
On the Non-Minimal Coupling of Magnetic Fields

with Gravity in Schwarzschild Spacetime

Kumar Ravi1‡, Petar Pavlović2, Andrey Saveliev3,4
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Croatia
3Immanuel Kant Baltic Federal University, Ul. A. Nevskogo 14, Kaliningrad, Russia
4Lomonosov Moscow State University, GSP-1, Leninskiye Gory 1-52, Moscow, Russia

E-mail: cimplyravi@gmail.com

Abstract. In this work we study the effects of non-minimal coupling between

electromagnetism and gravity, which are motivated by quantum effects such as vacuum

polarization. We investigate the modification of both asymptotically dipole and

uniform magnetic fields around a Schwarzschild black hole that come as the result

of non-minimal coupling. While in both cases the magnetic field gets enhanced or

suppressed with respect to the case of minimal coupling, depending on the sign of

non-minimal coupling parameter, in the case of a background uniform magnetic field

the direction of the magnetic field also alters in the vicinity of the black hole horizon.

We have discussed the possible astrophysical and cosmological sources for which the

vacuum polarization may be at play, while also discussing the observational effects,

in particular the possibility of synchrotron radiation from the vicinity of a black hole.

We conclude that such observations could be used to constrain the value of the non-

minimal coupling parameter.

Keywords: non-minimal coupling, Schwarzschild spacetime, magnetic fields, innermost

stable cicular orbit, black hole, effective potential

1. Introduction

The description of electromagnetism on macroscopic scales in terms of Maxwell

equations represents one of the most successful, well established and also oldest

field theory. The standard description of electromagnetic fields in the presence of

gravitational fields, which is of interest in cosmology and astrophysics, therefore assumes

a direct mathematical generalization of Maxwell’s equations on curved spacetime [1].

On the other hand, the effect of electromagnetic fields on spacetime is described by

the Einstein equation in the standard approach, where the stress-energy tensor of
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electromagnetic fields bends the spacetime in the same fashion as any other source

of energy density. This type of dependence between gravity and electromagnetism is

called minimal, since the field equations for this case are derived by a simple addition

of gravitational and electromagnetic part of the Lagrangian, without any cross terms.

There are, however, strong reasons to expect that this picture should be changed for very

strong gravitational fields, where the non-minimal coupling – the presence of Lagrangian

terms containing direct contractions between gravitational and electromagnetic tensors

– should arise. First of all, we could expect that at sufficiently high energies gravity and

electromagnetism will get united and described by a single field, similar to what already

has been found for electricity and magnetism and electromagnetism and weak nuclear

interaction. Since in this regime the gravitational and electromagnetic sector could

change into each other and would manifest a deep interconnection, the investigation of

non-minimal coupling between electromagnetism and gravity can serve as an effective

model for such effects.

There is also a more concrete reason for consideration of non-minimal coupling

in regimes of strong gravitational fields. In [2] the effect of quantum electrodynamics

(QED) vacuum polarization onto curved spacetime was studied for the case of a photon

propagating in vacuum and it was found that it leads to a non-minimal coupling between

gravity and electromagnetism. This can be understood as coming from the transition

of a photon into an electron/positron pair and the consequent tidal influences of the

spacetime geometry along the characteristic Compton wavelength [2, 3]. In the one-loop

approach it was demonstrated [2] that the vacuum polarization effect thus leads to the

effective Lagrangian density of the form

L =
R

κ
+

1

2
F µνFµν +

1

2
RµνρσFµνFρσ + Lmatter , (1)

where κ = 8πG/c4 (from now on we will set c = G = 1), R is the Ricci scalar, F µν is

the Maxwell tensor obeying F µν = ∇µAν −∇νAµ, where ∇µ is the covariant derivative,

and Lmatter is the Lagrangian of neutral matter. The effects of the vacuum polarization

are contained in the tensor Rµνρσ (not to be confused with the Riemann tensor Rµνρσ)

which is defined as

Rµνρσ ≡ q1

2
(gµρgνσ − gµσgνρ)R

+
q2

2
(Rµρgνσ −Rµσgνρ +Rνσgµρ −Rνρgµσ)

+ q3R
µνρσ , (2)

where q1, q2 and q3 are the coupling constants, and Rµν is, as usual, the Ricci tensor

and Rµνρσ is the Riemann tensor. Physical consequences of such types of non-minimal

coupling were investigated in various settings for a long time [4, 5, 6, 7, 8, 9].

In [3] it was proposed that the signatures of non-minimal coupling between

electromagnetism and gravity could, in principle, be observed or at least constrained

by studying the magnetic fields around the event horizons of black holes and that the
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same effect could be used for constraining the sizes of primordial black holes. With

this aim, the problem of modification of magnetic fields due to the vacuum polarization

effect around a Schwarzschild black hole was for the first time studied in [3] and the

consequences for the orbits of charged particles around such black holes were for the

first time studied in [10]. In this work we try to further develop the investigation of this

topic. We study the uniform magnetic field configuration, which has not been analysed

yet in this context, and also improve and critically discuss the previously studied dipole

magnetic field case. We then investigate the motion in the equatorial plane by using the

effective potential and demonstrate that most of the conclusions that can be reached

regarding the effects of the non-minimal coupling on the trajectories and scattering of

the charged particles can be simply understood with the help of the effective potential

study.

This paper is organized as follows: In Sec. 2 we briefly review the theory of non-

minimal coupling, while in Sec. 3 we present the analytical (minimal coupling) and

numerical solutions (non-minimal coupling) of the Maxwell equations in Schwarzschild

spacetime for the cases (i) of a static and asymptotically dipole magnetic field is being

placed at the origin of the Schwarzschild black hole, and (ii) of a Schwarzschild black

hole being placed in a static and asymptotically uniform magnetic field. Sec. 4 is

dedicated to the study of the motion of a charged test particle in the equatorial plane

of the Schwarzschild spacetime in the effective potential formalism for both of these

magnetic field configurations. In Sec. 5 we briefly explore the energetics, collision and

the possibility of acceleration of charged test particles near the event horizon when a

Schwarzschild black hole is placed in a static and asymptotically uniform magnetic field.

Subsequently, in Sec. 6, we present possible astrophysical and cosmological scenarios for

which the considerations of vacuum polarization and hence the applications of non-

minimal coupling might be important. Also, in this section we consider the possible

observational signatures, before concluding this work with a discussion of its results and

future scopes in Sec. 7.

2. Non-Minimal Coupling

There are, of course, numerous ways in which the non-minimal coupling between

gravitational and electromagnetic sectors can be achieved, such as coupling between

curvature tensors of different rank and order with vector potentials, Maxwell tensors

and their contractions, etc. [4, 5, 6, 11, 12, 13, 14, 15]. Many of those options are,

however, completely arbitrary and lacking an additional motivation, and some of them

lead to the violation of important physical principles, such as gauge invariance. We

will focus on the type of non-minimal coupling discussed in Sec. 2 and considered in

[2] since (i) it is motivated by the quantum-electrodynamical one-loop corrections in

curved spacetime, (ii) it involves the contraction of all fundamental electromagnetic and

curvature tensors to the leading order, and (iii) it preserves gauge invariance. When

the variational procedure is performed on the Lagrangian (1), we obtain the following
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equations of motion:

∇µ (F µν +RµνρσFρσ) = 0 . (3)

In this work we assume the coupling constants q1, q2, q3 to be phenomenological

constants which should be constrained based on observations. In [2] the authors

calculated the values of those constants for the simplest case of a photon in vacuum

on curved spacetime. Since it is not simple to see how this result can be generalized

for macroscopic magnetic fields of arbitrary configurations, our approach appears to be

completely justified. For a more detailed discussion of this issue see Sec. 6 of this work.

One should note that the freedom in the choice of these constants does not violate the

gauge invariance, i.e. the equations will stay gauge-invariant regardless of the value of

the coupling parameters. To see this clearly one should observe that the requirement

of gauge invariance was used in the computations presented in [2] initially in order

to determine that the part of the effective action describing the effects of the virtual

electron loops depends on Fµν and not on Aµ directly. The only three possible terms

leading to non-minimal coupling which respect this condition, are gauge-invariant and

which are linear in curvature invariants and Fµν are the ones appearing in equation (2)

multiplying the coefficients q1, q2, q3 [16]. As this is the general result, it will not be

affected by any change of value in the coupling coefficients. In accord with this, further

calculation of their specific values for the case of photon in vacuum presented in [2] was

not based on the requirement of gauge invariance, but was performed by comparing the

action coming from the virtual electron loops with the weak-gravitational-field limit.

