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ON THE NON-LINEAR VIBRATION PROBLEM
OF THE ELASTIC STRING*

BY

G. F. CARRIER

Harvard University

1. Introduction. It is well known that the classical linearized analysis of the vi-

brating string can lead to results which are reasonably accurate only when the mini-

mum (rest position) tension and the displacements

are of such magnitude that the relative change in

tension during the motion is small. The following -j-jx)'

analysis of the free vibrations of the string with fixed

ends leads to a solution of the problem which ade-

quately describes those motions for which the changes

in tension are not small. The perturbation method is

adopted, using as a parameter a quantity which is T(x+Ax)

essentially the amplitude of the motion. The periodic

motions arising from initial sinusoidal deformations Fig. 1. Displaced element of string,

are closely approximated in closed form. The method

is applied to motions not restricted to a single plane and finally the exact solution for

the transmission of a localized deformation is indicated.

2. The equations of motion. The equations of dynamic equilibrium of an element

of the string, deformed into a plane curve as shown in Fig. 1, are

d d2u d . d2v
— [rsin0] = PA—, — [rcosfl] = pA —, (1)
ox dt2 dx dt2

where p denotes the mass per unit volume, A the cross-sectional area of the string in

the rest position, and 0 = arc tan [«'/(1+»')], the primes indicating differentiation

with respect to x. The condition of fixed ends implies that,

I
I

v'dx = 0 for all /. (2)
o

The stress-strain relation of the string is assumed in the form,

T - T0 = EA { [(1 + v'Y + («')2]1/2 - 1), (3)

where To is the tension in the rest position and £ is a constant characteristic of the

string material. The following dimensionless quantities are introduced to simplify the

algebraic work

To T - To
a2 =  > r =

rx if t To\1/2

!"7' *"Tw) '■EA To 11 \py

After differentiating Eqs. (1) with respect to x, setting

* Received Jan. 3, 1945.
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sin 6 = — ;— =   = ip,
[(u'Y + (1 + »')2]1/2 1 + <*2t

COS d = (1 — <p2)112,

and eliminating v' between Eqs. (1) and (2), we obtain

— [(1 + r )<p] = — [(1 + «2rM, (4a)
OOTJ

[(1 + t)(1 - ^2)"2] - [(1 + «2r)(l - ^)1'2], (4b)
d£z or]1

IJ o

(1 + a2r)(l - = tr. (4c)

These equations rigorously define the motion of the string which is acted on by on

external forces.

AT(max)
4.0

0.10
cx

Fig. 2. Comparison of periods obtained by

linear and non-linear theories. Fig. 3. Period v.s. initial tension.*

P non-linear period P non-linear period i — T /EA

Po linear period ' P* (Eir*/pP)111 '

A rmax /"amplitude "V (1) vanishing amplitude (linear theory)
———= —■ =( ). (2) a=ae= amplitude =0.05

To 4 N 2a / (3) a = 0 10

Motion defined by Eqs. (15). a^O.

3. The perturbation procedure. It is convenient to choose, as the perturbation

parameter of the problem, a number e which is essentially the amplitude of the mo-

tion.** The two functions <p and r are therefore expanded in powers of this parameter

as follows:

ip = a[e<pi + «3<p3 + eV + • ' • ]. r = €2r2 + «4t4 + • • ■ . (5)

It is easily seen that a reversal of the sign of e should merely reverse the sign of <p.

Hence the omission of the even powers of e is justified. In a similar manner the fun-

tions n, r3, • • • can be seen to vanish. That To vanishes is seen by inspection of

Eq. (4c). The expressions for <p and r are now substituted into Eqs. (4), the coeffi-

* In Fig 3. the ordinates should be labeled P/P*.

