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We present a new solution for the steady boundary-layer flow over the rotating sphere
that also accounts for the eruption of the boundary layer at the equator and other
higher-order viscous effects. Non-parallel corrections to the local Type I and Type II
convective instability modes of this flow are also computed as a function of spin rate.
Our instability results are associated with the previously observed spiral vortices and
remarkable agreement between our predictions of the number of vortices and experimental
observations is found. Vortices travelling at 70–80% of the local surface speed are found
to be the most amplified for sufficient spin rates, also consistent with prior experimental
observations.
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1. Introduction

The flow over a rotating sphere in a quiescent fluid is present in many fields including
meteorology and astrophysics, and a number of theoretical, experimental and numerical
studies have been performed to investigate this flow. The slowly-rotating case was initially
analytically described in the limit of infinitely small Reynolds number Res = ΩR2/ν by
Stokes (Dennis et al. 1980) where Ω, R and ν indicate the sphere angular velocity, the
sphere radius and kinematic viscosity, respectively. Reynolds numbers of the order of
O(100) were studied analytically by Dennis et al. (1980) by means of a series expansion
in terms of Gegenbauer functions. However, the determination of the coefficients of the
series expansion becomes increasingly challenging as Res is increased due to the grow-
ing importance of the non-linear interactions between the terms of the series. Numerical
solutions of the rotating-sphere problem became recently available (see for instance Cal-
abretto et al. 2015) but the simulation of the flow is increasingly challenging as the
Reynolds number is increased, since a boundary layer is formed near the sphere surface.
Instead of seeking a solution of the full Navier–Stokes equations, a feasible alternative is
provided by boundary-layer theory, giving a leading description of what happens close to
the surface where the angular momentum transfer takes place. The boundary-layer ap-
proximation of the rotating-sphere equations was initially proposed by Howarth (1951),
while a solution of them was proposed by Banks (1965) in terms of a series expansion of
the distance from the pole. However, the series diverged close to the equator, so that a
numerical solution of the equations was needed after a certain latitude (Garrett & Peake
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2002). Furthermore, as the boundary-layer equations are parabolic, they will result in a
non zero azimuthal velocity at the equator, so that a collision between the two boundary
layers coming from the poles must take place (Simpson & Stewartson 1982) with a new
elliptic structure of the governing equations. Anyhow, the boundary-layer equations are
expected to provide a good approximation of the flow near the sphere surface and away
from the equator at high Reynolds numbers but the approximation will become increas-
ingly inaccurate for small Res. To our knowledge, no attempt to develop a higher-order
correction has been done so far.

The equatorial region deserves special attention. The experiments of Bowden & Lord
(1963); Hollerbach et al. (2002); Calabretto et al. (2015) and the numerical simulations of
Dennis et al. (1980) and Dennis & Duck (1988) suggest a more complicate structure where
the two boundary layers coming from the poles collide close to the equator, generating
a boundary-layer eruption that subsequently becomes a radial jet (Squire 1955; Riley
1962; Schwarz 1963). Stewartson (1958) proposed that the impinging region could be
decomposed as an inviscid zone and as a very thin viscous region close to the equator
plane and to the sphere surface, and described by planar Navier-Stokes equations. He
did not however propose any solution for the inviscid region, despite the fact that it was
described by a Poisson equation. Later, Smith & Duck (1977) proposed an asymptotic
analysis suggesting a separation zone near the corner, but this separation region has not
been observed in experiments and simulations, so that the characteristics of the impinging
region remain unclear.

Clearly, the boundary-layer flows over rotating disks and spheres are closely related.
Specifically, the rotating sphere is locally flat close to its poles and can be thought of as
corresponding to small rotating disks in those regions. A natural question is then ‘how
far does one have to move from a pole in order for the local sphere flow to cease sharing
the stability properties of the disk? ’. This question has received interest in the literature,
most notably from Garrett who has shown that, like the rotating disk, the rotating sphere
is locally both convectively and absolutely unstable at all latitudes for sufficiently large
spin rates (Garrett & Peake 2002, 2004; Garrett 2010; Barrow & Garrett 2013).

The focus of continued interest in the rotating disk has, in the last two decades, moved
from the study of the spiral vortices in the transitional region (Gregory et al. 1955; Hall
1986; Malik 1986), towards an attempt to explain the global behaviour of the system
that results in the characteristically sharp onset of turbulence. It could be argued that
this new focus began in the mid 90s with the seminal hypothesis of Lingwood (1995) that
local absolute instability plays a significant role in the promotion of a global response.
Some years later, Davies & Carpenter (2003) showed by direct numerical simulations
that, although the disk is indeed locally absolutely unstable, this does not lead to a
linear global mode when the full non-parallel growth of the boundary layer is accounted
for. That is, Lingwood’s initial hypothesis may have been unduly influenced by the use
of the parallel-flow approximation in her linear analysis. At around the same time Pier
(2003) demonstrated explicitly that a nonlinear approach is indeed required. However,
he also went on to show that Lingwood’s local absolute instability fixes the onset of the
non-linear global mode which, in turn, has a secondary absolute instability that promotes
the transition to turbulence. This result can be viewed as confirmation of Lingwood’s
hypothesis but does also highlight that the rotating-disk flow is much more complicated
than originally thought.

Refinements to the theoretical understanding of the precise transition mechanisms
within the rotating-disk flow continue to develop with the community’s access to high-
performance computing and some experimental evidence supporting the latest theoretical
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predictions do now exist (the interested reader is referred to the very latest developments
due to Imayama et al. 2012, 2013, 2014; Siddiqui et al. 2013; Appelquist et al. 2015b,a).

Motivated by the growing interest in the global mode over the rotating disk, Barrow
et al. (2014) conducted a global stability analysis of the rotating-sphere boundary layer.
Using the weakly non-parallel shear-flow formulation due to Monkewitz et al. (1993),
they were able to infer the long-term global response from the strictly local absolute
instability properties of the flow at each latitude. Their clear conclusion was that the
sphere boundary-layer flow is in fact dictated by a linear global mode. Given the compli-
cated non-linear nature of the rotating-disk flow and the close relationship between the
two geometries, this is a very surprising result.

In light of Davies & Carpenter’s conclusions, criticisms can be levelled against Barrow
et al.’s approach to the global mode and Garrett’s earlier approaches to the convective
instability: they rely on strictly local analyses which in turn rely on the parallel-flow
approximation. This is the motivation for our present study where the parallel-flow ap-
proximation is now removed entirely from the analysis. While we present only the non-
parallel convective analysis here, the opportunity is taken here to revisit the steady-flow
solution over the rotating sphere. Unlike the disk, the spherical geometry is such that
boundary layers originate separately in each hemisphere and travel symmetrically from
each pole. The resulting collision at the equator leads to what is typically referred to as
the boundary-layer eruption. All previous boundary-layer studies use the model due to
Howarth (1951) and Banks (1965) in which no account is made for this eruption (and
also a number of additional viscous effects are neglected) in the steady flow, and here we
present a more sophisticated model. For a detailed study of the equatorial jet resulting
from the eruption, see Calabretto et al. (2015).

The new steady-flow solution is presented in Section 2 and the non-parallel formulation
of the stability problem detailed in Section 3. We consider the non-parallel corrections to
the original convective analysis of Garrett & Peake (2002) in Section 4. Finally, a brief
discussion of the local eigenmodes is given in Section 5. Our conclusions are then drawn
in Section 6.

