimensions. 

LEMMA 3.7.5. If the map d: CHI+CO is minimal (in the sense of ? 2.1) 
then the lth component bV of 1' is minimal (in the sense of ? 3.2). 

PROOF. Let E = E, be a canonical fibering associated with d. If there 
is an operation T such that T c V, choose a class v in P(SE); let XI be 
the operation determined by the universal example v; then XI c P c (DI, 
by Lemma 3.2.3. By Lemma 3.6.4, XI is one component of a stable oper- 
ation X associated with some pair (d, z'). By Lemma 3.7.4, there is an 
A-map p1: C1 - C1 such that p1d = d and z' = zp1. Since d is minimal, Pi 

is an isomorphism. Therefore Ql+q(z, X) - Ql+q(zs X), and XI = If = V. 
This completes the proof. 

3.8. Outline of applications. Throughout this section we shall assume 
that the coefficient group G is a field. Under this condition, we shall give 
a general scheme for applying the results of ?? 3.6, 3.7. We wish to show, 
in particular, how homological algebra helps us to find secondary opera- 
tions to serve given purposes, and to find relations between such opera- 
tions. For example, if a class x in Hn(X) generates a sub-A-module M 
of H*(X), we shall be led to consider operations 1r defined on x and in 
(1-1) correspondence with a base of Tor A(G, M). The particular for- 
mulae used later were found by applying the principles outlined in this 
section. 

Suppose given a sub-A-module M of H*(X) which is locally finite-di- 
mensional. Suppose that we wish to study the stable secondary opera- 
tions 1' which are defined on J-tuples {xj of classes in M. It is equivalent 
to say that such operations ID are defined on A-maps s: C0 - M. Each 
such 1' will be associated with a pair (d, z) such that de = 0. 

It is sufficient to consider one particular pair of A-maps d: C1 Co and 
:C - ) M such that 

d 
C- Co M 0 

is exact. For suppose that d': C- Co and s': CO M are some other A- 
maps such that d's' - 0, and let V' be an operation corresponding to a 
pair (d', z'). Then we can form the following diagram. 

1 IO {i 

C, co > CnM 
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By Theorem 3.7.2, we have 

for some 1D associated with (d, z'pj). 
We may therefore suppose that the A-maps d: C1 - Co and s: CO > M 

considered are the beginning of a minimal resolution, in the sense of ? 2.1; 
let its first few terms be 

dC3 d,2 C1 diCo M . 
We may now consider a subset of the operations q1. Take an A-base 

of elements C2,r in C2; set Zr = C2 rd2; let (Dr be an operation corresponding 
to (d1, Zr). It is a property of the operations ID, that the other operations 
1' are linearly dependent on them, in a suitable sense. To be precise, let 
1D be an operation associated with a pair (d1, z). Since zdl =0 and Ker 
di = Im d2, we have z = Erarzr for some ar in A. 
By Theorems 3.7.1, 3.6.2 we have 

[<>('S)]= [CEl + Er [ar(Ir(S)] 

(modulo the total indeterminacy involved). It is therefore sufficient to 
consider the operations 4.r(S), provided that their indeterminacies are 
small enough for our purposes. 

By ? 2.1, the basic operations (Dr are in (1-1) correspondence with a 
G-base of Tor A(G, M). It may happen that we can calculate TorA(G, M) 
without using resolutions; if so, we can count how many basic operations 
(D. are needed. 

We have now shown how we may consider a set of basic operations; 
we proceed to show how we may consider relations between them. 

First take an element C3 of C3. We may write 

c3d3 = ErarC2,,. (where ar e A) . 

Applying d2, we have Erarzr = 0. By Theorems 3.7.1, 3.6.2 we have 
E,. [arr(s)]- = [c] (modulo the total indeterminacy involved). Now let C3 

run over an A-base of C3; we obtain basic relations between the (Dr, in 
(1-1) correspondence with a base of Tor A(G, M). As before, it may 
happen that we can calculate Tor A(G, M) without using resolutions. In 
this case we can count how many basic relations are available. 

We will now consider a slightly different application, which concerns 
composite operations of the form <>a. Suppose that M, M' are (locally 
finite-dimensional) submodules of H*(X) such that M'c M. We can take 
minimal resolutions of M, M' and form the following diagram. 
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C2 C1 co M' 
21 

d 21 diplel 
C2 - C, - 0 

Let T' be a basic operation corresponding to a pair (d', c'd'); we seek to 
evaluate P'(s') in terms of basic operations I>(s). For example, if M is 
generated (qua A-module) by one generator x, and if M' is generated by 
ax (where a e A), then the problem is equivalent to evaluating T'(ax) in 
terms of operations I'r(x). 

Let us write 
C2P2 = ErV2,r (where br e A) 

Then we have 

c~dfpi 
= ErbrZr 

By Theorems 3.6.2, 3.7.1, 3.7.2 we have 

l[ce] + Erbrr(S)] 

(modulo the total indeterminacy involved). 
It may happen that this formula is useful to us only if the coefficients 

br are of positive degree. To locate the P' which admit a formula of this 
sort, one should find the kernel of 

i:Tor2 (G. M ) ,TorA (G. M); 
for the coefficients br of degree zero in c'p2 = b are determined by 
i* t 

This concludes our outline of the use of homological algebra in search- 
ing for operations and relations to serve given purposes. 

3.9. The Cartan formula. Throughout this section, we shall assume 
that the coefficient domain G is the field Z, of integers modulo p, where 
p is a prime. Under this condition, we shall prove the existence of a Car- 
tan formula [11] for expanding 1?(xy), where xy is a cup-product and ID 
is an operation of the sort considered in ? 3.6. The expansion which we 
obtain is of the form 

E~~ ~~ (-)?r4)(:r, (Y) - 

where the signs are given by 
)(r) = deg (x) deg (ID') . 

We can give one elementary example of the sort of Cartan formula at 
issue; for the Bockstein coboundary /3pf is a stable operation, and is a 
secondary operation if f = 2; it satisfies the formula 
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/3pf (xy) D (/3,fX)y + (- 1)X(,flfy) 
where i= deg(x). 

The precise result we require is stated as Theorem 3.9.4; the remainder 
of this section is devoted to proving it. The proof uses the method of the 
universal example. The obvious universal example for this purpose is. a 
Cartesian product, as considered by Serre [30]. However, we are partic- 
ularly concerned with stable operations; we must therefore show how 
our Cartan formulae behave under suspension. For this purpose we use 
a "product" more conveniently related to the suspension. Let Y', Y" be 
enumerable CW-complexes with base-points y', y"'; we may form the "re- 
duced product" [18] 

Y' X Y" = Y'x Y"/(Y'?xy~'Uyx Y"). 