** Equation (15) indicates more precisely the meaning of t.
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cients of each power of e are equated to zero, and the following system of equations

is obtained:
2

L0(<pi) = 0, (6a), Li(rO = — alLo^-y^' (6b)

2 4
(a <p A

<Pi<P» —J, (6d)

2 3 6

LoM = Li(t4v?i + T2<p3), (6e), Li(rt) = — ar2Lo ( <p\f>t + — + a*~~^ 1" 43 )' ^

where

and

d2 d2 s a2 a2

0 ~ d? dV* ' 1 "" a 0J,2 dp '

j)de-0' <7a)

foT(T<-w + -j1)dt = 0, (7b)

Since each Of the operators in the foregoing equations is linear, it is now a simple

matter to evaluate successively the <pi and the t„ For the moment, we confine our

attention to the motion defined by choosing as a solution to Eq. (6a) the function,

<Pi = cos £ cos »(8a)

Note that for <pi = cos w£ cos nrj the same solution will exist when Z is replaced by l/n

in the definitions of £ and rj. Solving successively Eqs. (6), starting with the foregoing

definition of <pi, and using Eqs. (7) to determine the arbitrary terms appearing in the

Tt, we obtain

1 a2
r2 = — cos21] -) cos 2£, (8b)

4 8

r 3 - 2a2 - a4 1-9a* 1 "|
<P3 = cos £ 1? sin ij -1 cos 3n cos v

L 32 128 128 J

aH9 - a2)
 cos 3£ cos 77, (8c)

128

r 3 — 2a2 — a4 1 — 9a2 3a2 1 "1
rt = n sin 2ij H (cos 2i? + cos 4n) cos4 rj cos21]

L 128 512 512 256 J

a4(21 - a2) 3a2 13 - a2
H cos 2£ + • •   cos 4$ cos 2ij, (8d)

512 2048 4 - a2
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f 9(1 + a2 + • • • ) 3 9 "I
ip5 = cos £ 1?2 cos 77 — -— tj sin 77 tj sin 3tj + 2 14 cos 5t;

L 2048 512 4096 J

+ • • • , (8e)

The arbitrary solutions of Eq. (6a) which may be added to each of the <pi as they are

evaluated have been chosen in such a manner that lim ae'ipj exists when a tends to

zero and ae = constant = a* This limiting process, of course, defines the motion

wherein the initial tension To is zero and the amplitude a is non-vanishing. An in-

vestigation of this problem will simplify the question of the convergence of the func-

tions <p and r as defined by Eqs. (5) and (8). When a tends to zero as specified above,

the symbols r and 77 become meaningless. Hence, we replace them by

T
a —   = a2r, and tj = as.

EA

The limiting process then yields the following expressions for the <Pj and the tr,-

ae<p 1 = a cos £,

at <Pi

at'tp 7

r 1 / J V 9 9 1
= a3 ( — ) cos f -| cos f — — cos 3f ,

L 2! \ 2 / 128 128 J

- °'K(f)'cos {+!(t)'cos ! ■ ■S(t)'cos3£+/(£)]- (9)

eV 2 = — a ,
4

t°<r 8

T 1 cos 2$ 37T
= a4 s2 H 1 ,

L 16 32 256J

f i4 13s2 3s2 1
= a6 — 1 cos 2£

L128 512 128 J
2 4

[Vl Vl~|
<J\ — + C2V1V3 + C2 —J a*e' + g($),

a8 I"   b • • • 1,
L 1280 J

(10)

These solutions may also be obtained, of course, by assuming a equal to zero at

* Such complementary solutions are usually chosen to be consistent with a given set of initial condi-

tions. However, it is convenient here to choose them so that the solution does not become meaningless

when a—>0, at —a. Equations (IS) indicate that this choice leads to a solution corresponding to a nearly

sinusoidal initial deformation.
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the outset, expanding <p and a in powers of a parameter a, and proceeding in the fore-

going manner.

Note that the leading terms of the <pj define an absolutely converging series for

all a. Note also that the remaining terms of each (pj are dominated by this leading

term. In fact, for sufficiently large s, the sum of the remaining terms in each tpj is

as small as we please compared to this leading term. Although this dominance has

not been shown to occur uniformly, it is to be expected that the series defined by

Eqs. (9) and (10) will converge over some range of a. The requirement, "sufficiently

large s" introduces no difficulty since the initial value of s may be chosen arbitrarily

large.