The discussed non-minimal coupling will in general lead to the violation of

equivalence principle of general relativity. The equivalence principle is essentially based

on a possibility of making a local identification between an arbitrary spacetime manifold

and the flat spacetime of special relativity, in a sufficiently small neighborhood around

a point of the manifold. That is to say, the equivalence principle assumes that there

is a tangent Minkowskian space around every point of the spacetime. However, when

the effect of vacuum polarization is introduced, it becomes impossible to make the very

transition to a flat spacetime around some point for the system of interest. Due to

its quantum nature, manifested in its transition into a virtual electron/positron pair, a

photon will acquire a characteristic length (corresponding to the Compton length) and

due to the coupling with the gravitation field, it will be affected by tidal effects along

this length. Since it, therefore, does not simply behave like a “point-like” object, it is not

possible to make a choice of a reference frame where the effects coming from its length

would vanish, and where the propagation of a photon would be simply represented by

a photon on a flat spacetime. As a general consequence, when non-minimal coupling

coming from the vacuum polarization is introduced, it may be impossible to reduce the

description of physics of such a spacetime to the principles of special relativity locally. A

concrete consequence of such considerations was already demonstrated in [2]. Namely,

in specific reference frames photons in a gravitational field can travel with speeds greater

than unity.
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If one identifies q1 = 1/3, q2 = −1 and q3 = 1 then the tensor Rµνρσ turns out

to be the Weyl tensor [17]. There is an active field of research which studies the non-

minimal coupling of photon to Weyl tensor [18, 19, 20, 21, 22, 23] and which found that

photons are then subject to birefringence and apparent superluminal motion. These

consequences demand a modification/correction of the background metric (actually two

effective metrics for two polarizations of photons). In the present work we are only

focused on the situation where the background metric is still valid and we explore

the motion/energetics of charged particles. The exploration of situations where non-

minimal coupling of both the magnetic field (and therefore the motion/energetics of

charged particles therein) and photons could be investigated together is an interesting

project for the future.

3. Non-Minimal Coupling in a Schwarzschild Spacetime

At this point we need to stress the most important physical approximations which we

use in our study, which were also assumed in earlier works [3, 10].

We first assume that magnetic fields are weak enough for their effect on the

spacetime being negligible, such that the latter can therefore still be described by

the Schwarzschild metric. While not necessarily asymptotically flat, there are some

exact metrics where, unlike here, the magnetic fields are not treated as just test fields

(see [24] and references therein). Finding the complete solutions to both the non-

minimally coupled Maxwell and Einstein equations is, however, of significant interest,

and should be considered in future research. Such full solutions of the non-minimal

problem, describing both electromagnetic and gravitational sector, could be of physical

importance in the very early Universe, when the non-minimal coupling effects and

the resulting magnetic fields might have very strong (see discussion in Sec. 7). The

approximation of a weak field and a negligible feedback on the spacetime we use here

should, however, be justified for all known astrophysical systems (see detailed discussion

in [3, 25]).

The next crucial assumption we made is to ignore the electric fields and consider

only the magnetic part of the electromagnetic tensor. This is justified because

of the very high value of the conductivity of the Universe, causing the electric

fields to be completely insignificant – this assumption therefore represents one of

the standard elements in studies of astrophysical electromagnetism. On the other

hand, magnetic fields probably exist on all scales of the observable Universe (see

[26, 27, 28, 17, 29, 30, 31, 32, 33, 34, 35, 36] and references therein). This fact makes

magnetic fields an excellent candidate for investigation of the effect of non-minimal

coupling between electromagnetism and gravity. We therefore do not need to consider

a special mechanism for the creation of magnetic fields around black holes, since every

black hole will naturally be immersed at least within the galactic magnetic field.

The physical picture we consider here is therefore the following: we assume the

existence of a magnetic field, going to its asymptotical dependence far away from the
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black hole – where the spacetime is approximately flat – while being influenced by the

black hole spacetime near the black hole horizon. The magnetic field we treat here is

thus not the magnetic field of the black hole itself, but an external magnetic field which

can be galactic or belong to some other source, which we immerse in the Schwarzschild

spacetime.

The Schwarzschild metric in a coordinate system adapted to spherical symmetry

(t, r, θ, φ) is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (4)

where the mass M is the source of gravity. The Schwarzschild solution of the Einstein

field equation is a unique solution and is obtained using the assumptions of spherical

symmetry, asymptotic flatness, and a vacuum outside the spherical object of mass M .

On top of that, this solution turns out to be static. In accordance with the already

discussed weak field approximation we will assume that the effects of magnetic fields on

the spacetime are negligible, and, as a direct consequence of this assumption, that the

deviations from the Schwarzschild vacuum solution are negligible when the magnetic

fields are introduced on that spacetime.

We assume a magnetic field, expressed in the local Lorentz frame (LLF) [37, 38],

F LLF
θφ = Br =

2µ cos θ

r3
ξ(r) ,

F LLF
φr = Bθ =

µ sin θ

r3
ψ(r) ,

F LLF
rθ = Bφ = 0 , (5)

where µ is the magnetic moment and the functions ξ(r) and ψ(r) take into account the

effects of curved spacetime on the magnetic field. We will later see that ξ(r) and ψ(r)

may be obtained from a system of second order linear differential equations, and so we

get two linearly independent solutions: one corresponding to a dipole magnetic field,

while the other corresponds to a uniform magnetic field. Both of these cases are the

most basic models for studying magnetic fields. For instance, the galactic magnetic field

is modeled by the dipole magnetic field, so the discussed model should be suitable for

description of black holes immersed in the galactic magnetic field.

After doing the transformation from local Lorentz frame, the components of

Maxwell tensor in Schwarzschild spacetime are

Fθφ =
2µ sin θ cos θ

r
ξ(r) ,

Fφr =
µ sin2 θ

r2

√
1− 2M

r

ψ(r) ,

Frθ = 0 . (6)

As for any vacuum solution of the Einstein field equation, the Ricci scalar (R) and Ricci

tensor (Rµν) are zero, such that Eq. (3) reduces to

∇µ (F µν + q3R
µνρσFρσ) = 0 . (7)
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The Maxwell tensor components are also subject to another Maxwell equation, namely

∇[λFµν] = 0 . (8)

After substituting the Maxwell tensor components from Eq. (6) into Eq. (7) and into

Eq. (8), we get

d

dr

[(
1− 2Mq3

r3

) (
1− 2M

r

)1/2

r2
ψ(r)

]
+

(
1 +

4Mq3

r3

)
2ξ(r)

r3
= 0 , (9)

and

d

dr

[
ξ(r)

r

]
+

ψ(r)

r2

√
1− 2M

r

= 0 , (10)

respectively. These equations can easily be decoupled, resulting in

d

dr

[(
1− 2Mq3

r3

)(
1− 2M

r

)
d

dr

(
ξ(r)

r

)]
−
(

1 +
4Mq3

r3

)
2ξ(r)

r3
= 0 . (11)

Here, we do not write the decoupled equation for ψ(r), not just due to its complicated

form, but also due to the fact that it will not be used in our computations. In fact,

it is much easier to use the solutions of Eq. (11) and insert them into Eq. (10), thus

obtaining the solutions for ψ(r), rather than solving another differential equation from

the beginning.

Before getting into the solutions of Eq. (9) and Eq. (10), i.e. for the case of non-

minimal coupling, we briefly review the available solutions for the case of minimal

coupling.

3.1. Minimal Coupling: A Brief Review of the Analytical Solutions

As expected, with q3 = 0 the Eqs. (9) and (10) reduce to the corresponding equations

of [37] and [38]. While for the case of minimal coupling (i.e. q3 = 0), getting

analytical solutions is straightforward with the application of the Frobenius series

solution technique for a second order ordinary linear homogeneous equation, we could

not carry out the same for q3 6= 0. The solutions for the case of minimal coupling are

[37, 38, 39]

ξd(r) = − 3r3

8M3

[
ln

(
1− 2M

r

)
+

2M

r

(
1 +

M

r

)]
,

ψd(r) =
3r2

4M2

[
1 +

(
1− 2M

r

)−1

+
r

M
ln

(
1− 2M

r

)]√
1− 2M

r
, (12)

and

ξu(r) =
B0

2µ
r3 ,

ψu(r) = −B0

µ
r3

√
1− 2M

r
, (13)
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where B0 is the constant of integration and can be interpreted as the magnitude of the

asymptotically uniform background magnetic field. We have used the superscripts ‘d’

and ‘u’ for the dipole solution and for the uniform solution, respectively. It can easily

be checked that for the dipole solution (Eq. (12)), asymptotically for r → ∞, the two

functions behave as ξ(r) → 1 and ψ(r) → 1, such that Eq. (5) reduces to the familiar

flat-spacetime solution. Therefore, in LLF the expressions for the asymptotically dipole

magnetic field solution are

Bd
r = − 3µ cos θ

4M3

[
ln

(
1− 2M

r

)
+

2M

r

(
1 +

M

r

)]
,

Bd
θ =

3µ sin θ

4M2r

[
1 +

(
1− 2M

r

)−1

+
r

M
ln

(
1− 2M

r

)]
,

(14)

while for the asymptotically uniform magnetic field we obtain

Bu
r = B0 cos θ ,

Bu
θ = −B0 sin θ

√
1− 2M

r
. (15)