2. Basic flow analysis

Let us consider an isolated steadily rotating sphere in an otherwise quiescent medium.
The problem is conveniently written in a fixed reference frame (θ, ϕ, r) indicating the
azimuthal, tangential and radial direction, respectively. The steady velocity field around
the sphere is denoted by U = (U, V, W ) according to the adopted reference frame. Due
to the axial-symmetry of the flow, each velocity component is a function only of the radial
and azimuthal position, r and θ, respectively. For the sake of notation, all the physical
quantities will be denoted as functions of the azimuthal angle, θ, and radial position,
r, as first and second argument, respectively, and this order will be further maintained
when scaled coordinates will be introduced. Here all the physical quantities are scaled
by the density, ρ, the angular velocity, Ω, and the sphere radius, R. The characteristic

boundary-layer thickness (based on the kinematic viscosity, ν), δ = (ν/Ω)
1/2 � R, is also

introduced for later use together with the small perturbation parameter of the problem,
namely ε = δ/R. The mean-flow equations are

∂U

∂θ
+ U cot θ + r

∂W

∂r
+ 2W = 0 , (2.1)
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Figure 1: Schematic representation of the various regions subdividing the flow around
the rotating sphere.
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 ,(2.2)

where Res = ΩR2/ν = (R/δ)
2

= ε−2 is the Reynolds number based on the sphere radius.
The base flow used for the stability calculations can be found from the solution of

(2.1-2.2) but the simulations are expected to become increasingly more demanding as
Res increases, without gaining significant insight into the scaling properties of the flow.
Therefore, a boundary-layer analysis is proposed here, where the flow is subdivided as
schematically illustrated in Figure 1 to make analytical progress. Historically, the analysis
is usually started from the boundary layer along the sphere surface (Howarth 1951; Banks
1965). By introducing the scaled coordinate η = (r − 1)/ε and the inner asymptotic
sequences

U = U0 + εU1 +O(ε2) , V = V0 + εV1 +O(ε2) ,

W = εW0 + ε2W1 +O(ε3) , P = εP0 +O(ε2) , (2.3)

it is possible to obtain the O(1) problem

∂U0

∂θ
+ U0 cot θ +

∂W0

∂η
= 0 , (2.4)

U0
∂U0

∂θ
+W0

∂U0

∂η
− V 2

0 cot θ =
∂2U0

∂η2
, (2.5)

U0
∂V0
∂θ

+W0
∂V0
∂η

+ U0V0 cot θ =
∂2V0
∂η2

, (2.6)

with

P0 (θ, η) = −
∫ ∞
η

(
U2
0 + V 2

0

)
dζ , (2.7)

and boundary conditions

U0 = V0 − sin θ = W0 = 0 for η = 0 , (2.8)
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U0 = V0 =
∂W0

∂η
= 0 for η →∞ . (2.9)

The same set of equations and boundary conditions were proposed by Howarth (1951)
and solved by Banks (1965) with a series of powers of θ starting from the pole. The
leading term of the series is the same as the von Kármán rotating-disk flow, underlining
the similarity of the two flows near the pole. However, the series solution quickly diverges
for large θ and a numerical solution of the parabolic equations must instead be performed.
The boundary conditions away from the wall assume that the flow outside the boundary-
layer region is at rest with the exception of W that has an outward velocity of order O(ε)
that triggers the flow motion outside the boundary layer. Consequently, it is expected
that the velocity outside the boundary layer is O(ε) while the pressure field is O(ε2).

The boundary-layer equations at order O(ε) are

∂U1

∂θ
+ U1 cot θ +

∂W1

∂η
+ 2W0 + η

∂W0

∂η
= 0 , (2.10)

U0
∂U1

∂θ
+ U1

∂U0

∂θ
+W0

∂U1

∂η
+W1

∂U0

∂η
+ ηW0

∂U0

∂η
+

+U0W0 − 2V0V1 cot θ = −∂P0

∂θ
+
∂2U1

∂η2
+ η

∂2U0

∂η2
+ 2

∂U0

∂η
, (2.11)

U0
∂V1
∂θ

+ U1
∂V0
∂θ

+W0
∂V1
∂η

+W1
∂V0
∂η

+ ηW0
∂V0
∂η

+ V0W0 +

+ (U0V1 + U1V0) cot θ =
∂2V1
∂η2

+ η
∂2V0
∂η2

+ 2
∂V0
∂η

. (2.12)

The above equations are linear in the perturbation terms and are driven by the boundary
conditions and by some inhomogeneous terms coming from the O(1) solution, including
curvature effects. The associated boundary conditions are U1 = V1 = W1 = 0 for η = 0,
while for the outer edge the conditions depend on the outer flow and will be discussed
later.

Due to the parabolic nature of equations (2.4)-(2.6) and (2.10)-(2.12), the tangential
velocity at the equator, U0(π/2, η), will not be zero, resulting in a viscous impinging wall
jet with a lateral velocity V0(π/2, η). Here, the azimuthal and radial changes happen with
the same aspect ratio, suggesting an elliptic nature of the equations. Following Stewartson
(1958), it is possible to introduce now the scaled azimuthal position β = (θ − π/2) /ε, so
that the following leading-order equations are determined for the impinging region

∂UI
∂β

+
∂WI

∂η
= 0 , (2.13)

UI
∂UI
∂β

+WI
∂UI
∂η

= −∂PI
∂β

+ ε

(
∂2UI
∂β2

+
∂2UI
∂η2

)
, (2.14)

UI
∂VI
∂β

+WI
∂VI
∂η

= ε

(
∂2VI
∂β2

+
∂2VI
∂η2

)
, (2.15)

UI
∂WI

∂β
+WI

∂WI

∂η
= −∂PI

∂η
+ ε

(
∂2WI

∂β2
+
∂2WI

∂η2

)
, (2.16)

where the subscript I indicates velocity and pressure quantities in the impinging region
(see Figure 1). Differently from the boundary-layer region, all the velocity components are
now O(1). Only the leading-order viscous terms are retained since they should generate
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new internal boundary layers along the surface of the sphere and along the equatorial
plane of size O (ε

√
ε) (Stewartson 1958). The associated boundary conditions are (at the

leading order)

UI = VI − 1 = WI = 0 for η = 0 , (2.17)

UI =
∂VI
∂β

=
∂WI

∂β
= 0 for β = 0 , (2.18)

UI − U0(π/2, η) = VI − V0(π/2, η) = WI = 0 for β → −∞ . (2.19)

In the region outside the boundary layers, an external inviscid flow is expected (Stew-
artson 1958; Smith & Duck 1977) providing the upstream coupling needed for the elliptic
region. By introducing a stream-function ΨI , equations (2.13)-(2.16) reduce at the lead-
ing order to

∂2ΨI

∂β2
+
∂2ΨI

∂η2
= −ωI (ΨI) , (2.20)

with

UI =
∂ΨI

∂η
, VI = VI (ΨI) , WI = −∂ΨI

∂β
, (2.21)

where the vorticity ωI and VI are constants along the streamlines. The boundary con-
ditions of UI = 0 along the sphere surface and ∂VI/∂β = ∂WI/∂β = ωI = 0 in the
equatorial plane cannot be fulfilled by (2.20) and should be satisfied through the pres-
ence of local boundary layers. The solution of (2.20) has been discussed in the literature
(Rubel 1983; Phares et al. 2000), but here it is further complicated by the presence of a
recirculation region where the value of the vorticity is unknown, so that equation (2.20)
cannot be solved directly, but we need to solve (2.13)-(2.16) instead. Nevertheless the
solution as η →∞ must approach the inflow, so that the outflow asymptotes to