The functions <p and <r are now most conveniently written in the forms

<p(f. s. «) = afi(as, £) + a3f3(as, £) + •••,

<r(£, s, a) = a2g2(as, £) + a4g4(as, £) + ••• ,

where the terms of the series defining the /,• and the g, are easily chosen from Eqs. (9)

and (10). f\ and g2 are composed of the previously mentioned leading terms, and it is

easily established that they converge to the values

(as 1 \ 1 (as 1 \

f''™ \7' viros{' 8'" 7cn'vl"' V2>' (12)

where cn denotes the elliptic cosine. Energy considerations may be used to show that

the remaining/,- and g, are bounded, and it is to be expected that the motion is closely

described by <p = afi and o = a-g2 when a is sufficiently small. For most materials, a

value of a? greatly in excess of 10-3 will lead to plastic deformations; hence, the motion

of such strings is well defined.

The motions arising when 7"o is arbitrary, as defined by Eqs. (5) and (8), can also

be written in the form,

ip = atFiH, r\, t) + a3e3/?s(f, »!,«) + ••• + P(Z, V, «. «).
13)

r = €2[G2(£, i), e) + -q, e +•••]+ Q(£, y, a, e),

where P and Q are those parts of <p and r which vanish when a tends to zero and

ae = a. For this case,

Fi = cn ^l + ^-y,k) cos £, G2 = j cn (,j/l + j 1, k), (u)

where k = «[2(4-f-e2)]~1/2. It is evident, in view of the foregoing results, that

lim Fj(£, v,«) = /;(?. as)

and it is to be concluded that since the. series defining the Fi converge as e tends to

infinity, they will also converge for the smaller values of €. Both a and ae must be

small because of elastic considerations, which indicates that P and Q will also exist.

We conclude therefore that the motion of the string, whose "amplitude" ae is of the

order of magnitude required by elastic considerations, is adequately defined by the

leading terms of Eq. (13). That is, in the first approximation,
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<p = ae cn j"/|//1 + — V, COS £

(15)

= 7cn2 [4/1 + ~4V' 4

Figs. 2 and 3 compare the results of this analysis with those of the linear theory.

4. The motion following an arbitrary initial deformation. The motions derived in

the preceding section are obviously those corresponding to initial sinusoidal deforma-

tions. If the perturbation procedure is again carried out, and if for <p\ the function

<pi =53,-6,• cos cos jij is selected, a solution will be obtained, the leading terms of

which contain no powers of a greater than unity. The solution so obtained will corre-

spond to an initial deformation, ^i(£, 0) =yi,-6< cos This predominating part of the

solution may, however, be obtained by a simpler, less rigorous, procedure which

nevertheless leads to identical results. We merely expand (1— <p2)1/2 in the conven-

tional power series and omit in Eqs. (4), <pn+2 as compared to <f>n, and a2 as compared

to 1. We thus obtain as replacement for Eqs. (4)

32 r _ dV
  [(1 -f- r)tp\ =  j
d? dr,1

d*T
 = 0, hence r = r(n),
d?

(16)

/.*(<■" - 7>£ - °-

Finally the first of these becomes

a-2 rT "1 d2<p 3V

<i7)

The solution corresponding to the initial conditions specified at the beginning of this

section is found by considering that solution of the form <p = o^2jbj cos (rj), where

^, (0) = 1 for each j.

Upon substitution of this function, Eq. (17) yields the following set of ordinary

differential equations

^»" + n = 0- (18)

These may be written in the conventional operational form

+ (19)
4 i

and standard integration procedure leads immediately to the integral equation

V C' ^22
in{v) = cos nv   I sin n(z - r,)in{z) 2^ b$j(z)dz. (20)

4 J 0
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The method of successive approximations when applied to this equation will produce

a converging sequence of solutions. This method is obviously preferable to the direct

application of the perturbation method, once the equivalence of the results has been

established, since no minor terms are carried along in the algebraic work, no compli-

mentary solutions need be added as the integration proceeds,* and the do not ap-

pear when the function <p is evaluated.