It can be seen that solutions (14) contain a singularity at r = 2M , which is a coordinate

singularity associated with crossing the horizon in the given coordinates. This naturally

raises the question whether this singularity implies the violation of the assumption of

weak magnetic fields and suggests that magnetic fields significantly affect the metrics,

thus making the whole treatment problematic. Indeed, the very black hole horizon and

the points in the very vicinity of it cannot be covered by the analysis provided here,

since they depart from the regime of weak magnetic fields. However, for distances that

are still near the horizon (for instance around the value of r = 1.5 × r0) magnetic

fields will still be weak and will not violate the initial assumption of not affecting the

metrics. This happens because the singularity contained in (14) is actually a “mild”

logarithmic singularity, leading to significant increase of the field only in the very small

neighborhood around r0. This can, for instance, clearly be seen in Figs. 1 and 2 which

demonstrate that the solutions remain small for the astrophysically interesting region

around the horizon. As we are studying the propagation of charged particles around

the black hole, this behavior at the very horizon is not of concern, but one should note

that our treatment cannot be applied there.

We should note that ξ(r) and ψ(r) basically represent the ratios of magnetic field

components in a curved (here Schwarzschild) spacetime to those in the flat spacetime

(e.g. the quantities on vertical axis in the Fig. 1 of [3]) and these ratios are precisely what

we are interested in. Now we will proceed with the investigations for the non-minimal

coupling scenario.

3.2. Non-Minimal Coupling: Numerical Solutions

In order to numerically solve the coupled system of differential equations (9) and (10) we

need two initial/boundary conditions, namely ξ(r0) and ψ(r0) at some r0. For a chosen
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2 3 4 5
r/2M
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r
/B

fla
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r

q = 0.5
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q = -0.5

Figure 1. The radial component of a dipole magnetic field in Schwarzschild spacetime

(Bcurved
r ) scaled by the same quantity in flat spacetime (Bflat

r ) as a function of r for

different values of q̃. The enhancement/suppression of the magnetic field component

near the horizon for positive/negative values of q̃ compared to the case of minimal

coupling (q̃ = 0) can be seen.

value of q3, we can choose large enough r0 such that 4Mq3/r
3
0 � 1 and then safely assume

the solutions there, at r0, to be equal to those of minimal coupling scenario with excellent

precision. Therefore, in order to obtain the asymptotically dipole solution numerically

we can choose the initial conditions to be compatible with Eq. (12), and for the

asymptotically uniform solution with Eq. (13). For instance, r0 ' 100× 2M , ξ(r0) ' 1

and ψ(r0) ' 1 are valid initial conditions for seeking the dipole solution, whereas for

the uniform solution ξ(r0) ' const. × r3
0/2 and ψ(r0) ' −const. × r3

0

√
1− 2M/r0 are

a reasonable approach. We define a dimensionless form of the coupling parameter as

q̃ = q3/(2M)2.

Following the numerical recipe described above, we have obtained the magnetic

field solutions for the non-minimal coupling case. In Figs. 1 and 2 we have plotted the

ratio of the radial and azimuthal component of the asymptotically dipole magnetic field,

modified by gravity to that of a dipole magnetic field in flat spacetime, both for the

case of minimal and non-minimal coupling scenarios, i.e. ξ(r) and ψ(r), respectively.

We can see from these figures that for a positive (negative) coupling constant q̃ there is

an enhancement (suppression) of magnetic field present near the horizon.

We should compare the results of [3, 10] with the present work. Although the

main conclusions and the qualitative behavior is the same in these previous works and

the one in this study, there are still some quantitative differences present. Though

far from the event horizon, in the asymptotically flat region, both this presentation

and that of [3, 10] do not differ significantly, and both have the same typical dipole

form (Br(r, θ) = 2const. × cos θ/r3 and Bθ(r, θ) = const. × sin θ/r3), however they

differ near the event horizon. The radial dependence of both the components Br(r, θ)

and Bθ(r, θ) in [3, 10], namely Brad(r), is identical, but here we have different radial

dependences for these two components, namely ξ(r) and ψ(r). These differences come
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q = 0.5
q = 0
q = -0.5

Figure 2. The azimuthal component of a dipole magnetic field in Schwarzschild

spacetime (Bcurved
θ ) scaled by the same quantity in flat spacetime (Bflat

θ ) as a function

of r for different values of q̃. The enhancement/suppression of the magnetic field

component near the horizon for positive/negative values of q̃ compared to the case of

minimal coupling (q̃ = 0) can be seen.

from the different mathematical treatment. In [3, 10] the geometry of the magnetic field

configuration was prescribed a priori, assuming that Bθ(r, θ) = tan θBr(r, θ)/2. This

type of assumption regarding the Bθ and Br is based on the configuration satisfying the

second Maxwell equation on flat spacetime, viz. ∇ × B = 0. The modifications of the

magnetic field were then inspected using Eq. (7), while no further reference was made

with respect to the other Maxwell equation, Eq. (8), since it is not modified by the

presence of the non-minimal coupling. In this work, however, no a priori assumption

regarding the field configuration, and thus the relationship between Bθ and Br, has been

made, and both Maxwell equations are solved simultaneously, making the treatment

complete and self-consistent, thus improving the mathematical analysis. The predicted

enhancement/suppression for a given q̃ in [3, 10] is larger than what the present work

predicts about the component Br, whereas for Bθ component it is, in fact, smaller.

The modification of an asymptotically uniform magnetic field near a Schwarzschild

black hole in a minimal coupling scenario has been widely studied in the literature (see

[40] and references therein). As expected, the components of asymptotically uniform

magnetic field get enhanced/suppressed near the event horizon depending on the sign

of the coupling constant q̃ (see Figs. 3 and 4). There are two points to note here: (i)

in minimal coupling scenario the radial component, Br, remains unaffected, whereas in

the case of non-minimal coupling both the components, Br and Bθ, are affected; (ii)

for q̃ 6= 0 the direction of magnetic field changes near the horizon – for positive values

of q̃ the direction switches to the opposite direction near the equatorial plane, whereas

for negative values of q̃ the direction changes near the two poles (see Figs. 6 and 7;

to contrast them from the case of minimal coupling scenario, see Fig. 5). Therefore,

in contrast to the case of a dipole field, an asymptotically uniform magnetic field is

also modified qualitatively, apart from the quantitative enhancement/suppression both
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Figure 3. The radial component of the uniform magnetic field in Schwarzschild

spacetime scaled by the same quantity in flat spacetime as a function of r for different

values of q̃. For q̃ = 0.5 the enhancement of the magnetic field component near the

horizon with respect to the case of minimal coupling (q̃ = 0) can be seen, while for

q̃ = −0.5 we observe the change in sign and magnitude of the field component near

the horizon.
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q = 0.5
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Figure 4. The azimuthal component of the uniform magnetic field in Schwarzschild

spacetime scaled by the same quantity in flat spacetime as a function of r for different

values of q̃. For q̃ = −0.5 the enhancement of the magnetic field component near the

horizon with respect to the case of minimal coupling (q̃ = 0) can be seen, while for

q̃ = 0.5 we observe the change in sign and magnitude of the field component near the

horizon.

cases have in common. The manifestations of this qualitative change on the motion of

a charged particle would be worth further exploration. But since in the following we

study the motion in the equatorial plain, the effect of the change of direction near the

poles (for q̃ > 0) is irrelevant.

As can be seen in Fig. 7, the asymptotically uniform magnetic field is being repelled

by the black hole in the vicinity of the Schwarzschild horizon, i.e. similar to the Meissner

effect in superconductors. This Meissner-like effect near the black hole horizon vis-a-
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Figure 5. An asymptotically uniform magnetic field near the Schwarzschild horizon

for the minimal coupling scenario.
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Figure 6. An asymptotically uniform magnetic field near the Schwarzschild horizon

for the non-minimal coupling parameter q̃ = 0.5.

vis its undermining effects for the efficiency of the Blandford-Znajek mechanism for

jet formations in active galactic nuclei (AGNs), gamma-ray bursts (GRBs), galactic

black hole binaries, etc., has been widely studied (see, for example, [41, 42, 43] and

references therein). In this work we are only considering the vacuum solution, such

that our results are not opposed to the Blandford-Znajek mechanism which requires a

plasma-filled magnetosphere around the black hole, where this Meissner-like effect have
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Figure 7. An asymptotically uniform magnetic field near the Schwarzschild horizon

for the non-minimal coupling parameter q̃ = −0.5.

been found to be absent by many researchers.