This is again an enumerable CW-complex. The quotient map q: Y' x Y"-> 
Y' X Y" induces a homomorphism 

q+: H+(Y' X Y"?) H+(Y' x Y?), 
and q+ embeds H+(Y' X Y") as a direct summand of H+(Y' x Y"), com- 
plementary to H+(Y') and H+(Y"). If y' e H+(Y') and y" e H+(Y"), we 
have the "external" cup-product y' x y" in H+(Y' x Y") and a "re- 
duced" cup-product y' X y" in H+(Y' X Y") defined by 

(Y' X Y")q+ = y' x y" . 
We now set up some more notation. If K, L are subsets of Hq(X), 

Hr(X) then we define KL to be the set of cup-products ki, where k e K, 
1 e L; thus KL c Hq+r(X). If K, L are subsets of Hq(X) and X, a lie in 
Zp, then we define XK + uL to be the set of linear combinations Xk+ u1, 
where k e K, 1 e L. These definitions give a precise sense to formulae such 
as 

Er(_ r M7()(~~)(~tY; 

an expression of this sort denotes some set of cohomology classes. 
If K, L are subsets of Hq(Y'), Hq(Y") then we define the subset KXL 

of Hq+r(Y? X Y") in a similar way. 
We will now use the reduced product to study Cartan formulae valid 

in a fixed pair of dimensions. We will suppose that each of S, S', S" is 
a natural subset of cohomology, in one variable, whose dimension is 1, 1', 
1" in the three cases. Let R be a finite set of indices r; let 1', IDr, IDr! be 
operations defined on S, S', S", and of degrees (say) q, q', qr'. We will 
suppose that 

l'+l"==l, qr+ q'=q (foreachr) 
and that our operations have arguments and values of positive degree. 



82 J. F. ADAMS 

We will say that P can be expanded on S', S" in terms of VI, VI if the 
following two conditions hold. First, for each space Xand each x' e S'(X), 
x" e S"(X) we have 

(i ) x'x" e S(X), and 4I(x'x") has a non-empty intersection with 

Er( 1 ?rx )?r ( 

where 1Y(r) = l'q'. 
Secondly, whenever Y', Y" are enumerable CW-complexes and 

y' e S'(Y'), y" e S"(Y") we have 
(ii) y' X y" e S(Y' X Y"), and 1'(y' X y") has a non-empty intersection 

with Er( - jiy (r),j(y,) X 14'(y") 

For our first lemma, we suppose that we can choose enumerable CW- 
complexes Y', Y" and classes y' e H+(Y'), y" e H+(Y") so that (Y', y'), 
(Y", y") are universal examples for S', S". (We can certainly do this if 
the subsets S', S" are determined by K-tuples of primary operations, 
since we can replace the canonical fiberings of ? 3.3 by weakly equivalent 
enumerable CW-complexes.) 

LEMMA 3.9.1. If condition (ii) above holds for one such pair of uni- 
versal examples (Y', y') and (Y", y"), then conditions (i) and (ii) hold 
in general, so that 4 can be expanded on S', S" in terms of 14, VI. 

This lemma is immediate, by naturality. 

For our next lemma, we suppose that not only the subsets S', S" but 
also the subsets (S'),, (S")3 admit universal examples which are enumer- 
able CW-complexes. 

LEMMA 3.9.2. If 41 can be expanded on S', S" in terms of 41r, 4"1' then 
(Ds can be expanded on (S') , S" in terms of (4I)9, VI and on S', (S")s in 
terms of V, (,')S. 

PROOF. It is sufficient to prove that half of the lemma which relates to 
()s, S", since the other half may be proved similarly, 

If Y is a CW-complex, we may interpret the suspension s Y to be the 
reduced product S1X Y, since this is homotopy-equivalent to the ordinary 
suspension in this case. Suppose that y e Hn(Y) (n > 0); let s1 be the 
generator of H1(S1); and let s be the suspension isomorphism. Then we 
have the equation 

ys 1 = (-1)ns X Y. 

If Y', Y" are enumerable CW-complexes, we have the "associativity" 
formula 

(S1X Y')X Y"=SiX(Y'X Y"). 
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In H+(S1 X Y' X Y") we have 

(y' X y )s 1 = (-l)n1"(yts-1) X yy" 
(where n" = deg(y")); this follows easily from the equation above and 
the associativity of the cup-product. 

Now let (Y', y'), (Y", y") be universal examples for (S')s, S". Since 
(-l)I"y' e (S')s(Y'), we have (- 1)1"y's-1 e S'(S1 X Y'); also y" e S"(Y"). 
If <1 can be expanded on S', S", we have 

(- 1)// (y's-1) X yf? e S(Sl X Y? X Yff 

whence (y' X y")s-1 e S(S1 X Y' X Y") and y' X y" e S s(Y I X Y"). 
Again, if 1D can be expanded on S', S", we have 

q?((-1)l"(y's-) X YI) I Er( ln7n(- t (Cr)lvil) X <>"(y") # 0 

where r(r) = V'q". In this expression we have 

r?((- 1) ~y 8-) = ((?1)r1s((_ 1Yl 8t))s-1 = (- 1y (((Dr) (y ))s S 

by Lemma 3.4.2. A little manipulation now shows that 
DS(yv X y) Jr(-.),(r)(DIt)s(yI) X I(DI(y"l) # 0 

where (r) = (' - 1)q". By Lemma 3.9.1, (Ds can be expanded on (S)s, 
S" in terms of (D')s, 44". This completes the proof. 

It will be convenient if we now set up the data for Theorem 3.9.4. Let 
C0 be a free A-module on one generator c0 of degree zero. We suppose 
given three A-maps d: C1 - CO, d': C' - CO and d": C"' CO', as in ? 3.6. 
We shall suppose that C',q+l = 0 for q < 0 and that d' C',1: C1 -C1 is 
monomorphic; this assumption is automatically satisfied if d' is minimal. 
The result of this assumption about d' is that if El is a canonical fibering 
associated with d', as in ? 3.6, then El is (1 - l)-connected and H1(EI) = 
Z,, generated by the "fundamental class" el. We make the correspond- 
ing assumption about d". 

Corresponding to d, d', d" we have stable natural subsets T, T', T" in 
one variable. We now make an essential assumption restricting d, d', d"; 
we suppose that for each space X and for each x' e T'(X), x" e T"(X) the 
cup-product x'x" lies in T(X). 

LEMMA 3.9.3. 

(a) If Y', Y" are enumerable CW-complexes and y'e T'(Y'), y" e 
T"(Y") then Y' X Y" e T(Y' X Y"). 

(b) If X is any space, then 
T'(X) c T(X), T"(X) c T(X) . 

PROOF OF PART (a). By our assumptions, the external cup-product 
y x y" lies in T(Y' x Y"); and if a, is a primary operation such that 
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ak(y' x y") = 0, then ak(y' X y") = 0, since q+ is a monomorphism. 

PROOF OF PART (b). It is sufficient to prove one inclusion, say the sec- 
ond. If 1 > 0, let (Y", y") be a universal example for (T")' such that 
Y" is an enumerable CW-complex; then y" e (T")I(Y"). The element 
(-1)'s' in H1(S1) certainly lies in (T')1(S1), since a(-1)Is'=0 for each pri- 
mary operation a of positive degree. Therefore (- 1)'s'Xy" e TL+l(SlX Y"); 
since y''s'I = (-1)'s1 X y" and T is stable, we have y" e TZ(YPP). The in- 
clusion (T ")L(X) c T L(X) for a general space X now follows by naturality. 