UI = 0 , VI(β) = V0(π/2, −β) , WI(β) = U0(π/2, −β) . (2.22)

The presence of a separation and re-attachment of the boundary layer near the equator
suggests a more complex structure for the impinging region than the one proposed by
Stewartson (1958). Several research works have been devoted to this region in the attempt
to describe the steady flow (Stewartson 1958; Smith & Duck 1977) as well as the transient
regime (Banks & Zaturska 1979; Simpson & Stewartson 1982; Van Dommelen 1990):
the latter studies showed evidences of a finite-time singularity in the boundary-layer
equations, suggesting a structure that might escape the description achievable with simple
boundary-layer theory and parabolic equations. Smith & Duck (1977) proposed that the
influence of the separation point should be felt much deeper than ε, and they developed
an analysis based upon a new scaling coordinate θ = θ0 + ε6/7β′, where θ0 indicates
the azimuthal position of the separation point. Some details about the upstream effect
of the impinging region are proposed in the paper appendix. The result of the analysis
is a correction to be applied as the equator is approached of the form given by (A 2).
Such an analysis is not repeated for the re-attachment point in the equatorial plane, so
that here it will be assumed that the profiles (2.22) will be recovered downstream of the
re-attachment point and as η →∞, as suggested by Stewartson (1958).

Along the equatorial plane, radial effects will become increasingly important and the
impinging-flow equations should be replaced by local parabolic equations as

∂UJ
∂β

+ r
∂WJ

∂r
+ 2WJ = 0 , (2.23)
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∂PJ
∂β

= 0 , (2.24)

UJ
∂VJ
∂β

+ rWJ
∂VJ
∂r

+ VJWJ =
1

r

∂2VJ
∂β2

, (2.25)

UJ
∂WJ

∂β
+ rWJ

∂WJ

∂r
− V 2

J = −r ∂PJ
∂r

+
1

r

∂2WJ

∂β2
, (2.26)

where U = εUJ and VJ , WJ = O(1). The boundary conditions for the equatorial region
are

UJ =
∂VJ
∂β

=
∂WJ

∂β
= 0 for β = 0 , (2.27)

∂UJ
∂β

= VJ = WJ = 0 for β → −∞ . (2.28)

Since the external pressure is of order O(ε2), the pressure gradient can be removed
from the analysis. Stewartson (1958) suggested that this region could be described as
a radial jet (Squire 1955; Schwarz 1963), but the initial developing region differs due
to the transfer of momentum between the radial and tangential velocity. A self-similar
solution is possible in the limit of r →∞ with the assumption that the tangential velocity
vanishes faster than the radial one. The self-similar solution is given by

UJ = −
√

2

δr
tanh

(
ξ√
2

)
, WJ =

1

δ
2
r

sech2

(
ξ√
2

)
, (2.29)

with ξ = β/δ (Riley 1962; Calabretto et al. 2015). It should be noted that the character-
istic variable ξ is constant in the radial direction†. Differently from in the radial-jet case,
the presence of the tangential velocity in the equations leads to a transfer of momentum
between the V and W components, so that δ cannot be assessed from the initial avail-
able momentum integral but rather as a result of the numerical simulation of equations
(2.23)-(2.26) leading to δ = 1.5372. In both the numerical and self-similar solutions, the
tangential velocity εUJ (β → −∞, r) is O(ε) and must be balanced in the outer layer.

As evident from the previous analyses, the flow outside the sphere boundary layer is
inviscid and driven by the wall-normal velocity, εW0 (θ, η →∞), and the radial velocity
outside of the equatorial radial jet, εUJ (β → −∞, r), and indeed the velocity field in
the outer layer is of order O(ε). These ejection velocities are normal to the surface and
do not carry tangential momentum, so that V = 0 in the outer flow. Furthermore, the
vorticity outside the boundary layer and radial jet is zero, so that the outside region is
irrotational. It is possible to introduce a Stokes stream-function, ΨO (θ, r), so that the
velocity components are described by

UO = − 1

r sin θ

∂ΨO

∂r
, WO =

1

r2 sin θ

∂ΨO

∂θ
. (2.30)

Since the flow is irrotational, the equation that describes the outer region is

∂2ΨO

∂r2
+

1

r2
∂2ΨO

∂θ2
− cot θ

r2
∂ΨO

∂θ
= 0 , (2.31)

† This is only apparently against the conjecture of Stewartson (1958): this apparent inconsis-
tency is due to the different reference frames used as the thickness of the jet is constant in the
β − r plane (since β is an angle), so that the jet will linearly expand in thickness.



8 A. Segalini and S.J. Garrett

subjected to the boundary conditions

ΨO (0, r) = 0 , ΨO (θ, 1) =

∫ θ

0

sinχWB(χ, η →∞)dχ ,

ΨO

(π
2
, r
)

=

∫ π/2

0

sinχW0(χ, η →∞)dχ−
∫ r

1

χUJ(β → −∞, χ)dχ ,

∂2ΨO

∂r2
= 0 as r →∞ . (2.32)

The solution of problem (2.31), together with the boundary conditions (2.32), pro-
vides the external flow field needed to create the higher-order correction for the sphere
boundary layer and equatorial jet. In particular, for the former, the outer-edge boundary
conditions can be determined for the O(ε) problem (2.10)-(2.12) as

U1 (θ, η)− UO (θ, 0) = V1 = 0 for η →∞ , (2.33)

together with the continuity equation enforced to determine ∂W1/∂η at the outer edge.

2.1. Numerical solution of the mean-flow equations

To obtain the mean flow at the leading order, the boundary-layer equations (2.4)-(2.6)
had to be solved first. These will provide the boundary-layer flow near the sphere surface
and away from the impinging region (namely within a region 0 6 θ < π/2−O(ε)). Sim-
ilarly to Garrett & Peake (2002), the Banks (1965) solution (here extended to the 15th

order) is used until θ ≈ 6◦, beyond which a finite-difference solution of the boundary-
layer equations is proposed. This is based on a Newton method combined with a space-
marching technique, significantly decreasing the computational time. The convergence
criterion for the Newton method, implemented here and in the radial-jet flow, was im-
posed such that the correction velocity should be less than 10−5 of the equatorial tan-
gential velocity to exit the iterative loop. A second-order central finite-difference scheme
was used to discretise the derivatives in the wall-normal direction, while a second-order
backward scheme was adopted for the θ derivatives. The domain was discretised into 300
grid points uniformly distributed in the wall-normal direction between the sphere surface
and ηmax = 30, and 1500 uniformly distributed points between the pole and the equator.
Figure 2 shows some of the obtained velocity profiles along the sphere surface. The wall
jet in the azimuthal velocity is slowly established and tends to decelerate and rise as the
equator is approached. On the other hand, both the radial and tangential velocities show
instead a monotonic trend.

After the impinging region, the equatorial jet takes place. Here the parabolic equations
are solved again with a space-marching method based on a Newton iterative approach: a
first-order backward differentiation scheme is used in the radial direction, while a central
second-order scheme is used in the azimuthal direction. The latter is discretised in 200
grid points uniformly spaced between 0 and βmax = 20, while the radial domain is
discretised in 200 grid points logarithmically spaced between rmin = 1.001 (where the
inlet condition is imposed) and rmax = 20. As proposed by Stewartson (1958), the outlet
of the impinging region has the same shape as the inlet, although the symmetry boundary
condition is not fulfilled. A sudden transient is then expected to adjust for the boundary
condition, but at r = 1.1 the transient is terminated and the jet decays as expected
(see Figure 3). The tangential velocity decays faster than the radial one, allowing for the
self-similar solution (2.29).