4. Motion in the Equatorial Plane: Effective Potential

Due to the symmetry of the problem we are investigating, the 4-potential can be assumed

to have the form [44]

Aµ = (0, 0, 0, Aφ(r, θ)) , (16)

while the Lagrangian for the motion of a charged test particle of charge Q and mass m

can be written as [45]

L =
1

2
mgµν ẋ

µẋν +QAφφ̇ , (17)

where gµν denotes the metric components and ẋµ is the 4-velocity. From this Lagrangian,

apart from the equation of motion

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
=
Q

m
F µ

ν
dxν

dτ
, (18)

the two conserved quantities

∂L

∂ṫ
= −m

(
1− 2M

r

)
dt

dτ
≡ −E (19)

and

∂L

∂φ̇
= mr2 sin2 θ

dφ

dτ
+QAφ ≡ l (20)
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may also be obtained. Here we stress that F µν represents the total electromagnetic

tensor which already includes the corrections to magnetic fields coming from the non-

minimal coupling effect (and not only the “background” part of the field) because it

is the solution of the non-minimally coupled Maxwell equation, as can already be seen

from the Eqs. (6) and (7). The potential Aµ discussed here is defined with respect to

this total field in the usual manner, i.e. Fµν = ∂µAν − ∂νAµ. E and l can be interpreted

as the (effective) energy and angular momentum, respectively. Therefore, although in

the considered equations the terms responsible for the non-minimal coupling are not

explicitly present, they are de facto implicitly contained in the field terms such as Aµ.

We define Ẽ ≡ E/m, l̃ ≡ l/m and q ≡ Q/m. From the equation of motion (18) and the

conservation equations (19) and (20), we get

Ẽ2 =

(
dr

dτ

)2

+ V 2
eff (21)

for the motion in the equatorial plane, where

V 2
eff =

(
1− 2M

r

)[
1 +

1

r2

(
l̃ − qAφ(r)

)2
]
, (22)

and, furthermore, Aφ(r) is subject to the ordinary differential equation

dAφ
dr

= −µ
(

1− 2M

r

)−1/2
ψ

r2
, (23)

where the non-minimal coupling enters through the modifications of the function ψ.

4.1. Dipole Magnetic Field

We should mention the available analytical expression for Aφ(r, θ) for the case of minimal

coupling scenario [38],

Aφ = −3µ sin2 θ

8M3
r2

[
ln

(
1− 2M

r

)
+

2M

r

(
1 +

M

r

)]
. (24)

For the non-minimal coupling scenario V 2
eff can be obtained numerically by solving the

system of Eqs. (9), (10) and (23). The proper initial/boundary conditions to be used

is Aφ(r0) ' 0 when r0 → ∞ (which is compatible with Eq. (24)) and, again, those

for ξ(r) and ψ(r) are as discussed earlier. We introduce two dimensionless parameters,

λ ≡ µq/M2 and H ≡ l̃/M , as an aid to study the effective potential.

4.1.1. Case 1: The Angular Momentum is Parallel to Magnetic Moment Let us first

review some basic features of this setting in the minimal coupling case. In general, the

feature-wise richest type of the effective potential has two maxima and two minima [38].

Between these two maxima a potential well (minimum) is present. The maxima nearest

to the horizon are shown in the respective figure insets, while the minima farthest from

the horizon are not shown, as they are not of significant physical interest. For a given

value of H, increasing λ amounts to a flattening-out of the potential well, raising the

level of the first maximum, lowering the level of the outer maximum and shifting the
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first minimum outwards – in case it exists. For a given λ, increasing H amounts to

narrowing the potential well, raising the level of the outer maxima, lowering the level

of the inner maxima and shifting the first minimum inwards (see Figs. 8 and 11). So, if

we focus on the case for which no outer maximum (and thus no potential well) initially

exists for a given λ and H, then with increasing H at one point the outer maximum

appears. Furthermore, its level increases with H, and thus the potential well becomes

narrower and deeper. Finally, it reaches a maximum depth when both the maxima

attain equal height. If H is then further increased, the depth of the potential well

starts decreasing as the inner maximum level decreases. Hence, increasing the value of

H further, the potential well will at some point again vanish as the inner maximum is

vanishing (e.g. λ = 50, H ∼ 20− 150).

In case of non-minimal coupling, a positive value of the coupling constant q̃ shifts

the potential well outwards, does not affect the depth of the potential well significantly

(just slightly reducing it) and raises the level of the first maximum significantly (see the

inset of Fig. 8). A negative value of q̃ shifts the potential well inwards and lowers the

first minimum significantly (so it can affect the potential well, see Fig. 11). Depending

on the particle energy Ẽ, it will be subjected to scattering, a stable/unstable circular

orbit, a bounded orbit with Larmor motion, or it may plunge into the black hole.

Scattering: A particle coming from infinity and having an energy smaller than

either of the maxima will be scattered away back to infinity. When the inner maximum

is the absolute maximum, depending on the sign of q̃, the spectrum (i.e. the energy

dependence) of the scattered particles will differ. For a positive q̃ particles with higher

energies will be scattered away, while for a negative q̃ the scattered particles will have

smaller energies than in the case of minimal coupling (see Figs. 8 and 11). When the

outer maximum is the absolute maximum (e.g. λ = 30, H = 70.7816 [38]), a nonzero

q̃ will not affect the scattering significantly, as the outer maximum is not significantly

influenced by the effect of vacuum polarization.

Plunging into the black hole: A particle coming from infinity with an energy

bigger than both of the maxima will plunge into the black hole. The effects of a nonzero

q̃ on the spectrum of particles plunging into the black hole will be the opposite to what

has been discussed regarding scattering.

Circular motion: A particle coming from infinity with energy equal to either of

the maxima will have a unstable circular orbit. Therefore, when q̃ is positive (negative),

it is possible for particles of respectively higher (lower) energies (in comparison to the

case of minimal coupling) to have an unstable circular orbit. On the other hand, a

particle having the energy which is equal to the first minimum and of local origin (i.e. not

coming from infinity) will have a stable circular orbit. This kind of circular orbit goes by

the popular term “innermost stable circular orbit” (isco). In the absence of a magnetic

field a charged particle cannot have a stable/unstable circular orbit below a radius of

6M , while a magnetic field allows circular orbits well below this radius. Furthermore,

in the non-minimal coupling case, with nonzero q̃, this radius gets additionally affected

(it increases/decreases for positive/negative values of q̃, see Figs. 8 and 11). This will
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have implications for the modeling of accretion disks, as will be discussed later.

Particle trapping: A particle of local origin which has an energy smaller than

both of the maxima will see two turning points and will be trapped in a gyrating

(Larmor motion, see, for example, Figs. 5 to 9 of [38] and/or Figs. 1 to 3 of [3])

bound orbit. Depending on the values of λ and H the two maxima can have the

same height, such that the depth of the corresponding potential well will be maximum

(e.g. λ = 50,H = 68.5249). A positive value of q̃, apart from shifting the potential well

outwards, hardly makes any difference in comparison with the minimal coupling scenario

(see Fig. 10), while a negative q̃ significantly affects the potential well by modifying the

first maximum and thus the trapping of particles (see Fig. 9). A more negative value

of q̃ can bring down the first maximum even lower with respect to the outer maximum

and can hence make the potential well shallower (or can even wash it out completely

(see Fig. 10). On the other hand, in the case when a negative q̃ does not make the

potential well shallower (for certain combinations of values of λ, H, see e.g. Fig. 9),

then – as the potential well is in this case positioned closer to the event horizon – this

well is capable of holding more energetic particles trapped in itself in comparison to the

minimal coupling scenario.

In all the settings discussed above the study of the spectrum of the scattered

particles stands out as the most distinguished case for manifesting the difference between

minimal and non-minimal coupling scenarios. With respect to the spectrum of the

scattered particles, all other aspects of motion represent a less significant kind of probe

that could serve as a signature for the existence of the effect of non-minimal coupling.

4.1.2. Case 2: The Angular Momentum is Anti-Parallel to the Magnetic Moment For

a particle having its angular momentum oriented anti-parallel to magnetic dipole, the

effective potential has only one maximum (very close to the horizon) and a minimum

far away from the horizon. Hence, such a particle will effectively not see any potential

well. If the energy Ẽ of the particle is greater than the maximum, it will plunge into the

black hole, while if it is smaller, it will be scattered away. There also exists a possibility

of an unstable circular orbit very near the event horizon (if the particle’s energy is equal

to the maximum), and a stable circular orbit far away from the event horizon (for less

energetic particles). The effects of nonzero q̃ on the scattering of particles are similar to

what has been discussed for the case H > 0 (see Figs. 11 and 12).