We will now state Theorem 3.9.4. This theorem will allow us to ex- 
pand 4I(x'x") in the form 

'V (X?)X" + Enr~A (O 1)'(r)'I?(xP)Ft(xP) ? (-r r ) 

whenever x' e T'(X) and x" e T"(X). It will also give us some informa- 
tion about the operations eV, bV which occur in the end terms of this 
expansion; they are essentially the same as (. 

THEOREM 3.9.4. If d, d', d", T, T' and T" are as above, and if ( is an 
operation of degree q > 0 associated with a pair (d, z), then there are 
operations V, (V? which are associated with pairs (d', z'), (d", z") and 
satisfy the following conditions. 

( i ) For each pair of dimensions (1, m), the component V`itm can be 
expanded on (T')z, (T")mn in terms of ((I4)', (V.P?)M. 

(ii) There are two values a, w of r such that (", V are identity oper- 
ations. For r * a, o we have 

O<deg (C) < q , O < deg ((V) < q 

(iii) There is an A-map pl: C1 -> C1 sulch that pld' = d and zp1 = z'. 
For each space X and each x' e T'(X) we have 

(iv) There is an A-map po': C1-C' such that pW'd' = d and zp0' = z". 
For each space X and each x" e T"(X) we have 

Vj(x") c '1(x") . 

We require a further lemma, which is a converse of Lemma 3.9.2. We 
shall suppose that (, V', (1 are stable operations associated with pairs 
(d, z), (d', z'), (d", z"); we set q = deg(Q). 

LEMMA 3.9.5. If .lim can be expanded on (T')L, (T")m in terms of 
((')', (qj?")m and if 1 > q, m > q then (+m+1 can be expanded on (T')'+1, 
(T")m in terms of (.1)i+1, (D?4)m and on (T')L, (T")m1l in terms of (Or)L, 

(<~tn+1 
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Roughly speaking, the effect of Lemmas 3.9.2 and 3.9.5 is that in order 
to prove Theorem 3.9.4, it is sufficient to consider a single pair of dimen- 
sions (1, m). 

PROOF OF LEMMA 3.9.5. As for Lemma 3.9.2, it is sufficient to prove 
that half of the lemma which passes from dimensions (1, m) to dimensions 
(1 + 1, m). Let (Y', y'), (Y", y") be universal examples for (T')'+1, (T")m 
such that Y', Y" are enumerable CW-complexes. As in Lemma 3.5.1, 
we can take a space X and a map g: sX - Y' such that 

g*: Hr(yP) ) Hr(sX) 

is an isomorphism for r < 1 + q + 1; we may suppose that X is an enu- 
merable CW-complex, and that sX is the reduced product S1 X X. We 
can now form the map 

gxl: S1XXXY" Y'X Y"; 

this induces isomorphisms of cohomology up to dimension 1 + m + q + 1 
at least. It is now easy to check that 

4JDI+r+l(yv X v ) n Er(1),q(r) ((IV), +1(y) X ((Ir )m(y") # 0 

by applying (g X 1)+ and using the data. The conclusion now follows by 
Lemma 3.9.1. This completes the proof. 

PROOF OF THEOREM 3.9.4. We begin by fixing attention on a pair of 
dimensions (1, m) such that 1 > q, m > q. Let El, E" be canonical fiber- 
ings associated with d', d", as in ? 3.6. We may take weakly equivalent 
enumerable CW-complexes Y', Y"; we write y', y" for the classes cor- 
responding to the fundamental classes e', e". Since H*(Y'), H*(Y") are 
locally finite-dimensional, the reduced cup-product 

a: H+(Y') 0 H+(Y") - H+(Y' X Y") 
is an isomorphism. The coset D (y' X y") is defined; we may choose a 
class v in 1'(y' X y"), and expand v in the form 

v - ~rV1)-q(r)v? x v;' V =Er( -1' r X r 
where vr e H+(Y'), v"? e H+(Y") and 7(r) = l(deg (v')-im). By our origi- 
nal data, Y' is (1 - l)-connected and H1(Y') = Z,, generated by y'; 
similarly for Y". We may therefore take our expansion so that deg(v?) > 1 
and deg(v7) > m, except that v- = y' and v- = y". By Lemma 3.6.4, 
there are operations 14r (for r # w), '14' (for r o a) which are associated 
with pairs (d', z4), (d", z7) and are such that v', vr' are universal examples 
for (('D)I, ('1??)m. We define 4D? and eV?? directly, defining them to be iden- 
tity operations. By Lemma 3.9.1, JDl+m can be expanded on (T')', (T??)m 
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in terms of ((J')i, (eD")mf. By Lemmas 3.9.2 and 3.9.5, a similar conclusion 
follows in every pair of dimensions. This establishes parts ( i ) and (ii) 
of the theorem. 

We will now examine the class v" which occurs in the above expansion. 
Let us take W = S', so that H'(W) = Zp, generated by w. We may take 
a map f: W - Y such that y'f = (-1)lmw; thus f +: Hr(Y,) Hr(W) is 
zero for r > 1. We have 

Er(-)7)V 
X r er (Y' X Y ) 

applying (f X 1)+, we find 

(_l)1(9+m)w X V?? e i+m n((-1)imw X Y ) 

in W X Y". But W X Y" is the i-fold suspension of Y", and we have 
the equation 

ys-1 = (-l)"tw X Y (for y e Ht(YY")). 

Since D is stable, we deduce v" e 1Dm(y"). Lemma 3.2.3 now shows that 

(?ItP)mn(X") c PDm(x") (for x" e (T ")m(X)). 

Lemma 3.7.4 now shows the existence of an A-map p?': C1 C?' such that 
Pid?' = d and zpo' = z"?; it also guarantees that 

??(x??) c: D(x??) 

for classes x" of any degree. This establishes part (iv) of the theorem; 
we may establish part (iii) similarly. The proof of Theorem 3.9.4 is com- 
plete. 

CHAPTER 4. PARTICULAR OPERATIONS 

4.1. Introduction. In this chapter we shall use the theory of Chapter 
3 to define and study a particular set of secondary cohomology operations 
FD,. These operations act on cohomology with mod 2 coefficients; they 
will be defined in ? 4.2. The object of our work is to prove the formula 

Eil aiJa ki, (u) = [Sq 21(u)] 

mentioned in Chapter 1; this formula is proved in ? 4.6. The line of proof 
is as follows. We first apply the theory of Chapter 3 to prove a formula 

E jaiJ k(Diju) = [XSq 2k+l(u)] 

containing an undetermined coefficient X. We then determine the coeffi- 
cient X by applying the formula to a suitable class u in the cohomology 
of a suitable space. For this purpose we use complex projective space of 
infinitely-many dimensions, which we shall call P. We therefore need to 
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know the values of the operations O j% in P; these are found in ? 4.5. It 
turns out that an inductive calculation is possible; there are many rela- 
tions between the different operations in P, and these enable us to de- 
duce, from the value of one selected operation, the values of all the others. 
In ? 4.4 we find the value of this one operation. In ? 4.3 we apply the 
theory of Chapter 3 to prove those relations between the operations which 
are needed for the calculation in ? 4.5. This work, therefore, will com- 
plete the proof of Theorem 1.1.1. 

