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1 Introduction

In view of the practical deployment of OWL [9] based on description logics [2], the
importance of non-standard reasoning services for supporting ontology engineers was
pointed out, for instance, in [8]. An example of such reasoning services is that of uni-
form interpolation: given a theory using a certain vocabulary, and a subset Σ of “rel-
evant terms” of that vocabulary, find a theory that uses only Σ terms and gives rise to
the same consequences (expressible via Σ) as the original theory. In particular for the
understanding and the development of complex knowledge bases, e.g., those consisting
of general concept inclusions (GCIs), the appropriate tool support would be beneficial.
We consider the task of uniform interpolation in the very lightweight description logic
EL, the basic member of the EL family [1] which provides the logical backbone of
the OWL EL profile. The existing related approaches ([3, 6, 4]) do not provide a so-
lution for the task of uniform interpolation in general EL terminologies. Up to now,
also the bounds on the size of uniform EL interpolants have been unknown. We pro-
pose a worst-case-optimal approach to computing a finite uniform EL interpolant for
a general terminology. After a normalization, we construct two regular tree grammars
generating subsumees and subsumers of atomic concepts interpreted as tree languages.
Using a Gentzen-style proof calculus for general subsumptions in EL, we show that, in
case a uniform interpolant exists, the corresponding sublanguages with an exponential
bound on the role depth are sufficient to obtain a uniform EL interpolant of at most
triple exponential size. Further, we show that, in the worst-case, no smaller interpolants
exist, thereby establishing the triple exponential tight bounds on the size of uniform
interpolants in EL. This is a report on our recent work accepted at ECAI 2012 [7].

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept symbols
and role symbols. An EL concept C is defined as C ::= A|>|C u C|∃r.C, where A
and r range over NC and NR, respectively. In the following, we use symbols A, B to
denote atomic concepts and C,D to denote arbitrary concepts. A terminology or TBox
consists of concept inclusion axioms C v D and concept equivalence axioms C ≡ D
used as a shorthand for C v D and D v C. While knowledge bases in general can also
include a specification of individuals with the corresponding concept and role assertions



(ABox), in this paper we do not consider them. The signature of an EL concept C or
an axiom α, denoted by sig(C) or sig(α), respectively, is the set of concept and role
symbols occurring in it. To distinguish between the set of concept symbols and the set
of role symbols, we use sigC(C) and sigR(C), respectively. The signature of a TBox
T , in symbols sig(T ) (correspondingly, sigC(T ) and sigR(T )), is defined analogously.
The semantics of the above introduced DL constructs is standard and can be found, for
instance, in [2].

In this paper, we investigate uniform interpolation based on concept- inseparability,
i.e., the aim is to preserve all Σ-concept inclusions. Thus, the task of uniform interpo-
lation is defined as follows: Given a signature Σ and a TBox T , determine a TBox T ′

with sig(T ′) ⊆ Σ such that for all EL concepts C,D with sig(C) ∪ sig(D) ⊆ Σ holds:
T |= C v D iff T ′ |= C v D. T ′ is also called a uniform EL Σ-interpolant of T . In
practice, uniform interpolants are required to be finite, i.e., expressible by a finite set of
finite axioms using only the language constructs of EL.

3 Lower Bound

While deciding the existence of uniform interpolants in EL is exponential [4], i.e., one
exponential less complex than the same decision problem for the more complex logic
ALC [6], the size of uniform interpolants remains triple-exponential. We demonstrate
that this is in fact the lower bound by the means of the following example (obtained
by a slight modification of an example given in [5] originally demonstrating a double
exponential lower bound in the context of conservative extensions).

Example 1. The EL TBox Tn for a natural number n is given by

A1 v X0 u ... u Xn−1 (1)
A2 v X0 u ... u Xn−1 (2)

uσ∈{r,s}∃σ.(Xi u X0 u ... u Xi−1) v Xi i < n (3)
uσ∈{r,s}∃σ.(Xi u X0 u ... u Xi−1) v Xi i < n (4)

uσ∈{r,s}∃σ.(Xi u X j) v Xi j < i < n (5)
uσ∈{r,s}∃σ.(Xi u X j) v Xi j < i < n (6)

X0 u ... u Xn−1 v B (7)

In Tn, the atomic concepts Xi and Xi represent the bit number i of a binary counter being
set and unset, respectively. Axiom 3 ensures that an unset bit will be set in the successor
number, if all smaller bits are already set. The subsequent Axiom 4 ensures that a set
bit will be unset in the successor number, if all smaller bits are also set. Axioms 5
and 6 ensure that in all other cases, bits do not flip. For instance, Axiom 5 states that,
if any bit before bit i is still unset, then bit i will remain unset also in the successor
number. If we now consider sets Ci of concept descriptions inductively defined by C0 =