4.2. Uniform Magnetic Field

Again, we point out the existence of an analytical expression for Aφ(r, θ) for the case of

the minimal-coupling scenario [40],

Aφ =
B0

2
r2 sin2 θ , (25)

where B0 is the strength of magnetic field at infinity. To obtain the effective potential

numerically for the case of non-minimal coupling, we follow the same set of procedures
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Figure 8. The effective potential for the motion of a charged particle in the equatorial

plane of the Schwarzschild spacetime in an asymptotically dipolar magnetic field, for

λ = 50. The colors blue, red and black correspond to the angular momentum parameter

H values 17.6954, 24.7736 and 34.4136, respectively. The solid, dashed, dashdotted

curves are for q̃ = 0.0 and dotted, dashdotdotted, densely dashdotted curves are for

q̃ = 0.5, respectively. Due to a lack of space we have presented these line-styles in

the figure legend of Fig. 11 (the only differences are the signs of H and q̃, while the

magnitudes are the same). The values for λ and H are taken from [38]. In order to

overcome the scaling difficulties, the peaks of the effective potentials are plotted in the

inset where the left labeling of vertical axis is for q̃ = 0.5 and right labeling for q̃ = 0.

2 3 4 5 6 7 8 9 10
r/M

0

5

10

15

20

25

30

35

40

45

V
2 ef
f

λ=50.0

2.0 2.1 2.2
r/M

100

120

140

V
2 ef
f

Figure 9. Same as Fig. 8, but for q̃ = −0.5. The peaks of effective potentials for

q̃ = 0.0 are plotted in the inset. The decrease in the heights of the peaks for q̃ = −0.5

in relation to the case of the minimal coupling can be seen.

as described earlier for the case of a dipole field. We define one more dimensionless

quantity, β ≡ qB0M/m, and will make use of H as defined earlier. For the radial

distance we will use a dimensionless parameter, ρ = r/M , for which ρ+ and ρ− will

be used to denote the radius of the isco when the angular momentum is parallel and

anti-parallel to the magnetic field, respectively. Unlike in the case of a dipole magnetic

field, the uniform magnetic field at large distances from the horizon plays an important
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Figure 10. The effective potential for the purpose of illustrating maximum depth

potential (and hence maximal particle trapping). The used parameter values are

λ = 50.0, H = 68.5249 and the values of q̃ are shown in the legends. As can be

seen, a negative coupling constant (q̃) significantly reduces the capacity of trapping

charged particles near the horizon, while a positive q̃ does not affect it so much.
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Figure 11. Same as Fig. 8, but here for the negative values of the angular momentum

parameter (H) used there. The peaks for q̃ = 0.5 are shown in the inset. An increase

in the heights of the peaks for q̃ = 0.5 with respect to the case of minimal coupling

may be seen here.

role as a barrier for the particles coming from infinity (see Figs. 13 and 14).

4.2.1. Case 1: The Angular Momentum is Parallel to the Magnetic Field For our

investigation of non-minimal coupling of an asymptotically uniform magnetic field with

Schwarzschild spacetime, we have used the values of parameters β and H from the

caption of Fig. 3 from [40]. We also note that the quoted l ' 3.22 in that figure caption

is a typographical error and we find it to be l ' 4.6. The parameters ρ, β and H defined

here corresponds to 2ρ, b and 2l in [40], respectively. We will focus our discussion mainly

on the case for q̃ 6= 0, as the q̃ = 0 case is nicely presented in [40].
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Figure 12. Same as Fig. 11, but here for q̃ = −0.5. The decrease of the heights of the

peaks for a negative coupling compared to the case of minimal coupling may be seen

here.
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Figure 13. The effective potential for the motion of a charged particle in the equatorial

plane of the Schwarzschild spacetime in an asymptotically uniform magnetic field for

the magnetic field parameter β = 0.5, for the case of the magnetic field and the angular

momentum being parallel. The colors blue, red and black corresponds to the angular

momentum parameter (H) values 2.36, 4.14 and 9.2, respectively. The solid, dashed,

dashdotted curves are for q̃ = 0.0 and dotted, dashdotdotted, densely dashdotted curves

are for q̃ = 0.5, respectively. Because of a lack of space in this figure we have presented

these line styles in the legend of Fig. 14 (the only difference being the sign q̃, while its

magnitude is the same). To highlight the two interesting features (one extra maximum

and one additional minimum near the horizon) in the effective potential due to positive

coupling, the inset plot is included. Only the right-side labeling of the vertical axis

corresponds to the inset plots.

In the case of a minimally coupled magnetic field, for lower values of H there

are, at first, no extrema of the effective potential present, while for an increase in H

we see one extremum (inflection point), and increasing H even further results in one

maximum near and one minimum away from the horizon (as can be seen in Fig. 13 for
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Figure 14. Same as Fig. 13, but now for q̃ = −0.5. Unlike for the case of positive

q̃, here for q̃ = −0.5 the effective potentials do not differ much from the case of the

minimal-coupling scenario.
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Figure 15. The isco radii(ρ+) as a function of β when the angular momentum of the

particle is parallel to the uniform magnetic field (asymptotically). The colors black,

blue and red are for the values of q̃ =0.125, 0.0 and -0.125, respectively. As expected

in all three (different values of q̃) cases, the isco radius should be 6M when there is no

magnetic field (i.e. when β=0). For the case of minimal coupling with an increase in

the strength of the magnetic field parameter β, the isco radius saturates for risco → 2M

to β →∞.

H ' 2.36, 4.14, 9.2). For a further increase in H, both of these extrema shift outwards

from the horizon with the increased values of the effective potential. A positive q̃

introduces none, one or two more extrema near the horizon, depending on H. So, for

those values of β and H, for which there are no extrema at all in the case of minimal

coupling, a positive q̃ can introduce an inflection point or a minimum and hence lead

to the existence of an isco or a potential well. For those values of β and H, for which

there is an inflection point, a positive q̃ can introduce a minimum and hence a potential

well. Finally, for those higher values of β and H, for which there is a maximum and
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Figure 16. The angular momentum parameter (H+) for isco as a function of β. The

colors black, blue and red are for the values of q̃ = 0.125, 0.0 and −0.125, respectively.

As expected, in absence of any magnetic field the angular momentum here is +
√

12M .
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Figure 17. Location of the extrema of the effective potential V 2
eff for β = 0.5 in

the r-H parameter space (upper branch) for different values of q̃. For q̃ = 0.5 two

minima/maxima (denoted as Min A/B and Max A/B, respectively) exist. Note that

while this upper branch has strictly H > 0 in the case of non-minimal coupling, for

q̃ = 0.5 it obtains values with H < 0.

a minimum, a positive q̃ can introduce one more maximum and one more minimum

and hence one more potential well. Effectively, a positive q̃ introduces bound gyrating

trajectories (and stable/unstable circular orbits) very near the horizon, separated from

the same type of trajectories away from the horizon. This observation can have its

implications in modeling of accretion disks and while studying any emission (possibly

synchrotron emission, see below) from particles gyrating in the bounded orbits.

A negative q̃ introduces at most one inflection point or minimum near the horizon if
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no such features are there in case of minimal coupling. For an already existing potential

well, a negative q̃ increases the depth (see Fig. 14). Unlike the case of q̃ > 0, here we do

not see two sets of bounded orbits, but with an increased depth of the potential well,

trapped particle will have higher energies compared to the case of minimal coupling.

In Fig. 15 we have plotted the dependence of the radius of the isco on the magnetic

field parameter β. In the figure we clearly can see the isco radius at 6M for zero

magnetic field, then, for an increasing magnetic field, it shifts towards the horizon. As

expected, for a positive q̃ and in the case of smaller values of magnetic field (i.e. values

up to which the non-minimal coupling does not introduce any inner minima, but rather

just shifts the extrema of the minimal coupling scenario outwards, see Fig. 13) the isco

radii are larger than those for the minimal-coupling case. Above a certain strength of

the magnetic field, the non-minimal coupling starts introducing additional extrema near

the horizon (this aspect can be seen in Fig. 15 around β ' 1.3. We choose |q̃| = 0.125

instead of 0.5 to show this transitory feature clearly, since for q̃ = 0.5 this feature

shows near β ∼ 0.1). Therefore, we see that beyond certain values of β there are two

sets of stable circular orbits (well within 6M radius) separated from each other. The

termination of plot for negative q̃ should be interpreted as isco grazing the horizon and

being occupied with angular momentum of the particles H → 0. Because of limited

resolution (∆H) used in our code, this curve is terminating there. This feature is not

surprising, as we carefully observe the plot of the effective potential in the Fig. 14 for

H = 2.36. Like in the case of minimal coupling for β → ∞ [40], we expect the radius

of isco to saturate at some value (depending on q̃) near 2M (the Schwarzschild radius).