In this chapter we have to use the Steenrod squares Sqk for values of 
k which may have a complicated form. We therefore make a convention, 
by which we write Sq(k) instead of Sqk in such cases. Similarly, we may 
write {,(k) instead of k in dealing with A* (see ? 2.4). Again, we write 
Hmn(X) instead of Hmn(X; Z2), and H*(X) instead of H*(X; Z2), since we 
shall not have to deal with any coefficients except Z2. 

4.2. The operations TP(u) and fDij(u). In this section we apply the 
theory of Chapter 3 to define certain particular secondary operations, act- 
ing on cohomology with mod 2 coefficients. These will be operations on 
one variable. 

To define our first operation, we have to give a pair (d, z) (see ? 3.1). 
We take CO to be A-free on one generator c of degree zero; we take C1 to 
be A-free on three generators c1, C3, C4 of degrees 1, 3, 4. We define d by 

cid = Sqic (i=1,3,4). 

We define z by 

z = Sq4Co + Sq2C3 + Sq'c4. 

This pair (d, z) corresponds, of course, to the relation 

Sq4Sq1 + Sq2Sq3 + Sq'Sq4 = 0. 

We note that (C,/dC1)4 = 0; so by Theorems 3.6.1, 3.6.2, there is a unique 
operation P (of degree 4) associated with this pair (d, z). This is the first 
operation we require. 

To define further operations, we introduce further pairs (d, z). We be- 
gin by constructing the first terms 

C d Co Z2 

of a minimal resolution (see ? 2.1) of Z2 over A. We may do this as fol- 
lows. We take CO to be A-free on one generator c of degree zero, and 
define ce = 1. We take C1 to be A-free on generators c, of degrees 2', for 
i = 0, 1, 2,.... We define d by setting 
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cid Sq (2)c. 
It is clear that Im (d) = Ker (e), since the elements Sq (29) are multiplica- 
tive generators for A (see [4]). It is also easy to show that d is minimal. 
In fact, to do this, we should take an element x = -c + ,<,ajc of 
degree 2L in C1, assume xd=O, and deduce that X=O. This is immediate 
from the equation 

21(2%) ((\c, + ,ac,)d) =X . 

Next, we make use of the epimorphism 0: Ker(d) TorA(Z2, Z2) intro- 
duced in ? 2.2. It was shown in ? 2.5 that the elements hihj (with O<i<j, 
j#i+l) inExt (Z2,Z2)formabasefor it. For O<ij, j< i+, 
then, we may take cycles zi (of degree 21 + 2J) in Ker (d) such that 

(hh3)(6zi, ) = 1 . 
Let CQ(j) be the submodule of C1 generated by co, c,* ... , c,. Then the cy- 
cle z, , lies in C1(j). This is clear from the degrees if i < j; if i = j, it 
follows by using also the fact that d is minimal. We set d(j) = d I Cl(j). 

By Theorem 3.6.1, once zi j is chosen, there is an operation Lf > (of 
degree 2' + 2J - 1) associated with the pair (d(j), zi j)(where 0 < i _ j, 
j # i + 1). Such an operation is unique, by Theorem 3.6.2, since 
(Co/dC1(j))n = 0 if n < 2J+1. These operations bD > are the ones which we 
require. They are defined on classes u such that 

Sq(2r) (U) = O for 0 < r j. 
The indeterminacy of Df , may depend on the choice of the cycle zi 1, and 
a fortiori the operation bD , may do so. However, all the propositions 
that we shall state about the operations bD , remain equally true, what- 
ever choice of the zi j is made. We shall therefore only need to suppose 
that the z,,, are chosen in some fixed fashion. 

For completeness, we should perhaps consider the operation bI{, asso- 
ciated with the pair (d(k), z, ) for some k > j. It has the same indeter- 
minacy as (D ,j but is defined on fewer classes u. Moreover, by Theorem 
3.7.2, we have 

I{V,(u)) = 41y(u) 
whenever VI, (u) is defined. Thus, in what follows, we shall not need to 
distinguish V, J from Di j by a separate symbol. 

It may be of interest to display a particular relation, holding in A, 
which corresponds to a cycle which one might choose for zi j. We consid- 
er first the case i < j, so that i < j - 2. Then the Adem relations [4] 
for Sq (29) Sq(2J) and Sq (2i+1) Sq (2i- 2i) both contain the term Sq (2i + 2i). 
Their sum is therefore an equation of the form 
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Sq (2)Sq (21) - E10 XSq(21 + 21 - k)Sq(k) 
with certain coefficients X,. We may use Adem's method [4] to express 
Sq (k) in the form 

Sq(k) = Eo=z< < a, Sq(2') 
with certain coefficients a,,, in A. Substituting, we obtain an equation 
of the form 

Sq (21)Sq(21) = Eo< bSq(21) 

with certain coefficients b& in A. Hence the expression 

zf = Sq(29)c, + Eo<>&c beep 

is a cycle in Cl(j). The fact that it satisfies the equation 

(hfh,)(Ozf,,) = 1 

follows from Lemma 2.2.2. 
The case i = j may be treated similarly, but even more simply, using 

the Adem relation for Sq (2J)Sq (2J) (cf. [4]). 
It may be remarked that the above process allows us to choose the cy- 

cles zf,, in a way which is quite definite, if this should be required. In 
fact, we have only to remark that Adem's method for reducing Sq(k) to 
a sum of products of the generators Sq(2r) leads to a well-determined 
answer. And this is clear, since it proceeds by a well-determined reduc- 
tive process, using at each step a well-determined substitution. 

We conclude by remarking that the operations 4,, O.j>j and (DO,2 do not 
depend on the choice of the cycles zo0, zil and Z0,2 In fact, it is easy to 
see that there is only one choice for the cycle zo,0, namely Sq'co. There 
are only two choices for the cycle zj1, namely 

(Sq2c1 + Sq3co) + XSq2(Sqlco) (X = 0, 1) 

These two cycles can be mapped into one another by an automorphism 
pi: Cl(l) Cl(l) defined as follows: 

COp == Co 

Cipi = cl + Sqlc0 . 

By Theorem 3.7.2, the operations corresponding to the two cycles coin- 
cide. 

Similarly, there are only four choices for the cycle Z0,2, namely 

(Sq'c2 + Sq2Sqlcl + Sq4cO) + XSql (Sq2c1 + Sq3c0) + pSq3(Sqlco) 

(a, p e Z2). 

As above, the choice does not affect (10,2 
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4.3. Relations between the operations T and DIbj. In this section we 
shall obtain those relations between the operations T and 4D , which we 
need in ? 4.5. 

For our first lemma, let u e Hm(X) (m > O) be a class such that Sql(u) = 0, 
Sq3(u) = 0, Sq4(U) -0. 

LEMMA 4.3.1. There is a formula 

(DO,2Sq4Sq2(U) = [Sq6NP(u) + XSq10(u)] 

valid in 

Hm1f0(X)/ (SqlHm+9(X) + Sq2SqlHm+7(X) + Sq4HM+6(X)) 

for a fixed X e Z2. 

We require this formula in order to apply it to the fundamental class 
in complex projective space. The actual value of X is not relevant, al- 
though at a later stage in our calculations it would be possible to show 
that X = 0. 