The outer region is solved with a point Gauss-Seidel method based on second-order
central finite differences in both the radial and azimuthal directions discretised with 1000
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Figure 2: Sphere boundary-layer velocity profiles from the numerical solution of (2.4)-
(2.6) for θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 80◦, 85◦, 90◦ according to the arrows’ direction.
The profiles at θ = 0◦ and θ = 90◦ are marked by thick lines.

and 500 grid points, respectively. The outermost boundary was set again to rmax = 20.
Figure 4 shows the blowing velocities outside of the sphere boundary layer and of the
equatorial jet. These drive the potential flow outside and generate the streamline pattern
shown in Figure 5.

From the outer stream-function, the first-order perturbation velocity for the outer part
of the sphere boundary layer can be determined (here shown in Figure 4a). The latter
provides the outer boundary condition for the first-order problem that can be solved
with the same numerical techniques used in the O(1) problem (with the addition of some
inhomogeneous terms) providing the first-order correction to the Howarth (1951) theory.
Figure 6 shows a collection of profiles of the first-order problem at the same azimuthal
positions (except 90◦) used in Figure 2. Qualitatively, the correction implies a speed-up
of the radial jet and a decrease of the tangential velocity diffusion.

In order to validate the predictions of the sphere boundary-layer velocity profiles from
the perturbation theory, a finite-difference solution of the full equations (2.1-2.2) was
performed. The numerical code solved the transformed equations proposed by Dennis
et al. (1980) with a point Gauss-Seidel technique and second-order central finite dif-
ferences to discretise the spatial derivatives. The domain was discretised into 300 grid
points in the azimuthal direction and 200 in the r−1 space between the sphere surface and
rmax = ∞. A comparison between the finite-difference solution and the boundary-layer
solution (for both the O(1) and the corrected one) is reported for three Reynolds num-
bers in Figures 7-9. The corrected profiles include both the O(ε) correction due to the
Reynolds number effects and the O(ε6/7) correction near the equator. As is visible from
the figure, the corrections improve the agreement between the predicted boundary-layer
velocity profiles and the simulation results, especially when the Reynolds number is low
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Figure 3: Equatorial jet velocity profiles from the numerical solution of (2.23)-(2.26) for
r = 1.01, 1.1, 1.2, 1.5, 2, 3, 4 according to the arrows’ direction. The profiles at r = 1.01
and r = 4 are marked by thick lines.
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Figure 4: Outer region velocities above the sphere boundary layer (a) and above the
equatorial plane (b). Solid lines indicate U , while dashed lines indicate W .

and when the azimuth approaches θ = π/2. The corrections are not able to deal properly
with the region near the equator and therefore it fails there, limiting its use to a range
0 6 θ 6 π/2−O(ε).

It is interesting to consider the evolution of the equatorial jet velocity field to assess
whether the approximation regarding its inlet velocity distribution (given by 2.22) af-
fected its estimation. Figures 10 and 11 show the distribution of the radial and tangential
velocity components along the equatorial plane. It is evident that a small disagreement
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Figure 6: Boundary-layer velocity profiles from the numerical solution of (2.10)-(2.12) for
θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 80◦, 85◦ according to the arrows’ direction. The profiles
at θ = 0◦ and θ = 85◦ are marked by thick lines.
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Figure 7: Comparison of the azimuthal (a), tangential (b) and radial (c) velocities near
the sphere surface for θ = 10◦, 30◦, 50◦, 70◦, 80◦ and Res = 500. (circles) Numerical
solution of the full equations, (dashed line) solution of the boundary-layer equations
(2.4-2.6), (solid line) perturbed boundary-layer solution.
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Figure 8: Comparison of the azimuthal (a), tangential (b) and radial (c) velocities near
the sphere surface for θ = 10◦, 30◦, 50◦, 70◦, 80◦ and Res = 1000. See Figure 7 for the
list of the used symbols.

is present near the sphere surface (mostly due to the absence of the boundary-layer anal-
ysis), but the same decay is quickly established and the jet solution represents indeed
the outer limit when Res → ∞. Interestingly, the decay rate of the radial velocity goes
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Figure 9: Comparison of the azimuthal (a), tangential (b) and radial (c) velocities near
the sphere surface for θ = 10◦, 30◦, 50◦, 70◦, 80◦ and Res = 1500. See Figure 7 for the
list of the used symbols.
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Figure 10: Radial velocity along the equatorial plane estimated from the numerical sim-
ulations at Res = 500 (circles) and Res = 1500 (asterisks). (Solid line) WJ(0, r) as
solution of equations (2.23-2.26). (Dashed line) self-similar expression (2.29).

as r−1 in agreement with the similarity solution (2.29), while the tangential velocity is
faster and goes as r−2 following the similarity solution of Riley (1962).

3. Formulation of the stability analysis

Let us consider now a small perturbation to the base state (u, p) with u = (u, v, w)
indicating the velocity perturbation and p the pressure perturbation that can vary in
time and space. By assuming the perturbation to be small, the continuity and linearised
Navier-Stokes equations can be written. After subtracting the corresponding steady equa-



14 A. Segalini and S.J. Garrett

10
0

10
1

10
−3

10
−2

10
−1

10
0

r

V
(π

/
2
,
r
)

Figure 11: Tangential velocity along the equatorial plane estimated from the numerical
simulations at Res = 500 (circles) and Res = 1500 (asterisks). (Solid line) VJ(0, r) as
solution of equations (2.23)-(2.26). (Dashed line) line proportional to r−2.

tions for the mean flow, it is possible to obtain the equations governing the perturbations

∂u

∂θ
+ cot θ u+

1

sin θ

∂v

∂ϕ
+ r

∂w

∂r
+ 2w = 0 , (3.1)

∂u

∂t
+ (U · ∇) u + (u · ∇) U = −∇p+

1

Res
∇2u , (3.2)

where the various terms are given classically (Kundu et al. 2016) by

(U · ∇) u =
U

r

∂u

∂θ
+

V

r sin θ

∂u

∂ϕ
+W

∂u

∂r
+

1

r

 Uw − V cot θ v
V w + V cot θ u
−Uu− V v

 , (3.3)

(u · ∇) U =
u

r

∂U

∂θ
+ w

∂U

∂r
+

1

r

 Wu− V cot θ v
Wv + U cot θ v
−Uu− V v

 , (3.4)

∇p =

(
1

r

∂p

∂θ
,

1

r sin θ

∂p

∂ϕ
,
∂p

∂r

)T
, (3.5)

∇2u =
1

r2

{
∂2u

∂θ2
+ cot θ

∂u

∂θ
+

1

sin2 θ

∂2u

∂ϕ2
+ r2

∂2u

∂r2
+ 2r

∂u

∂r
+

+

(
− u

sin2 θ
+ 2

∂w

∂θ
− 2 cot θ

sin θ

∂v

∂ϕ
, − v

sin2 θ
+

2

sin θ

∂w

∂ϕ
+

2 cot θ

sin θ

∂u

∂ϕ
,

−2(w + cot θ u)− 2
∂u

∂θ
− 2

sin θ

∂v

∂ϕ

)T}
. (3.6)

As our primary interest lies in the near-wall region, the same stretched wall-normal
coordinate, η, is introduced as in Section 2. Furthermore, as the radial velocity is O(ε)
compared to the azimuthal and tangential ones, the notation W = εW will be adopted
for the mean wall-normal velocity, which results in a balanced continuity equation.