In Fig. 16 we have plotted the angular momentum for isco as a function of magnetic

field parameter β. We can see that, starting from the angular momentum of
√

12M for

β = 0, the particles with lower angular momentum initially occupy the isco, while with

the increase in the strength of the magnetic field particles of higher angular momentum

orbit in the isco as well. Again, the transitory feature near β ' 1.3 for q̃ = 0.125

reflects the introduction of an inflection point or a shallow potential well near the horizon

because of non-minimal coupling (see the inset of Fig. 13). The termination of the curve

for q̃ = −0.125 near β ' 2.2 (with H ' 0.4) reflects the fact that for the continuation

of this curve one needs a progressively finer and finer resolution (∆H) requiring heavy

computation. As the gained information is not justifying such heavy computations, we

have terminated our calculations beyond these limits.

As a concluding remark and summary to this section we present the change of the

position of the minima and maxima of the effective potential in the r-H phase space

in Fig. 17. As already described, the introduction of q̃ 6= 0 indeed greatly modifies the

form of the effective potential, in particular by creating additional extrema and also

shifting this “upper branch” (i.e. the branch of H > 0 for q̃ = 0) to negative values of

H. In fact, this modification can alter observational signatures which, in turn, may be

used in the future to derive limits on q̃, as described in Sec. 6.1.
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Figure 18. The effective potential for the motion of a charged particle in the equatorial

plane of the Schwarzschild spacetime in an asymptotically uniform magnetic field with

magnetic field parameter β = 0.3, for the case of the magnetic field being anti-parallel

to angular momentum.

2 3 4 5 6 7 8 9 10
r/M

1

2

3

4

5

6

7

V
2 ef
f

β=0.3

̃q=0̃ H= -6
̃q=0̃ H= -9
̃q=0̃ H= -12

̃q= −0.5, H= -6
̃q= −0.5, H= -9
̃q= −0.5, H= -12

Figure 19. Same as Fig. 18, but now for q̃ = −0.5.

4.2.2. Case 2: The Angular Momentum is Anti-Parallel to the Magnetic Field When

the angular momentum of a particle is anti-parallel to the magnetic field we hardly see

any interesting features in the effective potential in both coupling scenarios. Results in

the case of non-minimal coupling are just slightly enhanced/suppressed quantitatively.

We can speculate about the possible reason for such a situation to be the saturation

of the isco radius (ρ−) comparatively (with the case of parallel angular momentum) far

from the horizon, ρ− → 4.3M as β →∞ [40].

In Figs. 18 and 19 we have presented a few illustrative plots for the effective

potential. Depending on β and H, there exist a maximum (and hence an unstable

circular orbit) near the horizon, followed by a minimum (and hence a stable circular orbit

and/or potential well for particle trappings) away from the horizon. A positive/negative

q̃ raises/lowers the height of the maxima and shifts inward/outwards. The effects of
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Figure 20. The isco radii (ρ−) as a function of β when angular momentum of the

particle is anti-parallel to the uniform magnetic field (asymptotically). The colors

black, blue and red are for the values of q̃ = 0.5, 0.0 and −0.5, respectively. As

expected, in the absence of a magnetic field the radius should be 6M . For the case of

minimal coupling, for an increase of the strength of the magnetic field parameter β,

the isco radius saturates as risco → 4.3M for β →∞ [40].
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Figure 21. Location of the extrema of the effective potential V 2
eff for β = 0.3 in the

r-H parameter space (lower branch) for different values of q̃. In contrast to the upper

branch (cf. Fig. 17), the change with q̃ of the overall structure here is much smaller.

positive/negative q̃ on the minima is to shift it inwards/outwards and hardly makes any

change in its height.

In Fig. 20 we have plotted the radii (ρ−) of the isco as a function of the

parameter β. A positive/negative value of the coupling constant q̃ allows the isco to

be closer/farther to/from the event horizon when compared with the case of minimal

coupling. Correspondingly, the energy of particles trapped in unstable/stable circular
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Figure 22. The angular momentum parameter (H−) for the isco as a function of β.

The colors black, blue and red are for the values of q̃ = 0.5, 0.0 and −0.5, respectively.

As expected, in the absence of a magnetic field the angular momentum is −
√

12M .

orbits or in gyrating bound orbits will be different for the two kinds of coupling. In

these figures, for a zero magnetic field (β = 0) we again can see the isco radius 6M and

the corresponding angular momentum −
√

12M .

Finally, in a similar way as for the previous section, in Fig. 21 we present the

behavior of the extrema of the effective potential in the r-H parameter space (for the

lower branch, i.e. H < 0 with respect to q̃. While a modification is clearly visible, in

contrast to the upper branch described before the basic shape remains the same and no

additional extrema are introduced.

4.2.3. Energy of a Charged Particle in a Marginally Stable Circular Orbit As a prequel

to the study of the collision of charged particles, in this section we briefly discuss the

energetics of charged particles moving in a marginally stable circular orbit. In the

case of the angular momentum being parallel to the asymptotically uniform magnetic

field, a non-minimal coupling makes it possible to have the isco closer to the horizon

compared to the case of minimal coupling (of course above a certain value of magnetic

field strength this feature is common to both the positive and the negative charge, see

Figs. 15 and Fig. 23). The break/gap in the energy plot for q̃ = 0.125 is understandable

if we observe Fig. 15, since for β < 5 there are no isco radii in the range ∼ 2.12− 2.47,

while with the increase in β this gap will fill.

When the angular momentum is anti-parallel to the magnetic field, similar to the

results in the case of minimal coupling, the non-minimal coupling also enables trapping

of the particles with higher energies (Ẽ > 1, see Fig. 24). For a positive/negative value

of the coupling constant q̃ and any given β these high energy particles can move in

closer/farther iscos in comparison to the case of minimal coupling.
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Figure 23. Energy of a charged particle in an isco as function of the isco radius when

its angular momentum is parallel to the uniform magnetic field.
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Figure 24. Energy of a charged particle in an isco as function of the isco radius, when

its angular momentum is anti-parallel to the uniform magnetic field.

5. Particle Collision/Acceleration

Taking the case of an asymptotically uniform magnetic field, we consider the collision

of two charged particles of equal mass (m0), opposite charge and moving in opposite

directions on an isco (therefore having the same angular momentum). For this we

calculate the center of mass energy of the two colliding particles, given by

E2
cm = 2m2

0 (1− gµνuµ1uν2) , (26)

where uµ1 and uµ2 are their respective 4-velocities. For this configuration of the collision

the 4-velocities of the particles take the form

uα± =

(
− dt

dτ
, 0, 0, ±dφ

dτ

)
(27)
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Figure 25. The center of mass energy for a head-on collision of two charged particles

of equal mass m0, equal and opposite charge, moving in opposite directions, therefore

having equal angular momenta (when the angular momenta of these charged particles

are parallel to the magnetic field) as a function of the isco radii.

and are subject to the normalization uαuα = −1. Using Eqs. (19), (20) and (22), we get

Ecm

m0

=
√

2

(
1− 2M

r

)−1/2√
Ẽ2 + V 2

eff . (28)

In Fig. 25 we have plotted the center of mass energy over the rest energy of a charged

particle as function of the isco radius when the angular momentum of the particles is

parallel to the magnetic field. For the case of minimal coupling we do not see much gain

in energy [46]. In the case of non-minimal coupling, beyond some values of magnetic

field strength, near the horizon, the ratio Ecm/m0 dominates when compared to the case

of minimal coupling. The energy of a charged particle in an isco near the horizon in

case of a nonzero q̃ is not much larger comparatively (see Fig. 23). However, because of

the relative proximity to the horizon (when compared to the case of minimal coupling),

the term
√

1− 2M/r in Eq. (28) enhances this ratio Ecm/m0.

The center of mass energy over the rest energy of a charged particle as function

of the isco radius when the angular momentum of the particles is anti-parallel to the

magnetic field is shown in Fig. 26. Unlike the case of parallel angular momentum here

the isco radii are away from the horizon, the effect of which can be seen if we observe

the numbers on vertical axis of Fig. 26. The seemingly blowing-off of Ecm/m0 near the

minimum isco radius is not to be interpreted as a gain of energy due to the black hole,

but coming from the fact that these particles are already energetic (see Fig. 24). In

other words, they have high energies when measured by an observer at infinity, i.e. the

black hole is not functioning as an accelerator here [46].
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Figure 26. The center of mass energy for a head-on collision of two charged particles

of equal mass m0, equal and opposite charge, moving in opposite directions, therefore

having equal angular momenta (when the angular momenta of these charged particles

are anti-parallel to the magnetic field) as a function of the isco radius.