PROOF. Informally, the proof consists in showing that the relations. 
(Sq1Sq4 + Sq2Sq1Sq2 + Sq4Sql) Sq4Sq2 = 0, 

Sq6(Sq1Sq4 + Sq2Sq3 + Sq4Sql) = 0 

are the "same". Formally, we shall obtain this lemma as an application 
of Theorem 3.7.2, and we use the notation of that Theorem. In particular, 
we take d: C1- CO to be the map d(2), as used to define (DI 2 in ? 4.2; thus, 
we have 

cd = Sq (29)c (i = O 1, 2). 

Again, we take d': C- CO to be the d used in defining '. That is, we 
take 

ciCd ' _SqVc (i = 1, 3, 4). 
We define an A-linear map po: Co C'(of degree 6) by cpO Sq4Sq2c'. To 
apply Theorem 3.7.2, we have to construct a map p1: C1 - C' such that 
pld' = dpo. It is sufficient to take 

copi = Sq4c? 
cp = Sq7cl + Sq4c? 

C2p1 = Sq6Sq3c? + (Sq7 + Sq6Sql)c. 
Taking 

Z = Sq4cO + Sq2Sqlcl + Sqlc2 

we find 
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zp, = Sq6(Sq4c' + Sq2c? + Sq1c?) 

Theorems 3.7.2, 3.6.2 now yield the conclusion, since (Coker d')10 = Z2, 

generated by the image of Sq10c'. 

For our next lemma, let 

C d Co Z2 

be the first part of a minimal resolution of Z2 over A, as constructed in 
? 4.2. Let z e C1 be such that zd = 0 and deg(z) ? 2k; thus z e C(k - 1). 
Let X be an operation associated with the pair (d(k -1), z); thus 
deg(x)<2k. Let u be a class such that Sq(2r)u = 0 for 0 < r < k. Then 
we have the following conclusion. 

LEMMA 4.3.2. If (i, (u) has zero indeterminacy, and is zero, for each 
pair (i, j) with 0 < i _ j < k, j h i + 1, then X(u) has zero indetermi- 
nacy and is zero. 

PROOF. We first define C2 to be A-free on generators cfj of degree 
21 + 2J with ci,id = zoo; then by Lemma 2.2.1, the terms 

d d 
C2 Cl-+ Co Z2 

form part of a minimal resolution of Z2 over A. Since z e C1 and zd = 0, 
we have 

z = Z, ,ajjcj,,)d 

By considering degrees, all the terms in this sum have j < k. Thus we 
have 

Z = Eij ; J<k ai, jZj . 

We may apply Theorems 3.7.1, 3.6.2; since (Coker d(k - 1)). = 0 if n< 2k, 
we find 

[X(U)1 = Eij;=<kai ,? ,(u) 
- 0 (mod zero) . 

This proves the lemma. 
For the next lemma, we take an integer k > 2 and suppose that u e 

Hm(X)(m > 0) is a class such that Sq (2r)u = 0 for 0 < r ? k and 
Sq(2 k)Sq(2k+l) (U) = 0 

LEMMA 4.3.3. There is a formula 

"DO0,k+1Sq(2 k+) (U) = aoiJk (aI) , Jkyj(u) 

+ r 5i5kak iSq(2 kl) (U) + XkSq(2k+2) (U) 
i =-k - I 
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in which a,,J,, e A, a,,, e A and X, e Z2. It holds modulo the total indeter- 
minacy of both sides. The coefficient a,,,,, of 1DO,k satisfies 

(41(3*2k) + 52(2k))aO,,k = 1 . 

We require this formula in order to apply it to a power y2k of the funda- 
mental class y in complex projective space. The actual value of X, is not 
relevant, although at a later stage in our calculations it would be possible 
to show that X,, = 0. 

This lemma should be considered as strictly analogous to Lemma 4.3.1; 
it is another application of the theorems of ? 3.7. The only difference is 
that we do not propose to carry out the calculations explicitly. 

We begin by constructing a partial minimal resolution 

C11 C11' CO' M . 

Here M is the module of Theorem 2.6.2, except that the integer k of that 
theorem is replaced by (k + 1). Thus, M is a module whose Z2-base con- 
sists of three elements m, Sq(2+1)m, Sq(2k+2)m. 

We take CO to be free on one generator c", and define s" by c"s" =m. 
We know, by Theorem 2.6.2, that C ' will require generators c'(0 < i < k), 
c'* of degrees 2', 3. 2 , plus other generators of degrees t >3. 2?+1. By 
Lemma 2.2.1, it is sufficient to specify cM'd"', cl*dl', etc., in a suitable 
fashion. We may take 

cf'd" = Sq(2')c", cldl' = Sq (2k)Sq (2k 1)c . 

The choice of d"' on the other generators does not concern us. 
We postpone the construction of d"', in order to indicate how we pro- 

pose to apply Theorem 3.7.2. Using the notations of that theorem, we 
shall take d: C1 - CO to be d(k + 1), as used in ? 4.2 to define I0,k+l. We 
shall take C' to be the submodule of C ' generated by the c"'(0 ? i < k) 
and c'; we take CO = CO' and d' = d Cl. 

The map pO: CO CO will be defined by 

cpO = Sq (2 + )c') 

Since this induces a map from Co/dC1 to M1 it is possible to construct a 
map pl: C1 C- so that p1d"' = dpo. By considering dimensions we see 
that Pi will map into C1. 

The map Pi may be taken in any way; we only require the following 
property. 

LEMMA 4.3.4. If 
cop1 = aic (a, e A) 
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then 

e(2k +'l)a,, 
- 1 

PROOF. Set h = 2k?1. If a, b e I(A), we have 

sh+1(ab) = (nha) (tjb) 
+ (sta) (nIb) . 

We define a function 5: CO Z2 by setting 

~(ac") = t+a. 

Thus 

~(copjd') = (LOI i:kaSq(2 )c") 
= 581ao . 

But 

5(codpo) = 4(Sq'Sqhc ) 
=1. 

This proves the lemma. 

We now revert to the construction of C '. We know by Theorem 2.6.2, 
that C ' will require generators 

cl'j (O i < j ? kj t i + 1) of degrees 2i + 2' 
c11* (O _ i < k, i # k -1) of degrees 21 + 3.2 k 

c'*' * of degree 2k-1 + 2k+2 

plus other generators of degrees t > 3.2 ?1 Using Lemma 2.2.1, we may 
construct d"' as follows. Define an embedding e: Cl(k) - C"' by cie = c"'. 
Then we may take 

zjd" = z je, c, *d" = Zi kPl 

c* d it= Zk-lk+lPj 

The choice of d"' on the other generators does not concern us. 
We now observe that ZO k+lPl is a cycle in C"'. Thus it lies in Im d"', and 

must have the following form: 

(4.3.5) ZO=k+lPl 
= 

OK,<J9k ajjje) + EO?i?ka%,k(ZikP1) 

Since k > 2, there is no term in Zk-lk+lpl, by considering degrees. Apply- 
ing Theorems 3.7.2, 3.7.1, 3.6.2, we obtain the formula which was to be 
proved. 