At this point, the modal assumption for the velocity and pressure perturbations is



On the non-parallel instability of the rotating-sphere boundary layer 15

introduced in the form (Monkewitz et al. 1993; Barrow et al. 2014)

φ (θ, ϕ, η, t) = φ̂ (θ, η) exp

{
i

ε

[
nϕ− ωt+

∫ θ

θ0

α (ξ) dξ

]}
, (3.7)

where n/ε must be an integer number in order to ensure the periodicity in the tangen-
tial direction. It is illustrative to look at the continuity equation for the perturbation
quantities

1

ε

(
iαû+

in

sin θ
v̂ +

∂ŵ

∂η

)
+
∂û

∂θ
+ cot θ û+ η

∂ŵ

∂η
+ 2ŵ = 0 . (3.8)

By assuming a perturbation expansion of the form φ̂ (θ, η) = φ̂0 + εφ̂1 +O
(
ε2
)
, Eq. (3.8)

leads to the problems at the orders O
(
ε−1
)

and O(1)

iαû0 + iβv̂0 +
∂ŵ0

∂η
= 0 with β =

n

sin θ
, (3.9)

iαû1 + iβv̂1 +
∂ŵ1

∂η
= −

(
∂û0
∂θ

+ cot θ û0 + η
∂ŵ0

∂η
+ 2ŵ0

)
. (3.10)

By introducing the state vector q = (û, v̂, ŵ, p̂)
T

, it is possible to write down the
stability equations at the orders O

(
ε−1
)

and O(1) as

Lq0 = 0 , (3.11)

Lq1 = −Hq0 , (3.12)

where the operators L and H are given by

L =

[
−iω + iαU + iβV − 1

εRes

(
∂2

∂η2
− α2 − β2

)]
Q +


0 0 ∂U

∂η iα

0 0 ∂V
∂η iβ

0 0 0 ∂
∂η

iα iβ ∂
∂η 0

 ,

(3.13)

H =

[
iη (−2ω + αU + βV ) + U

∂

∂θ
+W

∂

∂η
−

− 1

εRes

(
2iα

∂

∂θ
+ i

∂α

∂θ
+ iα cot θ + 2η

∂2

∂η2
+ 2

∂

∂η

)]
Q +

+


∂U
∂θ −2V cot θ 2η ∂U∂η + U iηα+ ∂

∂θ
∂V
∂θ + V cot θ U cot θ 2η ∂V∂η + V iηβ

−2U −2V ∂W
∂η 2η ∂

∂η

cot θ + ∂
∂θ 0 η ∂

∂η + 2 0

−

− 2i

εRes


0 −β cot θ α 0

β cot θ 0 β 0
−α −β 0 0
0 0 0 0

 , (3.14)
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and the matrix Q defined as

Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (3.15)

Since the differential operators in Eq. (3.11) do not depend on θ, the solution must
be an eigenfunction of the form q̂0 = A(θ)Φ(θ, η). The unknown function A(θ) can be
found from the Fredholm alternative theorem applied to (3.12) leading to the condition∫ ∞

0

Φ+∗H [A(θ)Φ] dη = 0 , (3.16)

where Φ+∗ is the complex conjugate of the mode associated to the adjoint operator of
(3.13)

L+ =

[
iω − iαU − iβV − 1

εRes

(
∂2

∂η2
− α2 − β2

)]
Q−


0 0 0 iα
0 0 0 iβ
−∂U∂η −∂V∂η 0 ∂

∂η

iα iβ ∂
∂η 0

 .

(3.17)
Equation (3.16) can be written in the form

dA

dθ

∫ ∞
0

Φ+∗H1Φdη +A

∫ ∞
0

Φ+∗HΦdη = 0 , (3.18)

where the operator H1 is defined as

H1 =

[
U − 2iα

εRes

]
Q +


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 . (3.19)

Equation (3.18) is a linear first-order homogeneous equation, so that the function A(θ)
is obtained as

A(θ) = A(θ0) exp

[
−
∫ θ

θ0

N(θ′)

M(θ′)
dθ′

]
, (3.20)

where

M(θ) =

∫ ∞
0

Φ+∗H1Φdη , N(θ) =

∫ ∞
0

Φ+∗HΦdη . (3.21)

3.1. Numerical solution of the stability equations

The stability equations are here solved in a three-step process. In the first step the surface
of the sphere is subdivided into a number of stations in the azimuthal direction and the
parallel eigenvalue problem (3.11) is solved at each of them: the equations are solved in
primitive variables by using a Galerkin projection in terms of Chebyshev polynomials
in the wall-normal direction. The use of the Chebyshev polynomials ensures a higher
accuracy compared to standard finite-difference methods with a similar discretisation.
An exponential map is adopted to map the Gauss-Lobatto grid points, used for the
Chebyshev polynomials, into the physical space: 100 points are therefore distributed
between the sphere surface η = 0 and the top of the domain, ηmax = 20. The stability
equations are written and solved in primitive variables at all the collocation points but
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the ones at the boundaries (η = 0 and η = ηmax), where the boundary conditions
û(0) = v̂(0) = ŵ(0) = ŵ′(0) = 0 and û(ηmax) = v̂(ηmax) = ŵ(ηmax) = p̂(ηmax) = 0 are
enforced.

In the second step, the adjoint problem L+q+
0 = 0 is solved at the same azimuthal

stations (and the same boundary conditions). This allows the determination of the adjoint
eigenfunctions to be used in the solvability condition (3.16). The third step consists of
the calculation of the functions A(θ), M(θ) and N(θ) by means of (3.20) and (3.21),
where the operators H and H1 are given by (3.14) and (3.19), respectively. By means of
the parallel eigenfunctions, Φ0, determined at the first step and of the function A, the
non-parallel eigenfunction is obtained through q̂0 = A(θ)Φ(θ, η).

4. Results of the stability analysis

Following Eq. (3.7), we interpret the perturbation system as having three control pa-

rameters Re = Re1/2s (here preferred to facilitate the comparison with the literature on
the rotating disk and sphere), n̄ = n/ε and ω. Each parameter triple can be interrogated
to determine its stability characteristics. We follow Garrett & Peake (2002) by insisting
that the disturbances rotate at some fixed multiple, c, of the surface speed of the sphere
at all latitudes in this fixed frame of reference. That is, we equate the disturbance phase
velocity ω/n to c sin θ. This then defines ω in terms of n̄, leading to the new parameter
triple (Re, n̄, c). Recall that Re can be interpreted as the spin rate of the sphere while n̄
is the azimuthal mode number of the disturbance under investigation (i.e. the number of
vortices around the azimuth) and is necessarily an integer.

We proceed to consider the local stability properties of the flow incorporating non-
parallel effects (i.e. without spatial homogenisation). The results of this analysis are
associated with the appearance of spiral vortices within the boundary layer and can
be related to the prior study of Garrett & Peake (2002). We will discuss comparisons
between our new results and those prior results as appropriate. However, when making
such comparisons, it is important to note two significant distinctions: we now account for
non-parallel effects, and our basic flow now allows for a better account of the boundary-
layer eruption at the equator and also all 1/Re effects that were previously neglected.
Unless otherwise stated, it should be assumed that all results are reported with both
new aspects considered. Where necessary, we will occasionally report results from the
non-parallel analysis performed on the previous steady flows (i.e. without the eruption
and 1/Re effects), henceforth referred to as the Banks profiles (Banks 1965).