6. Possible Applications in Astrophysical and Cosmological Scenarios

Due to the required amount of work and space, it is not possible to present any detailed

numerical and quantitative predictions regarding the systems in which the non-minimal

coupling could have its astrophysical application. While leaving such more detailed

and extensive investigations for the future, in this section we will explore several

possible implications of the non-minimal coupling qualitatively. Recently the non-

minimal coupling of photon to the Weyl tensor was considered in [19]. The observational

constraint on coupling parameter thus derived has been estimated to be ∼ 0.563.

Though in this treatment a different metric was used for the description of black hole,

and not the Schwarzschild metric, their estimate is not too different from the order of

q̃ ∼ 0.5 − 1, used in our work for example. Whereas in the context of the Sun and

pulsar(of mass 1.33M�), for observable effects of non-minimal coupling the constraint

on q̃ obtained in [22] are ∼ 3.3×109 and ∼ 1.5×102. Clearly for the later case we can not

claim the validity of our present work Applications of this effect for objects like a neutron

star, the sun and Earth are discussed in [3], such that we will not discussion them here.

In [3] the application to primordial black holes is also discussed, but nevertheless here

we would like to present it in a different light.

One of the central issues which appears when discussing the potential observational

effects of the non-minimal coupling is the value of the coupling parameter. Broadly

speaking, one approach to this question is to consider the coupling constant to be a

free parameter that has to be obtained or constrained phenomenologically, i.e. from

observations of astrophysical sources, as have been considered in the literature [4, 5].

On the other hand, Drummond & Hathrell [2] have presented a derivation of the non-

minimal coupling from first principles, demonstrating it to be the consequence of the

QED vacuum polarization on the curved spacetime. In their derivation they have found
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that the coupling constant is determined to be q3 = −αλ2
e/90π ∼ −10−28 m2, where

α is fine structure constant and λe is the Compton wavelength of the electron. It is,

however, important to take into account that this value is determined for a very specific

and elementary setting of a photon propagating in vacuum on the curved spacetime. It

is not at all simple to determine what is the connection between this very simple case

of one photon and a very complex setting of photons leading to macroscopic magnetic

field distributions, such as the dipole field. Therefore, it is not possible to simply claim

that the coupling parameter for macroscopic configurations of magnetic fields – i.e. the

ones encountered in astrophysics – is related to the value calculated in [2]. In principle,

the value of the coupling parameter could even vary for different field strengths and

configurations. It therefore seems that the value of the coupling parameter for the

macroscopic magnetic field configurations of interest is basically unknown and should

be constrained from the phenomenological considerations. However, the significance of

the value determined in [2] comes from the fact that it can serve at least as a conservative

lower limit for the value of q̃. Therefore, when discussing the potential observational

implications we can take it as a reasonable assumption that the value of q̃ should be at

least of the order of magnitude predicted in [2] or higher. In the following paragraph

we will discuss the cosmological consequences of non-minimal coupling focusing on the

case of this limit. Taking this conservative lower limit, q̃ = q3/r
2
0, where r0 ∼ 2M , to

be of order 1, the mass M has to be ∼ 1013 kg, such that for most of the astrophysical

sources of mass comparable to or higher than the solar mass, it is q̃ � 1. Therefore, it

follows that in such a case the observable effects will be negligible.

However, an interesting candidate relevant even for this conservative limit is given

by hypothetical astrophysical objects called Primordial Black Holes (PBHs) [47, 48],

which have a mass range conjectured (depending on the model, i.e. on the time when

they formed after the Big Bang) to be between 10−8 kg and many solar masses. Another

point to note is that Hawking’s theory of black holes evaporation [49] predicts that any

PBH of a mass less than ∼ 1011 kg would have evaporated by now. Needles to say, it is

of course very questionable to expect that this approximation – which assumes a weak

field and the one-loop approximation – can be applicable for a PBH of mass ∼ 10−8 kg

(q̃ ∼ 1041). On the other hand, if we take the Drummond & Hathrell [2] theory to be

applicable for q̃ ∼ 1 − 10 (i.e. a mass of ∼ 1013 − 1011 kg, since q̃ ∝ 1/
√

mass), then

it can be utilized for both kinds of PBHs – the ones which are already evaporated and

the ones which still exist. With regard to evaporated PBHs it is in principle quite likely

that the local distribution of magnetic fields previously associated with them would still

be present at their location. Thus, an astrophysical observation of a local suppression

of the magnetic field can be further analyzed as a possible candidate for the detection

of PBH. The investigation of PBHs in relation to non-minimal coupling can in general

take two directions. In the case of a significant localized suppression of magnetic field

being observed (while previously not being recognized as a PHB candidate), we can take

non-minimal coupling considerations into account and claim this localized suppression

to be a signature of a PBH. On the other hand, if some location is already claimed
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to be a PBH candidate by some other model or consideration, then – if a significant

suppression of magnetic field around this point is established – it can serve as a way to

establish a constraint on the value of q̃. For the PBHs which exist until the present day

(1011 kg . mass . 1013 kg) the same arguments as for the usual black holes in [3, 10]

may be made. We note that the discussed question of PBHs is also interesting because

it connects the question of non-minimal coupling with the question of the evolution of

cosmological magnetic fields, which could also be connected with the question of the

origin of the Universe [50].

In any realistic modeling of an accretion disk around a black hole, the study of

factors which affect the isco is important. The implications of the correct modeling of

an accretion disk is also important for the analysis of the black hole images made by

the Event Horizon Telescope [51, 52, 53] and for similar future observations. In the

present work we saw that a non-minimal coupling affects isco not only quantitatively

but also qualitatively. One of the means to distinguish between a black hole and

hypothetical/exotic objects (like a naked singularity, a non-singular black hole, etc.)

has been the investigation of the properties of isco in absence of and in presence of

magnetic field (in the minimal coupling scenario). Including a non-minimal coupling

considerations in these studies can answer the questions like – can a black hole, when

its gravity is non-minimally coupled with a magnetic field, have same/distinguishable

observational signatures as those of exotic objects? For instance, the γ - metric – one

of the candidates for naked singularity – shows two well separated regions of the isco

for γ ∈ (1/
√

5, 1/2) (in absence of [54] and in presence of magnetic fields [55]). We can

see from Fig. 15 that this particular feature is present for a black hole too when the

non-minimal coupling is considered. So it would be interesting to further investigate

how a black hole and exotic objects differ in their observational signature when non-

minimal coupling of electromagnetic field with strong gravity is considered. Very often

the estimation of spin of a black hole candidate has been derived from the theoretical

relationship between spin and the isco radius [56, 57]. Though in the present work we

have not considered a rotating black hole (i.e. a Kerr black hole), from previous studies

in minimal coupling we can expect that there too the properties of the isco would be

different if non-minimal coupling is taken into consideration.

From observational astronomy it is well established that many astrophysical objects

(active galactic nuclei, radio galaxies, both stellar mass and super-massive black holes,

etc.) often have jets associated with them. Many proposed mechanisms for the formation

of jets assumes the presence of a magnetic field in the system comprising a central

object (often a neutron star or black hole), an accretion disk and a jet. The transfer of

energy and material from accretion disk to jet is facilitated by magnetic fields in many

models [58]. So far only the minimal coupling of magnetic field with gravity have been

considered in the models of jet formation. A study of non-minimal coupling of magnetic

fields with gravity can possibly shed some new light on the nature of the phenomenon.
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Figure 27. The location of minima (denoted as “Min”) and maxima (denoted as

“Max”) in the r-H parameter space for different values of q̃. As discussed above, while

for the case of minimal coupling and for q̃ < 0 only one minimum/maximum exists, for

q̃ > 0 there are two minima/maxima. In this latter case “Min A”/“Max A” denotes

the minimum/maximum which is closer to the event horizon, while “Min B”/“Max B”

denotes the minimum/maximum farther away from the event horizon which converges

with the one for q̃ ≤ 0 for large r or H.

6.1. Synchrotron Radiation

Finally, as a concrete astrophysical application and in order to give a quantitative

estimate how it may be changed by non-minimal coupling, we consider the possibility of

synchrotron radiation from the vicinity of a black hole. Doing so requires the trapping of

high energy particles near the horizon [45]. In absence of a magnetic field the possibility

of particle trappings within a radius of 6M in unbound and unstable orbits [59, 60, 61]

has limitations. In the presence of a magnetic field, even in a minimal coupling scenario,

highly energetic particles can be trapped in stable circular orbits within a radius of 6M

and near the horizon. We saw here that non-minimal coupling further facilitates the

trapping of high energy particles near the horizon, such that in any study of synchrotron

radiation from the vicinity of a black hole the inclusion of non-minimal considerations

can be useful.