It remains only to obtain the required information about the coefficient 
ao ,k To this end, we define a function 5: C' - Z2 by setting 
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s(a*c" + 0O <kaLC1) = (5,(2k)X2(2k))a o 
We shall apply 5 to both sides of the equation (4.3.5). We first note that 

*(581(2 )U22)) = 51(2 k)2(2 k) 0 1 + (41(3 2 k) + 2(2 )) 0 51(2 k) 

+ 51(2 k1) 0 51(2 k1) + 51(2 k) (0 2(2 ) + 1 0 51(2)U2(2 k) 

In particular, 01(2k)M2(2k) (ab) = 0 unless deg (a) and deg (b) are both divi- 
sible by 2k. 

Let us expand ZO,k+l in the form 

ZO,k+l = EO:?ik1 bbici (bi e A) 
Then we have 

~(ZOk+lPl) = 

But deg(bi) = 20 + 2k+1 - 2%, which is odd unless i = 0. Let us write 
cOp1 = Eafic. Then 

t(Zo,k+A~) = t(bo(copj)) 

- (01(2 k+)bo) (e1(2k l)ao) 

= 1 9 

using Lemma 2.2.2. (for bo) and Lemma 4.3.4 (for ao). 
Let us apply 5 to the right-hand side of the equation (4.3.5). We have 

deg(a Jk) = 20 + 2k+2 - 2i - 2 
deg(a, k) = 20 + 2k _ 2i 

and these are odd, except in the cases with i = 0. Moreover, 

deg(ao j,) = 2k+2 - 2J, 

and this is not divisible by 2k, except in the case j = k. Thus it remains 
only to evaluate 

~(aO k k (ZO,ke)) s (aO,k(ZO,A~)) 

We deal with the latter first. In C1, let us write Zo k =E EO;;;k bic , with 
a new set of coefficients bi in A. Let us write 

cipi = bi* + , o*jkbi jc 

Then 

5(aOk(ZokPl)) = (51(2 k)2(2 k)) (aO, k EOj kbibiO) 

Here we have 

deg(aO,) = 2 , deg(bi) = 20 + 2k _ 2- 

deg(b,,O) = 2i + 2k+1 - 20. 



HOPF INVARIANT ONE 95 

Thus 

t(ao,k(ZO,kpl)) = 
(01(2k)aok),O?ik(k2(2 k)bibi o) = 0 

Lastly, we consider t(aOkk(zOke)) Let us write zOke = i Then 

5(aO kk(ZOke)) = ([51(3 .2k) + U%(2k)]aOk k) (k1(2k)bo) 
= (41(3*2 k) + 2(2 k))aO,kk 

We conclude that 

(41(3 2k) + U%(2k))aO k,k 1 

This completes the proof of Lemma 4.3.3. 

4.4. The operation T in P6. In this section we find the value of that 
operation which is needed to start the induction in ? 4.5. 

Let P be complex projective space of infinitely-many dimensions; let y 
be a generator of H2(P), so that H*(P) is a polynomial algebra (over Z2) 

generated by y. Let 'P be the operation defined in ? 4.2. 

THEOREM 4.4.1. p(y) = y3. 

The operation P is defined on y because the elements Sq1y, Sq3y and 
Sq4y are zero. It is defined modulo zero because the elements Sq2y2 and 
Sq4y are zero. 

Before proving Theorem 4.4.1, we insert some remarks on its proof. 
It is easy to show (by considering the universal example) that if u e H2(X) 
is any class such that Sq1(u) = 0, we have 

p(u) = [Xu3] 

for some fixed coefficient X. Theorem 4.4.1 is therefore equivalent to the 
proposition that if u is any class such that Sqlu = 0, we have 

P(u) = [u3] 

It would be desirable, in some ways, to prove this latter proposition by 
arguments lying wholly inside homology-theory. This is indeed possible, 
by using the methods of Steenrod and Adem (see [32], [5]) to give a con- 
struction for P and to discuss its properties. However, to employ such 
methods here would lengthen the present paper by a chapter; for brevity, 
therefore, we make an ad hoc application of the methods of homotopy 
theory. 

In fact, the space P may be decomposed as a CW-complex S2 U E4 U E6 U 
* U E2n U *.* *, where the subcomplex S2 u E4 U E6 U ... U E2n is just 
P2n , the complex projective space of n complex dimensions. The stable 
cohomology operations in H*(P) depend on the attaching maps of these 
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cells, or rather, on their stable or S-homotopy classes. 
The attaching map for E4 is just the Hopf map r2: S3 S2. Similarly, 

the attaching map vr: S5 - P4 for E6 is just the usual fibering, with fibre 
S1. Let Str: S6 - SP4 be the suspension of mr, and let Si: S3 SP4 be 
the suspension of the embedding i: S2 P4. 

LEMMA 4.4.2. In r6(SP4) we have 

{St}- = (Si)*, 

where w is a generator of wr6(S3). 
This lemma is essentially due to H. Toda [33, Chapter 7]; but unfortu- 

nately, he does not state it explicitly. A variety of proofs are available; 
the neatest I have seen is the following, for which I am indebted to Dr. 
I. M. James. It depends on the following lemma. 

LEMMA 4.4.3. Let B=S U En U En+" be a q-sphere bundle over sn 
decomposed into cells in the obvious way. Let a e Wrn_(Rq+1) be the 
characteristic element for B. and let fi e rn+?q-l(S1 U En) be the attaching 
element for En+,. Then 

SO= ? (Si)*(w), 

where 

(Si)*: Irn+q(Sq+l) Irn+q(S(S U En)) 

is the injection and w is obtained from a by the Hopf construction. 

This lemma is cognate with the work done in [20] (see ? 7 in particular). 
For the application, we take q = 2, n = 4, and take B to be the stand- 

ard fibering 
S2 ,+ - S4 

The element a is a generator of w3(R3), and hence w is a generator of 
r6(S3). 

We now proceed to deduce Theorem 4.4.1 from Lemma 4.4.2. We need 
one more lemma. Let K = Sn U E n+4 be a complex (with n > 5) in which 
the class of the attaching map is 2rv, where v is a generator of wrn+3(Sn) 
and r is an integer. 

LEMMA 4.4.4. P: Hn (K) Hn+4(K) is zero if r is even, non-zero if r 
is odd. 

PROOF. We first observe that T is defined, and is defined modulo zero, 
because 

Sq4: Hn (K) Hn+4(K) 
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is zero. We now construct a space X, equivalent to K, as follows; take 
the mapping-cylinder of a map f: S+3 -f Sn representing P; then attach 
a cell En+4 to Sn+3 by a map of degree 2r. Let Y be the subspace 
En+4 U Sn+3. We shall apply Axiom 5, ? 3.6, to the pair X, Y. Inspecting 
the exact cohomology sequence of this pair, we see that we may take 
generators as follows. 

u e Hn(X, Y), j*U e Hn(X) 

v e HIn+3( Y) , Sv e Hn+4(X, Y) 

W e Hn+4(X) i*w e Hn+4(y) 

We have Sq'u = 0, Sq3u = 0, Sq4u = Sv, and Sq1v = r(i*w). By Axiom 
5, i*p(j*u) = r(i*w) and hence T(j*u) = rw. This proves Lemma 4.4.4. 