The growth rate of disturbances in the previous parallel-flow analysis (i.e. with spatial
homogenisation) of Garrett & Peake (2002) was given by −αi and their strictly-local
analysis required the stability to be determined separately at each latitude θ. In contrast,
here we will determine the stability properties over the entire flow field in each calculation.
Furthermore, the allowance for non-parallel effects now means that the growth rate of
disturbances is given by

σ = −αi +
∂

∂θ
ln
√
E, (4.1)

where E is the disturbance kinetic energy given by

E =

∫ ∞
0

(
|û|2 + |û|2 + |û|2

)
dη. (4.2)

As will be discussed in Section 5, the perturbation velocities account for A(θ), the cor-
rection for spatial inhomogeneity in θ. The term ∂ ln

√
E/∂θ is henceforth referred to

as the non-parallel correction. In order to focus on the boundary layer, rather than the
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Figure 12: Eigenvalues’ evolution at (Re, n̄, c) = (600, 30, 1). Crosses indicate the eigen-
values at θ = 1◦ and the circles show their evolution as θ steps towards the equator in
unit increments (right to left).

erupting jet at the equator, the stability results are only considered over the latitudinal
domain between the pole and θ = 80◦.

The perturbation system derived in Section 3 is found to permit a number of distinct
eigenmodes at each parameter triple (Re, n̄, c). This is illustrated in Figure 12 for the
particular case with (Re, n̄, c) = (600, 30, 1). Further investigation across the entire pa-
rameter space reveals that only a small number of these modes are physical (as evidenced
by the form of the eigenfunctions, see Section 5) and only two can lead to instability.
The appearance of two unstable modes is consistent with Garrett & Peake (2002) on the
rotating sphere and indeed with the broader literature on the rotating-disk system (Hall
1986; Malik 1986; Lingwood 1995). As will be discussed in the following sections, the
mode denoted Type I in the figure is found to be unstable over a much larger parameter
space and is deemed equivalent to Garrett & Peake’s Type I mode. The Type I mode
is known to arise from inviscid cross-flow effects and leads to the vortices observed in
experiments. It is also related to the appearance of a local absolute instability. The Type
II mode is known to arise from viscous effects and is found to be unstable within a rela-
tively limited parameter space. The Type II mode is of theoretical rather than practical
interest and we will focus on the Type I mode in what follows. The Type II mode is
however considered separately in Sections 4.2 and 5.2.

4.1. The Type I mode

4.1.1. Stationary disturbances

We begin with the study of Type I stationary disturbances, that is, disturbances that
rotate with the local surface of the sphere, and fix c = 1. This results in the parameter
pair (Re, n̄) giving the sphere spin rate and mode number of interest, respectively. Ex-
periments (Sawatzki 1970; Kohama & Kobayashi 1983) report the appearance of such
stationary vortices on all but highly-polished surfaces and this is an appropriate assump-
tion to base the majority of our analysis. Non-stationary modes (namely with c 6= 1) are
considered in Section 4.1.2.

Figure 13 shows the parallel growth rate, σ, at Re = 160 and Re = 700 as a function of
latitude with and without the non-parallel correction for various values of n̄. The results
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for Re = 160 show a significant discrepancy arising from the parallel and non-parallel
flow assumptions. This is in contrast to Re = 700 where the non-parallel correction is
seen to be relatively small, particularly for larger n̄. These observations are consistent
with Garrett & Peake’s assertion that the non-parallel correction reduces with increasing
Re.

In each figure the appearance of neutral growth, σ = 0, is indicated with a circle. This
can be interpreted as the latitudinal location of the onset of the Type I instability for the
particular mode number, n̄, at spin rate Re. At Re = 160 we see that the n̄ = 9 mode
leads to a small pocket of instability at latitude θ = 74◦. The other mode numbers shown
at this Reynolds number are seen to be stable and it is clear that Re = 160 is close to the
critical Reynolds number for onset of Type I instability over the sphere. In contrast, at
Re = 700 all three mode numbers illustrated are unstable. In particular, the mode with
n̄ = 20 is unstable beyond θ = 22◦; n̄ = 40 beyond θ = 30◦; and n̄ = 60 beyond θ = 43◦.

Such sampling of the stability of the flow can be performed at each parameter pair
(Re, n̄) and this approach can be used to generate a single neutral curve for stationary
Type I modes across the entire system. Figure 14 shows this neutral curve in the Re2–n̄
plane†. Here the squares indicate neutrally unstable parameter pairs and a cross indicates
the most amplified mode at each Re. The resulting neutral curve is single-lobed and shows
a critical Reynolds number of Rec,I = 159, below which no Type I modes are predicted
to be unstable. Note that Rec,I is achieved for n̄ = 10. Furthermore, the dotted line with
circles shows experimental observations as reported by Kohama & Kobayashi (1983)
for a sphere with diameter D = 250mm. We see remarkable agreement between these
experimental observations and the predicted maximum amplified mode at each Re.

Figure 15 presents the same unstable points given in Figure 14 but in terms of the
Re2–θ plane. In this context θ is the location of the appearance of neutral stability, that
is, locations analogous to those shown with circles in Figure 13. Four independent exper-
imental data sets are available in this form, each from different sized spheres (Sawatzki
1970; Kohama & Kobayashi 1983), and these are also shown in the figure. The exper-
imental comparisons with the most amplified mode numbers are less remarkable than
in Figure 14. However, we do note that, with the exception of Kohama & Kobayashi’s
outlying results for the very small sphere (diameter D = 70mm), each experimental data
set falls within our predicted region of instability.

4.1.2. Travelling disturbances

By varying the value of c we are able to consider Type I disturbances that are moving
relative to the sphere surface. The case that c > 1 denotes disturbances travelling more
quickly than the local surface speed, and c < 1 denotes disturbances travelling more
slowly. For example, c = 1.1 and c = 0.9 would correspond to disturbances travelling at
110% and 90% of the local surface speed, respectively. In practice, travelling vortices are
difficult to observe in experiments unless great care is taken to avoid the appearance of
any surface roughness (that would otherwise fix the vortex pattern relative to the rotating
surface) and the boundary layer excitation results instead from free-stream turbulence.
However, in theory, travelling modes can be even more dangerous than stationary modes
(in the sense of lower critical Re) and are also known to play a role in local absolute
instability (see, for example, the work of Lingwood 1995; Corke & Knasiak 1998; Othman
& Corke 2006; Corke et al. 2007, on the related rotating-disk system).

† Note that neutral curves are presented in terms of the spin Reynolds number, Res = Re2

which is typically used to report experimental data and its use here permits direct comparisons
between our predictions and published experimental measurements.
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Figure 13: Local growth rates at various Re and n̄; non-parallel growth (σ, solid lines)
and parallel growth (−αi, crosses). Circles indicate neutral σ.

The approach taken in Section 4.1.1 has been repeated for various c and Table 1 gives
the resulting mode number for the lowest critical Re in each case. We see that slowly
travelling modes are predicted to be less dangerous (i.e. increased Rec) with reduced c.
In contrast, quickly travelling modes are predicted to be more dangerous with increased
c. Note however that the corresponding mode number reduces to small values that are
unphysical in practice - certainly the experimental observations of Sawatzki (1970) and
Kohama & Kobayashi (1983) never report fewer than ten vortices.
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Figure 14: Comparison of the neutral curve for the stationary Type I mode (solid line
with squares) in the Res–n̄ plane with the experimental data of Kohama & Kobayashi
(1983) for D = 250 mm (dotted line with circles). Crosses denote the mode number
with the maximum amplification at each Re.
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Figure 15: Comparisons of the neutral curve for the stationary Type I mode (solid line
with squares) in the Res–θ plane with experimental data of Kohama & Kobayashi (1983)
D = 70 mm (dotted line with crosses); D = 150 mm (dotted line with triangles); D =
250 mm (dotted line with circles); and Sawatzki (1970), D = 240 mm (dotted line with
diamonds). Isolated crosses denote the latitude at the onset of the most amplified mode
at each Re.
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c 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7

Rec 135 137 141 145 151 159 171 194 253
n̄ 5 6 7 7 8 10 12 15 24

Table 1: The critical Re and associated mode number for the onset of travelling distur-
bances at various c.