{A1, A2}, Ci+1 = {∃r.C1 u ∃s.C2 | C1,C2 ∈ Ci}, then we find that |Ci+1| = |Ci|
2 and

consequently |Ci| = 2(2i). Thus, the setC2n−1 contains triply exponentially many different
concepts, each of which is doubly exponential in the size of Tn (intuitively, we obtain
concepts having the shape of binary trees of exponential depth, thus having doubly
exponentially many leaves, each of which can be endowed with A1 or A2, giving rise to



triply exponentially many different such trees). It can be shown that for each concept
C ∈ C2n−1 it holds Tn |= C v B and that there cannot be a smaller uniform interpolant
for Tn w.r.t. the signature Σ = {A1, A2, B, r, s} than {C v B | C ∈ C2n−1}.

Hence we have found a class Tn of TBoxes giving rise to uniform interpolants of triple-
exponential size in terms of the original TBox. In the following, we show that this is
also an upper bound by providing a procedure for computing uniform interpolants with
a triple-exponentially bounded output.

4 Upper Bound

The upper bound can be shown by providing an algorithm, which computes a uniform
interpolant, in case it exists, of at most triple-exponential size in the size of the original
TBox. The algorithm relies on a normalization, which assigns to each sub-expression
occurring in the original TBox and not being equivalent to any atomic concept a fresh
concept name. This can be done recursively by replacing sub-expressions C1 u ... u Cn

and ∃r.C by fresh concept symbols until each axiom in the TBox T is one of {A v
B, A ≡ B1u ...uBn, A ≡ ∃r.B}, where A, B, Bi ∈ sigC(T )∪{>} and r ∈ sigR(T ). Given a
normalized TBox additionally extended with classification results, we can show using a
deduction calculus for EL terminologies that the uniform interpolant UI can be obtained
from the sets of subsumers and subsumees of all atomic concepts in T as follows.

Definition 1. Let T be a normalized EL TBox and , for each A ∈ sigC(T ), let R1(A)
and R2(A) be the set of subsumees and the set of subsumers of A in T . Then, the EL
TBox UI(T , Σ,R1,R2) is given by

{C v A | A ∈ Σ,C ∈ R1(A)} ∪ {A v D | A ∈ Σ,D ∈ R2(A)}∪
{C v D | there is A < Σ,C ∈ R1(A),D ∈ R2(A)}.

In our approach, we represent the (possibly infinite) sets of subsumees and subsumers as
tree languages L(G) generated by regular tree grammars G, where concept expressions
C are interpreted as a trees according to their term structure.

Theorem 1. Let T be a normalized EL TBox, Σ a signature. For each A ∈ sigC(T ),
we can compute from T in exponential time a grammar Gw(T , Σ, A) generating sub-
sumees of A and a grammar Gv(T , Σ, A) generating subsumers of A with the following
properties:

– Gw(T , Σ, A) and Gv(T , Σ, A) are exponentially bounded in the size of T , while the
number of non-terminals corresponds to the number of atomic concepts in T .

– For each C with sig(C) ⊆ Σ such that T |= C v A there is a concept C′ generated
by Gw(T , Σ, A) such that C can be obtained from C′ by adding arbitrary conjuncts
to arbitrary sub-expressions.

– Each D satisfying sig(D) ⊆ Σ and T |= A v D is generated by Gv(T , Σ, A).

While the languages generated by the grammars are usually infinite, we require finite
subsets of L(Gw(T , Σ, A)) and L(Gv(T , Σ, A)) to obtain the corresponding upper bound.
Based on the following lemma presented in [4], we obtain a bound on the role depth
of minimal uniform EL interpolants, allowing us to restrict the role depth of relevant
elements in L(Gw(T , Σ, A)) and L(Gv(T , Σ, A)):



Lemma 1. Let T be a normalized EL TBox, Σ a signature. There exists a uniform EL
Σ-interpolant of T if and only if there exists a uniform EL Σ-interpolant T ′ of T whose
maximal role depth is exponentially bounded by |T |.

Based on this bound and the size of Gw(T , Σ, A),Gv(T , Σ, A), we can describe a way
to materialize a role-depth-bounded part of Gw(T , Σ, A),Gv(T , Σ, A) into subsumer and
subsumee sets R1(A) and R2(A), respectively, obtaining the following result:

Theorem 2. Given an EL TBox T and a signature Σ, there exists a uniform EL Σ-
interpolant of T iff there exists a uniform EL Σ-interpolant T ′ with |T ′| ∈ O(222|T |

).

5 Summary

In this paper, we summarize an approach to computing uniform interpolants of general
EL terminologies based on proof theory and regular tree languages. Moreover, we noted
that, if a finite uniform EL interpolant exists, then there exists one of at most triple
exponential size in terms of the original TBox, and that, in the worst-case, no shorter
interpolant exists, thereby establishing the triple exponential tight bounds.
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