We now prove Theorem 4.4.1. Consider S3P6, the threefold suspension 
of P6. By Lemma 4.4.2, the attaching map of S3E6 lies in the class 
(S3i)*(S21w), where w is some generator of r6(S3). But S3w = 2rP with r 
odd. Let K be a complex, as considered in Lemma 4.4.4, for n = 5 and 
this value of r; then there is a map f: K5 - S3P6 inducing isomorphisms 
of H5, H9. Since T is non-zero in K by Lemma 4.4.4, it is non-zero in 
S3P6. Since T commutes with suspension, it is non-zero in P6, and hence 
in P. This completes the proof of Theorem 4.4.1. 

We remark that the operation T is by no means the only secondary 
operation in P which we can evaluate directly. In particular, one can 
evaluate 10,2(y4t) using James's results on the attaching maps in quater- 
nionic projective spaces-see (2.10a) of [19]. 

4.5. The operations ),,j in P. In this section we shall obtain the 
values of the operations >,j when they act in complex projective space 
of infinitely-many dimensions. We write P for this projective space, and 
write y for the generator of H2(P), so that H*(P) is a polynomial algebra 
(over Z2) generated by y. The Steenrod squares in H*(P) are easily cal- 
culated; we have 

Sq2k+1(Yt) = 0 

Sq 2k(yt) = (t - k, k)yt+k 

(Here (h, k) stands for the (mod 2) binomial coefficient (h + k)!/h! k!). 
Let X be an operation associated with a pair (d(j), z) (using the notation 

of ? 4.2). Then X is defined on yt if and only if Sq(2r)(yt)=0 for 0?r<j. 
For this, it is necessary and sufficient that t-0 mod 2'. Now set deg(x)= 
n; and suppose that n < 21+1. If n is odd, then X(yW) is a coset in a zero 
group. If n is even, we should examine the Steenrod operations ar which 
enter into the indeterminacy of X (and are defined by z = 1arcr). We see 
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deg(a,) = n + 1 - 2r. 

If r>0, this degree is odd, so that ar contributes nothing to the indeter- 
minacy. On the other hand, if r = 0, then this degree is n; and if t_ 0 
mod 2', then 

a0H2t(P) = 0 

for any aO in A such that deg(aj) = n < 2'+1. We conclude that X(yt), if 
defined at all, has zero indeterminacy. 

In particular, we conclude that (Dj(yt) is defined if and only if t 0 0 
mod 2J; that its indeterminacy is then zero; and that it is zero (since of 
odd degree) unless i = 0, j > 2. 

For our next result, which gives the values of the 4?o.j, we set h = 2J. 

THEOREM 4.5.1. 10)oj(y') = tyh(t+1/2) 

PROOF. We first obtain the case j = 2, t = 1. In fact, by applying 
Lemma 4.3.1 to the case u = y and using Theorem 4.4.1, we see 

(DO, 2(y4)= =o,2(Sq4Sq2y) = Sq6gy + XSq'Oy = Sq6y3 = y6. 

This case serves to start an induction. Suppose, as an inductive hy- 
pothesis, that we have established the result for all j < k (where k >2) and 
for the case j = k, t = 1. We now note that if X is any secondary opera- 
tion associated with d(k) such that deg(X) < h = 2k, then X(yht) = 0 
(modulo zero). This is immediate by Lemma 4.3.2, using the inductive 
hypothesis. We also note that it is possible to apply the Cartan formula 
(Theorem 3.9.4) in case d = d' = d" = d(k) (with the notations of ?? 3.9, 
4.2). We will verify the main condition on d, d' and d" imposed in ? 3.9. 
In fact, if u, v are such that Sq(2r)u = 0, Sq(2r)v = 0 for 0 ? r < k, 
then Sql(u) = 0, Sql(v) = 0 for 1 < i ? 2k; by the ordinary Cartan for- 
mula [11], we deduce Sql(uv) = 0 for 1 < i < 2k; a fortiori Sq(2r)(uv)=0 
for 0 < r < k. 

We can thus obtain the result for j = k and any t, by induction over 
t, using Theorem 3.9.4. In fact, suppose 

(DO,k(Y") = tyh(t+1/2) (where h = 2k). 

Then 

4)O,k(+) = 40,k(Y' Y) 

- (DO,k(Y ) . i + Yht .Ok(Yh) 

(by Theorem 3.9.4, since the intermediate terms yield zero). That is 

4)0,k (Yh8 ~l) (t + l)yh(t?3/2) 
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This completes the induction over t; we have obtained the result for j?< k 
and all t. 

We now apply Lemma 4.3.3 to the class u = yh, where h = 2k. The 
left-hand side of the formula yields F0,,+1(y"2), modulo zero. On the right, 
the term XSq(2k+2)u yields zero. The term ai kDi kSq (2k+l)u yields zero, 
modulo zero, by what we have already proved. The term ajJkDiJu yields 
zero, modulo zero, except in the case i = 0, j = k. In this case, I>0 k(u) 
becomes y3h/2, modulo zero. Now, we easily see that if a e A3M, then 

a. *y3/= (=[41(3*2 k) + 2(2 k)]a)y3h . 

Using the last part of Lemma 4.3.3, we conclude that the term 
ao k + Ok(u) yields y3h, modulo zero, and 

Ok? (y2h) = y3h 

We have proved the result for the case j = k + 1, t = 1. This completes 
the induction over k; Theorem 4.5.1 is proved. 

4.6. The final relation. In this section we obtain the relation required 
to carry out the argument indicated in Chapter 1. 

Take an integer k ? 3. Let u e Hml(X)(m > 0) be a class such that 
Sq(2r)u = 0 for 0 < r < k. 

THEOREM 4.6.1. There is a relation 

O:i:J:k a j, kmi, Au) = [Sq(2 kl)u] 

(independent of X) which holds modulo the total indeterminacy of the 
left-hand side. 

PROOF. Let us consider the first few terms 

d,,Ci 
di 

Co Z2 

of a minimal resolution of Z2, as constructed in ?? 4.2, 4.3. Let us choose 
a cycle z in C2 such that (hoh2)(Oz) = 1; this is possible by Theorem 2.5.1, 
since k ? 3. Let us write z = E Ja, J By considering degrees and 
using the fact that d1 is minimal, we see that this sum consists of terms 
with j ? k. By Lemma 2.2.2, we have 

1(2k)aokk= 1 k 

Since z is a cycle, we have 

0 = zd = (Ei i ajJAJd) = F jaiJ kZiJ 

Now, this relation holds in the submodule C1(k) of C1. Appealing to the 
theorems of ?? 3.6, 3.7, we find the required relation 
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E05i Of Jkai, . kAi, (u) = [XSq(2k+1)u]. 
J$9i+l 

It remains only to determine the coefficient X. 
To do this, we apply both sides to a power yh (where h = 2k) of the 

fundamental class y in H2(P). The total indeterminacy of the left-hand 
side is then zero. The right-hand side yields Xy2h. By ? 4.5 (and Theorem 
4.5.1 in particular), each term on the left-hand side yields zero, modulo 
zero, except the term 

aokkI0,k(yh) = aokkY h/2 (mod zero) 
But we see that for any a e A,, we have 

-h (2 Wa)y 
2h 

Since haOksk = 1, we have X = 1, and the proof is complete. 
This establishes the decomposability of Sq1 for i = 2r, r > 4, which 

implies that the corresponding groups r2i_1(Se) contain no elements of 
Hopf invariant one. 