Re

100 200 300 400 500 600

σ
m
a
x

0

0.05

0.1

0.15

Figure 16: Evolution of σmax for c = 0.8 (dashed line), 1 (solid line), 1.2 (dash-dot line),
1.4 (dotted line) and 0.7 (line with circles).

Figure 16 shows the evolution of the maximum amplification rate, σmax, of each travel-
ling Type I mode as Re is increased into the locally unstable regime. Amplification rates
for very slowly travelling modes, that is with c 6 0.7, are found to be significantly lower
than the more rapidly travelling modes for moderate Re. The figure suggests that sta-
tionary and quickly travelling modes dominate for Re < 400. However, despite the mode
with c = 0.8 having a later onset, it is the most amplified by some margin for Re > 400.
We note that these observations are consistent with Garrett (2010) who found that the
Type I mode with c = 0.75 has the greatest amplification rate under the parallel-flow
assumption. There he associates this result with the single experimental observation by
Kobayashi & Arai (1990) of vortices travelling at 76% of the local surface speed of the
sphere rotating in otherwise still fluid. Unfortunately no further information is given by
Kobayashi & Arai and further comparisons with our new theoretical prediction cannot
be made.

4.2. Stationary Type II modes and the full non-parallel neutral curve

As illustrated in Figure 12, our analysis leads to the prediction of an additional instability
mechanism that we have associated with the Type II mode identified by the parallel-flow
study of Garrett & Peake (2002). Although there is no experimental evidence for the
Type II mode in the literature for the rotating sphere or related boundary-layer flows,
predictions of its theoretical existence provide an additional means by which to compare
across analytical studies. Figure 17 illustrates the non-parallel growth rates of this mode
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Figure 17: Growth rates σ for stationary Type II modes at Re = 50 for n̄ = 1 (solid
line), 2 (dashed line), 3 (dash-dot line) and 4 (dotted line).
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Figure 18: The full neutral curve for stationary (c = 1) Type I (squares) and Type II
(triangles) modes. The dotted lines are the strictly local neutral curves due to Garrett
& Peake (2002) at θ = 30◦–80◦ in ten degree increments (right to left).

at Re = 50 for increasing n̄ and pockets of instability can be seen clearly for n̄ = 1 and
2.

Following the process discussed in Section 4.1.1, it is possible to examine the stability
of the Type II mode at each parameter triple (Re, n̄, c) and generate a neutral curve for
this mode. This has been done for stationary disturbances (c = 1) and the full neutral
curve arising from the Type I and Type II modes is shown in the Re–n̄ plane in Figure
18. Note that the familiar two-lobed structure is recovered. That is, the Type II mode
has led to an additional lobe in the neutral curve characterised by small n̄ that is seen to
be unstable at all Re above a critical value of Rec,II = 41. The critical Reynolds number
for the onset of the Type II mode is therefore considerably lower than that for the Type
I mode computed as Rec,I = 159 in Section 4.1.1.
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The strictly local analysis of Garrett & Peake (2002) generates a different neutral
curve at each latitudinal position. Our single neutral curve for the entire flow field should
therefore be compared to the envelope of all neutral curves generated by Garrett & Peake
and this comparison is shown in Figure 18. The comparison shows broad qualitative
agreement, however there are some quantitative differences between the two studies. The
most significant being around the predicted critical Reynolds numbers of each mode and
along the upper branch of the Type I lobe. Garrett & Peake report that their Type II
mode dominates for latitudes above θ = 66◦ and so the comparison of the Type I unstable
points is relevant for all but the two leftmost curves in Figure 18 (where θ = 70◦ and 80◦).
With this is mind we see good agreement between the critical Reynolds numbers for the
onset of their Type I mode, elsewhere reported to be Re = 155 (Garrett 2002), and our
Rec,I = 159†. In terms of the Type II mode, Garrett & Peake report a critical Reynolds
number of around Re = 14 for the neutral curve at θ = 80◦. This compares poorly with
our critical value of Rec,II = 41. However, as discussed in Section 4.1, discrepancies at
these very low Reynolds numbers are likely to be due to the parallel-flow assumption
used by Garrett & Peake which is now known to be significant at low Re, in addition to
the fact that their base flow was different.

Although not shown here, the neutral curve resulting from our non-parallel analysis
of the Banks flow profiles shows very good agreement with Garrett & Peake along the
upper neutral curve. We therefore attribute the difference along the upper branch to the
allowance for the boundary-layer eruption and other 1/Re effects in this new analysis. It
is interesting to note that the close agreement shown between theory and experiment in
Figure 14 is lost when using the Banks profiles; in particular, the number of vortices is
then consistently under-predicted when compared to experimental data.

5. Eigenfunctions

We now turn to a discussion of the eigenfunctions of the system. In particular, we
focus on the azimuthal perturbation velocities, i.e. φ̂(η, θ) = v̂(η, θ) in the notation of
Eq. (3.7). Note that our choice of the azimuthal perturbation component is arbitrary and
any perturbation component (velocity or pressure) could be used.

Within our formulation the parallel-flow eigenfunction, v̄(η, θ), is computed together
with its non-parallel correction, A(θ), and then combined to obtain the non-parallel
eigenfunction at each parameter triple (Re, n̄, c),

v̂(η, θ) = v̄(η, θ)A(θ) . (5.1)

Consistent with Cooper et al. (2015) and others in the literature we report the absolute
value of the complex eigenfunctions in what follows.

As previously discussed, many of the additional modes identified in Figure 12 can be
dismissed as numerical artefacts and these are identified by the unphysical shape of their
parallel eigenfunction, v̄(η, θ), sampled at some θ. Example parallel Type I and Type II
eigenmodes are illustrated in Figure 19.

5.1. Spatial evolution of the Type I modes

The behaviour of the Type I eigenfunction is found to be consistent across the en-
tire parameter space and, by way of illustration, we present only the parameter triple
(Re, n̄, c) = (600, 30, 1). This particular parameter set is known to be unstable via the

† Note that Figure 18 does not show Garrett & Peake’s parallel-flow results at θ = 66◦, only
at θ = 60◦ and 70◦.
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Figure 19: Physical eigenfunctions at θ = 50◦. (a) Type I |v̄(η, 50)| for (Re, n̄, c) =
(600, 30, 1), (b) Type II |v̄(η, 50)| for (Re, n̄, c) = (100, 4, 1). (Each is normalised by
max |v̄(θ, η)| at the particular (Re, n̄, c).)

Figure 20: The Type I azimuthal perturbation velocity field for (Re, n̄, c) = (600, 30, 1).
(a) Parallel eigenfunction, |v̄(θ, η)|, (b) Non-parallel eigenfunction, |v̂(θ, η)|. (Each figure
is normalised independently by its maximum value.)

Type I mode, as can be confirmed from Figure 18. The parallel eigenfunction, v̄(θ, η), is
shown in Figure 20(a) and that allowing for the non-parallel correction, v̂(θ, η), is shown
in Figure 20(b). The parallel eigenfunction shows that the Type I mode exists at all
latitudes over the sphere and tends to grow in its normal extent and magnitude as the
disturbance moves from the pole towards the equator. The non-parallel correction is seen
to be significant and suggests that an unstable Type I mode would grow rapidly from
even small latitudes.