In order to demonstrate a concrete possibility for such an investigation, we start

with the concepts developed for synchrotron radiation from a weakly magnetized

Schwarzschild black hole with minimal coupling in [62] and extend them to the non-

minimal case. In particular, we consider the case of a proton orbiting a stellar

Schwarzschild black hole in a uniform magnetic field (cf. Sec. 4.2) which translates

to a value for β of β ' 4.718× 107.

In [62], for β � 1 and minimal coupling, the following relations for Hmax(β, r) and

Hmin(β, r), the values for the location of the minimum and maximum of the effective
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Figure 28. Upper limit ωmax for the frequency of the emitted synchrotron radiation

by a proton orbiting a stellar black hole for different values of q̃ (according to Eq. (33))

as a function of the radius rmin at which the minimum of the effective potential

(and hence the stable circular orbit which the proton eventually reaches) is located.

Note the deviation at small rmin for the case q̃ = 0.5 which is due to the second

minimum/maximum of the effective potential.

potential in the parameter space, respectively, has been derived:

Hmax =
βr2

max(rmax −M)

4M2(3M − rmax)
+O(β−1) , (29)

Hmin =
βr2

min

4M2
+

M

2β(rmin − 2M)
+O(β−3) , (30)

where rmax and rmin are the corresponding normalized radii. From this the respective

energies Emax and Emin for a constant value of H may be approximated by the

expressions

E2
max '

β2rmax(rmax − 2M)

(3M − rmax)2
, (31)

E2
min ' 1− 2M

rmin

+
M4

β2r3
min(rmin − 2M)

. (32)

Taking into account the form of the effective potential, this results in a helical

trajectory around the circular orbit with radius rmin. Without synchrotron radiation

this helical movement would be stable, while due to the energy loss the particle ”spirals

down” to r = rmin, such that in the end the trajectory is nearly circular (i.e. it has

descended to the minimum of the effective potential).

For this situation [62] presents a well-motivated estimate for the upper limit ωmax

of the frequency of the synchrotron radiation, namely

ωmax ' 0.87βEmax. (33)
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When considering the non-minimal case, i.e. q̃ 6= 0, one first has to consider the

structure of the effective potential, which can be done using Fig. 27: For q̃ ≤ 0 we have

a maximum and a minimum, however non-minimal coupling considerably shifts them

in the r-H parameter space and, furthermore, also regarding their actual value. This,

in turn, results in a upwards shift of ωmax, as can be seen in Fig. 28. This means that

there is, in principle, a possibility to limit q̃ from below by measuring the synchrotron

frequency emitted in the vicinity of a black hole.

A more interesting situation develops for q̃ > 0. As described above, in this

parameter region, depending on the values of r and H, up to two minima and maxima

can exist. For this case we name the maximum closer to the event horizon, at rA
max,

“maximum A” and the one farther from it, at rB
max, “maximum B”, i.e. rA

max < rB
max

(and analogous to that for the minima at rA
min and rB

min). When calculating ωmax

in this case, one has to consider two different scenarios (as before, for a fixed H):

V 2
eff(rA

max) < V 2
eff(rB

max) and V 2
eff(rA

max) ≥ V 2
eff(rB

max). In the former scenario, in order to

have a conservative limit, a particle which eventually ends up in the minimum A can

initially at most have an energy corresponding to the maximum A, while a particle

arriving at the minimum B can start with an energy corresponding to the maximum

B. On the other hand, in the second scenario, particles finishing at the trajectories

corresponding to either of the two minima may start at the higher energy, i.e. at the one

corresponding to maximum A. This, together with the particular values of the effective

potential at the maxima, results in the rather different behavior of ωmax with rmin for

q̃ = 0.5 in Fig. 28, as for very small values of rmin close to the event horizon the maximum

frequency is dramatically higher than for the case of q̃ ≤ 0, which might result in either

a clear observational feature or, in case it is not observed, a rather strict upper limit on

q̃.

7. Concluding Remarks

New astrophysical observations, such as the results obtained by the Event Horizon

Telescope and the study of super-massive black holes, make it possible to investigate

the structure of magnetic fields near the event horizon more precisely [63, 64, 65, 66].

This topic is also of fundamental theoretical interest since black hole horizons are

associated with strongest gravitational fields currently accessible to observations. It

is precisely in this strong gravity setting that one could expect to find some signatures

of new effects going beyond the standard description of relationship between gravity and

electromagnetism. As we have discussed, one of such effects – that can be motivated from

the fundamental field-theory considerations – is the non-minimal coupling of gravity and

electromagnetism. For instance, this type of non-minimal coupling naturally comes as

a consequence of the effect of QED vacuum polarization on curved spacetime. We note

that in the setting of Schwarzschild spacetime near the horizon one could also expect

other effects beyond standard electrodynamics to manifest, such as some non-linear

effects [67]. With an aim to study this effect in a setting which is relevant for the
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astrophysical application, we have considered the case of non-minimal coupling between

magnetic fields and gravity on Schwarzschild spacetime in the weak magnetic field limit.

We have thus followed, improved and considered some new applications of the ideas

recently proposed in [3, 10], with the primary motivation to elaborate the physical

consequences of the non-minimal coupling between gravity and electromagnetism and

to help bringing them closer to the possibility of observational verification.

In the following we are going to summarize our findings and the conclusions which

may be drawn from them.

• We have first reviewed the already known solutions for the case of minimally coupled

magnetic fields on Schwarzschild spacetime and then considered the non-minimal

coupling effects for both the asymptotically dipole and uniform magnetic fields

in detail, while discussing the changes induced by the non-minimal coupling with

respect to the minimal coupling case. We have also provided a detailed discussion of

the changes that come as a result of non-minimal coupling in both of the mentioned

magnetic field configurations. In all of the discussed settings we have found that

even the modest values of the coupling parameter q̃ – which do not seem to appear

to be in contradiction with other observations – can cause a significant change in

the magnetic fields near the event horizon. These changes can have the character

of an amplification or a suppression, depending on the sign of the non-minimal

coupling parameter.

• Apart from this quantitative change (which appears for both the asymptotically

dipole and the asymptotically uniform case), in the case of an asymptotically

uniform field a further qualitative change also appears: the direction of magnetic

fields changes near the horizon – for the positive value of q̃ the direction alters near

the equatorial plane, while for the positive values the direction alters near the two

poles.

• We have also studied in detail how non-minimal coupling modifies the features

of the effective potential in the equatorial plane. The non-minimal coupling can

increase/decrease the effective potential, change the position of the potential well

and raise or lower the level of the maxima and minima. Due to these reasons, under

proper conditions non-minimal coupling can significantly change the spectrum of

the scattered particles, affect the innermost stable circular orbit (isco), influence

the energy spectrum of trapped particles and change the center of mass energy

during the acceleration of charged particles. All these processes were discussed in

detail qualitatively and quantitatively. The most promising effect for manifesting

the difference between minimal and non-minimal coupling seems to be the study of

the spectrum of scattered particles for the case of a dipole field configuration.

• We have also discussed various physical scenarios of observational interest in which

the non-minimal coupling effects could play a significant role. Such scenarios and

settings include primordial magnetic fields and primordial black holes, studies of

the consequences for the isco (which, for instance, are of interest for discrimination
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between black holes and potential exotic objects with similar properties like non-

singular black holes, naked singularities, etc.), potential effects of non-minimal

coupling in jet formation and synchrotron radiation.

• For the latter we analyzed the potential change of the observational signatures due

to non-minimal coupling in more detail, such that in the future it might be used to

set limits on the value of q̃. In particular, for non-minimal coupling the frequency

of the radiation emitted at an intermediate distance from the black hole might be

moderately shifted up or down for negative and positive values of q̃, respectively,

compared to the minimal case. On the other hand, close to the Schwarzschild

radius a positive q̃ might result in a dramatic increase of the (maximal) synchrotron

frequency, hence potentially giving the most significant observational signature.

We believe that future theoretical research done in these topics – combined with

further improvements in experimental techniques for the study of magnetic fields near

the black hole horizon – can lead to the potential observation of non-minimal coupling,

or at least strongly constraining the value of the coupling parameter. Such progress

could be a significant step forward in our understanding of strong gravitational fields

and quantum effects on them, as well as the connection between electromagnetism

and gravity. In fact, if observed, non-minimal coupling between electromagnetism and

gravity would be the first detection of a curved spacetime quantum process.
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