ADDENDUM 

1. The paper to which this is an addendum makes use of the following 
as a key lemma: 

LEMMA 1. Let P denote complex projective space of infinitely-many 
dimensions; let u be the generator of H2(P; Z2); let T be the secondary 
operation associated with the relation 

Sq4Sq1 + Sq2Sq3 + Sq'Sq4 = 0. 

Then we have 
N(u) = u3 

(See Theorem 4.4.1). 
It is the object of this addendum to give a simple proof of this lemma. 

We will actually prove: 

LEMMA 2. Let u e H2(X; Z2) be a cohomology class such that Sqlu = 0. 
Then the coset Tu contains the element U3. 

The proof to be given employs a method which I owe to A. Liulevicius; 
he uses it in his treatment of the problem of "elements of Hopf invariant 
one mod p." I am most grateful to him for interesting letters on this 
subject. Liulevicius, in turn, ascribes the basic idea of his method to 
W. Browder. 

2. The basic idea of the method is as follows. One considers a universal 
example consisting of a space E and a class v e H*(E; Zp), as in ?3.3. 
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Then the loop-space ShE and the suspension av e H*(Sh2E; Zp) constitute 
another universal example, in which the dimensions have been decreased 
by one. It is possible that the space S2E may be equivalent to a Cartesian 
product X x Y, although the space E does not split in the same way. 
If this happens, then the Pontrjagin product in H*(f2E; Z.) gives us 
a ring-structure on 

H*(X x Y; Zp) H*(X; Zj) 0 H*(Y; Zv); 
in general, this ring-structure does not split as the tensor-product of ring- 
structures on H*(X; Z,) and H*( Y; Z.,). Since the element av e H*(f2E; Z,) 
is primitive, it is possible to make deductions about its value. 

3. We will now apply this method to our case. In what follows, all 
cohomology groups have coefficients in the group Z2 In order to prove 
Lemma 2, it is sufficient to prove it when u is the fundamental class in 
a suitable universal example. The universal examples we must consider 
are those used to define P; they can be constructed as follows. 

For any positive integer n, let K(Z2, n), K(Z2, n + 1), K(Z2, n + 3) and 
K(Z2,n + 4) be Eilenberg-MacLane spaces of the types indicated; we 
suppose that the first is a CW-complex, and write bn for its fundamen- 
tal class. Then there is a map 

m: K(Z2, n) - K(Z2, n + 1) x K(Z2, n + 3) x K(Z2, n + 4) 
which maps the fundamental classes on the right-hand side into Sq'bn, 
Sq3bn, Sq4bn. The map m induces fibre-space over K(Z2, n) with fibre 
K(Z2, n) x K(Z2, n + 2) x K(Z2, n + 3); this fibre-space we call En. 
If we write fin,, fn,2, fn,3 for the fundamental classes in the fibre of Ens 
then we have 

1f no = Sqlbn 

rfn,2 = Sq3bn 

rf 3= Sq4b . 
The class Vn+4 eH H+4 (En) which serves as a universal example for P 
satisfies 

iX vn4 == Sq4fnh' +Sq 2fn2 + Sq' fn'3 

This condition defines vn+4 uniquely, so long as n is sufficiently large. 
It would be equivalent, however, to induce our fibering in two stages; 

first induce a fibering En with fibre K(Z2, n) over K(Z2, n); then induce a 
fibering En" with fibre K(Z2, n + 2) x K(Z2, n + 3) over Ens If we adopt 
this procedure, the first stage evidently gives En = K(Z4, n); therefore 
we may regard En as a fibering with base K(Z4, n) and fibre 
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K(Z., n + 2) x K(Z2, n + 3). 

Let us re-appropriate the symbols bn, f n2, f n3 for the fundamental classes 
in these spaces; we have 

Tlf n,= Sq3bn 

Tf n, 3Sq4bn 

i*vn+4 = Sq2f n2 + Sq'f n,3 

We will now examine what happens to En when n is small. Let us 
take n = 3; we find that E3 is equivalent to a product X x K(Z,, 6), 
owing to the fact that Sq4 vanishes on classes of dimension 3. We 
can therefore choose a class gl e HI(E3) whose image in the fibre 
K(Z, 5) x K(Z., 6) is the fundamental class in the second factor. Similar- 
ly, let us take n= 2; we find that E, is equivalent to a product 
K(Z4, 2) x K(Z2, 4) x K(Z2, 5), owing to the fact that Sq3 and Sq4 vanish 
on classes of dimension 2. We can therefore choose classes 
g4 e H4(E2), g5 e H'(E2) whose images in the fibre K(Z2, 4) x K(Z2, 5) 
are the fundamental classes. Let g2 e H2(E2) be the fundamental class. 
We can now write down the following base for H'(E2): 

(g2)3 (134g2), g2g4, Sq2g4, Sqlg5. 

We wish to know how the element v6 can be expressed in terms of this 
base. 

Since E2 is equivalent to f2E3, we are precisely in the situation envisaged 
in ? 2. In fact, v' is primitive, since by construction it corresponds to UV2 
in the equivalence E2,-%- A2E3. Let jep denote the product: then the homo- 
morphism p* of H'(E2) is determined by the following equations. 

(1 ) f*g2 g21 + 1 (Dg2 
(2) p*g4 g41 + g2'?g2 + 1lg4 
(3) p*g = g5? 1 + 1 Qg5. 

Here the equation (1) holds for dimensional reasons; while (3) holds pro- 
vided we choose g' to correspond to ag', as we evidently may. As for (2), 
the only alternative is to suppose that g4 is primitive; and if it were 
primitive, then (for dimensional reasons) it would be the suspension 
of some element y5 e H'(E3); this would satisfy i'y' = f 32, contradicting 
the fact that zf3,2 = Sq3b3 # 0. 

It is now easy to calculate such values as 

*(g2)3 _(g2)3 (? 1 + (g2)2 (? g2 + g2 0 (g2)2 + 1 (g2)3 
PI*(Sq2g4) Sq2g401 + (g2)2 Y g2 + g2 (g2)2 + 10Sq2g4 

We find the following base of primitive elements in H'(E,): 
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(fl4g2)9, (g2)3 + Sq2g4' Sq g5. 

Since 
i* V6 = Sq2f2'2 + Sq1f22,3 

we have 
v6= X(4g2)2 + ?Y + Sq2g4 + Sqlg5 

for some X e Z2. 

Now, the indeterminacy of P(g2) is a subgroup Q of H6(E2) which has 
the following base: 

Sq2g4, (134g2)2 , Sql g5 . 

Moreover, P(g2) is by definition that coset of Q which contains v6. There- 
fore P(g2) contains (g2)3. This completes the proof. 

TRINITY HALL, CAMBRIDGE 
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