5.2. Spatial evolution of the Type II modes

The parallel and non-parallel Type II eigenfunctions are illustrated from Figure 21 for
(Re, c̄) = (100, 4, 1). This particular mode is known to be unstable, as can be confirmed
in Figure 18. Consistent with the parallel Type I mode in Figure 20(a), the parallel Type
II mode is seen to exist at all latitudes, however its normal extent and magnitude are
reasonably constant over θ. Furthermore, in direct contrast to the Type I mode, the
non-parallel correction is seen to focus the importance of the Type II mode to higher
latitudes. The contrasting behaviour of the non-parallel Type I and Type II modes is
consistent with the conclusion of Garrett & Peake that an unstable Type II mode is
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Figure 21: The Type II azimuthal perturbation velocity field for (Re, n̄, c) = (100, 4, 1).
(a) Parallel eigenfunction, |v̄(θ, η)|, (b) Non-parallel eigenfunction, |v̂(θ, η)|. (Each figure
is normalised independently by its maximum value.)

potentially important only at higher latitudes, by which point unstable Type I modes
would dominate the flow.

Note that each subfigure in Figures 20 and 21 is normalised by its own maximum value
and quantitative comparisons should not be made between any plots.

6. Conclusion

We have considered the boundary-layer flow over the rotating sphere, both in terms of
the computation of the steady flow and also its linear stability properties. The steady-
flow solution has been improved significantly from the original formulation proposed by
Howarth (1951) and solved by Banks (1965). It now better accounts for the boundary-
layer eruption at the equator (Calabretto et al. 2015) and also the inclusion of a number
of viscous terms that were previously neglected in the Howarth and Banks solutions.

The linear stability of the flow was considered as a function of spin rate (Reynolds
number) using a weakly non-parallel analysis, that is, without imposing a spatial ho-
mogenisation of the boundary layer. As expected from prior parallel-flow studies (i.e. with
spatial homogenisation imposed), two instability modes were found to dictate the local
properties of the flow. These are denoted as the Type I and Type II modes. A single
neutral curve was computed for the entire flow field and each mode was evident as a
distinct lobe. The Type I mode is dominant and is associated with the experimentally
observed spiral vortices in the boundary layer (Sawatzki 1970; Kohama & Kobayashi
1983; Kobayashi & Arai 1990). Stationary Type I and Type II modes were found to
have critical Reynolds numbers of Rec,I = 159 and Rec,II = 41, respectively. Remark-
able agreement was found between the most amplified stationary Type I mode number
and the experimentally observed number of vortices (Kohama & Kobayashi 1983) as a
function of spin rate. Furthermore, experimental observations of the latitudinal location
of the onset of spiral vortices fell within our predicted neutral curve. Travelling Type I
modes were also considered but are expected to correspond to the appearance of spiral
vortices on only highly-polished surfaces, where the boundary layer excitation results
from free-stream turbulence rather than surface roughness. In this case, Type I modes
travelling with speeds of 70–80% of the local surface speed of the sphere were found to
be the most amplified for sufficiently high spin rates. This is consistent with the exper-
imental observation by Kobayashi & Arai (1990) of “slow” vortices travelling at 76% of
the local sphere surface speed.
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Parallel and non-parallel eigenmodes of both mode types have been computed for the
first time. The spatial evolution of these suggests that, while the Type I mode is important
at all latitudes, the Type II mode is potentially important at only larger latitudes, at
which point unstable Type I modes would already dominate the flow. This is a potential
explanation for why Type II modes have never been observed in experiments.

Our study extends those originally presented by Garrett & Peake (2002) and Garrett
(2010), performed using the parallel-flow approximation and Banks steady flow solutions.
The non-parallel correction was found to be significant, particularly for low Reynolds
numbers and small mode numbers.
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Appendix A. Double-deck description of the impinging region

This section replicates the main steps of the derivation proposed by Smith & Duck
(1977) and extends it with the inclusion of the tangential velocity field. The derivation
assumes a two-layer structure upstream of the separation point. In the upper layer the
coordinates are scaled as

β′ =
θ − π/2
ε6/7

, η =
r − 1

ε
. (A 1)

The velocity components are then linearised as

U = U0

(π
2
, η
)

+ ε2/7u1 , V = V0

(π
2
, η
)

+ ε2/7v1 ,

W = ε3/7w1 , p = ε4/7p1 , (A 2)

leading to the equations

∂u1
∂β′

+
∂w1

∂η
= 0 , (A 3)

U0
∂u1
∂β′

+ w1
∂U0

∂η
= 0 , (A 4)

U0
∂v1
∂β′

+ w1
∂V0
∂η

= 0 , (A 5)

U0
∂w1

∂β′
= −∂p

∂η
, (A 6)

with solution

u1 = A (β′)
∂U0

∂η
, v1 = A (β′)

∂V0
∂η

, w1 = −A′ (β′)U0

(π
2
, η
)
, (A 7)

p1 = Pw (β′) +A′′ (β′)

∫ η

0

U2
0

(π
2
, χ
)

dχ , (A 8)

for a certain unknown function A(β′). A′ and A′′ indicate the first and second derivative
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Figure 22: (Solid line) −A/100, (dashed line) ∂Ũ/∂Z upstream of the separation point.

of the A function. As a boundary condition, p1 → 0 as η →∞ leading to

Pw (β′) = − 1

γ
A′′ (β′) −→ −dPw

dβ′
=

1

γ
A′′′ (β′) , (A 9)

where 1/γ =
∫∞
0
U2
0 (π/2, χ) dχ = 0.0583.

Since u1 → κA as η → 0 (with κ indicating the first derivative of the U0 profile at
η = 0), a lower deck is needed. This is defined by the stretched variables Z = ε−9/7(r −
1) = ε−2/7η, through the asymptotic expressions

U = ε2/7Ũ , V = 1 + ε2/7Ṽ , W = ε5/7W̃ , (A 10)

and by the equations

∂Ũ

∂β′
+
∂W̃

∂Z
= 0 , (A 11)

Ũ
∂Ũ

∂β′
+ W̃

∂Ũ

∂η
= −dPw

dβ′
+
∂2Ũ

∂Z2
=

1

γ
A′′′ (β′) +

∂2Ũ

∂Z2
, (A 12)

Ũ
∂Ṽ

∂β′
+ W̃

∂Ṽ

∂η
=
∂2Ṽ

∂Z2
, (A 13)

subjected to the boundary conditions

Ũ = Ṽ = W̃ = 0 for Z = 0 , (A 14)

Ũ → κ (Z +A) , Ṽ → ξ (Z +A) as Z →∞ , (A 15)

where ξ indicates the first derivative of V0 (π/2, η) at η = 0.
The function A (β′) is not determined from an explicit boundary condition to be ful-

filled but it is here found as an eigensolution of the numerical problem (A 11-A 12), as
discussed by Smith & Duck (1977). Its initial assumed value determines the position of
the separation point (here set at β′ = 0). Figure 22 shows its distribution together with
the shear stress (the same figure is reported by Smith & Duck 1977), indicating that the
effect of the separation is felt up to β′ ≈ −10.
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W. Tollmien). Vieweg.
Stewartson, K. 1958 On rotating laminar boundary layers. In Grenzschichtforschung / Bound-

ary Layer Research (ed. H. Görtler). Springer-Verlag OHG.
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