It is of interest to note that when &3 = 0 for j5^1, Eq. (20) assumes the form

b2 '
= cos t) I sin (z — ri)\pi(z)dz, (21)

4 J o

and that this equation must generate the elliptic function previously encountered.

When the method of successive approximations is applied to this equation, the series

obtained is that one found in the first solution obtained in this paper. This function

may be obtained more directly by solving Eq. (18) for this particular set of initial

conditions.

Perhaps the quickest way to obtain an approximation to the motion for non-

sinusoidal initial deformation is to be found in the application of a numerical pro-

cedure using finite differences. Equation (17) lends itself readily to such a treatment

and the results are considerably easier to interpret than those found by the more

rigorous integral equation treatment.

5. The three dimensional problem. If we now allow deflections w normal to the

plane of u, the procedure of the foregoing sections of this paper leads to the equation

( oi~2 f* ) di<p d2<p

{, + _£ + (22)

and to the equation obtained by interchanging <p and x in (22). r is given by the

integral on the left side of this equation and x=w/(l+a2T)- It follows immediately

from the similarity of Eq. (17) and that given above that the integral equation

method previously described will provide the solutions to problems of this nature.

In particular, however, the motions wherein the string at any instant lies in a single

plane and wherein each particle describes a quasi-elliptical path is easily determined

in closed form by considering the deformation expressed in the complex form

<p = ta f(i?)e^(,) cos £,

where ^ and n are each real. Equation (22) assumes the form,

r * . , ~|3V av
[i+T/t «>

which, when separated into its real and imaginary parts, implies,

  m'W = c/r(v)

* When dealing with the differential equations leading to Eq. (8), it was necessary to choose comple-

mentary solutions to conform to given initial (or other auxiliary) conditions of the problem. In the in-

tegral equation approach, such conditions are always included in the equations.
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and

€2

i" + i -\— V - cV~3 = o. (24)
4

Here, c is a constant defined by the initial conditions as follows;

^(0) = 1, *'(0) = 0, m(0) = 0, m'(0) = c.

When c<l+e2/4, these initial conditions lead to a solution of Eq. (24) given by

# - [i - (i _ T) m. ] W9

M = c f \f/~i(s)ds,
J n

c
7 = T^2'

4

where

1 r , 
0 = — [V(8 + 62)2 + 32«2c2 + (8 + e2)],

2c2

7 = [V(8 + «2)2 + 32*2c2 - (8 + «*)].
2«2

Note that as c tends to l + «2/4, \f/ becomes identically unity and the motion of each

particle is circular. That is,

tp = at cos ^eir/1+a,i. (26)

When c> l+e2/4, integration of Eq. (24) yields,

W + Oh-pp
T + U - (T - 1)Z!

where

It is interesting to observe that the string never passes through its rest position for

values of c different from zero. This follows from the fact that ip never vanishes.

The function which rigorously defines the transmission of a localized disturbance

along the string is easily found by considering those solutions of Eqs. (4) which allow

the function r to assume a constant value. Equations (4) become, under this assump-

tion,

d2u' d2u' dV dV f'
'W- J. Id+ M

where

1 + 7

f =
1 + a2
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If we now choose

«' = /(£ " M »' = td + «V)» - («')2}1/J - 1, (29)

where r is determined by

■i/'UiT J o

+ a2r]2 - | m'(£, 0) |2}"2^ = 1,

and where/(£) is non-vanishing in a small region in £, all equations are satisfied. This

solution is valid until the deformation reaches a fixed point in the string. When this

occurs, the reflection phenomenon requires a change in t. This solution is in agreement

with that found by the linear theory except that p would assume the value unity in

that theory.


