
QUARTERLY OF APPLIED MATHEMATICS 355
OCTOBER, 1974

ON THE NON-UNIQUENESS OF ELASTIC ROTATIONS FOR
DEFORMATIONS OF MATERIALS WITH ELASTIC RANGE

By DAVID R. OWEN (Carnegie-Mellon University)

Abstract. In this note precise definitions of the concepts of elastic and permanent
deformation are used to establish non-uniqueness of elastic rotations for deformations
of materials with elastic range.

1. Introduction. A feature common to theories of elastic-plastic materials is a
representation of deformations in terms of elastic and inelastic parts. The question of
the uniqueness of such a representation has been commented upon by many authors.
In [1], [2], and [3], the inherent non-uniqueness of such representations has been asserted.
On the other hand, some writers (see [4], for example) have assumed uniqueness of such
representations. The purpose of this note is to state precise conditions under which
non-uniqueness (in the form of non-uniqueness of elastic rotations) arises in a mechanical
theory proposed by the present author [1], Roughly speaking, I show that, in a material
with elastic range, the larger the symmetry group the larger the number of possibilities
for the elastic rotation. In particular, the elastic rotation is shown to be arbitrary for
isotropic materials.

2. Basic concepts. In this section, I summarize the concepts and results presented
in [1], as well as new results due to Kratochvil and Silhavy, which are relevant to the
discussion which follows.

A material with elastic range is a material whose stress response

Tit) = n(f")
(with T(t) the current stress tensor and F' the history of deformation gradient up to
time t) satisfies the additional restriction that continuations of the deformation gradient
history F' which remain in a set E(F') produce a path-independent response. Accordingly,
one can write

n(GT) = II*(A, F')

where GT is a continuation of F' which remains in E(F') and ends at the point A in
E(F'). The set E(Fl) is called the elastic range corresponding to F' and the function
n*(-, F') is called the elastic response determined by F' (see [1, p. 88]).

A proper orthogonal tensor Q0 is called a symmetry transjormation for a material with
elastic range if the condition

n(F'Qo) = Il(F')
holds for all histories F'. The symmetry transformations for a given material form a
group under multiplication of tensors; therefore, Q0 is a symmetry transformation if
and only if Q0T is a symmetry transformation.



356 DAVID R. OWEN

The response functional IT depends, of course, upon a specified reference configuration
with respect to which deformation histories F' are computed from given motions of a
body. The particular history 1+, which corresponds to rest in the reference configuration,
here is assumed to obey the following conditions:

(132) for each tensor A and symmetry transformation Q0 such that A £ E(lf)
E(Q0t), n*(A, Q„t) = n*(^, 1+);

(/33) for each symmetry transformation Q0 , E(lt)Q„ C E(P).
Here, Q0+ is the constant history with value Q„ . Condition (,82) tells us that states of rest
in the reference configuration and in a configuration obtained by a symmetry trans-
formation of the reference configuration yield identical elastic responses. Condition (03)
says, in suggestive terms, that symmetry transformations applied to states of strain in
the initial elastic range produce states of strain which again are in the initial elastic
range. These conditions are closely related to conditions (a.2) and (a3) in the definition
of "annealed state" given in [1, p. 90]. It should be noted that only symmetry trans-
formations Q0 enter in the statements of (132) and (03), whereas (a2) and (<*3) involve in
general a larger class of tensors, and (02) and (03) thus are weaker restrictions than
(a.2) and (a3).

The "principle of material frame indifference" ([5, p. 44]) here tells us that n satisfies
the condition

II(Q'F') = Q(t)Yl(F')Q(t)T

for every history F* and orthogonal valued history Q'. In a private communication to me,
Kratochvil and Silhavy have proved that this identity implies for materials with elastic
range that

QE(F') = E(F') = E (Q'F) (*)

for every proper orthogonal tensor Q and orthogonal valued history Q'. I shall use these
results in the subsequent development, as they allow me to develop the present ideas
for a broader class of materials than I had previously considered [6].

Given a history F', a second history Fv' is said to be a permanent deformation history
corresponding to F' if the following conditions hold:

(PI) Fv'(a) is in the elastic range determined by F'~°, for every a > 0 (Fv'(a) repre-
sents the permanent deformation at time t — a);

(P2) as a tends to zero, the points F„'(<t) are bounded away from the boundary
dE(F') of the elastic range E(F');

(P3) a fixed function n0 determines the elastic response through the relation
11*^4, F'~°) = no04(/V(o-))-1) for every a > 0 and every A in E(F'~") suffi-
ciently close to Fvl (a).

It should be noted that Condition (P3) embodies the assumption that only the
current permanent deformation and the current total deformation are necessary for the
determination of the current stress at points in the current elastic range which are near
the current permanent deformation. In (P3), (Fj(a))'1 denotes the inverse of Fv'(a).

I assume in the following development that the history lf, corresponding to rest
in the given reference configuration, is a permanent deformation history corresponding
to itself (see [1, A3]).
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3. Non-uniqueness of permanent deformations. As the main step toward establish-
ing the non-uniqueness of elastic rotations, a result is presented below which gives
conditions under which permanent deformations are not unique. Before giving this
result, a preliminary remark is needed.

If a proper orthogonal tensor Q0 is a symmetry transformation for a material with
elastic range, then the same tensor is an element of the symmetry group of the function
n0 , i.e. the condition n0(AQ0) = n0(A) holds for all tensors A (sufficiently near the
identity tensor) whenever the condition II(f Q0) = U(F') holds for all histories F'.

To prove this remark, we let A be in E(lt). Since lf is, by hypothesis, a permanent
deformation history corresponding to itself, we can apply (P3), with F' = lf, Fv' = lf
and A close to 1, to write

n0(A) = n^Ar1) = n *(A, 1+).

Moreover, for each orthogonal tensor Q, the relations (*), with F' — l1" and Q' = Q\
here yield E(lf) = E(Qf), and we may conclude that the tensor A also is in E(Qf). If
we let Q — Qo be a symmetry transformation, then, in view of (/32), the previous equation
for n0 implies

n„(A) = n*(A, it) = n*(A, Q0+).

Now, n*(A, Q0+) represents the stress due to a continuation GT of Q0+ which remains
in E(Qot) and obeys GT(0) = A. Therefore, the history GrQ0T represents a continuation
of lf which remains in the set

mj)Q°T = E(it)Q/.
By (/33) and the fact that Q0T also is a symmetry transformation, E(lt)Q0r is a subset
of E(lf), and GTQ0T is then a continuation of 1+ which remains in E(lt). The last formula
for n0 and the definitions of the elastic response II* and the symmetry transformations
Qo then yield the relation

n„(A) = n*(A, Q0t) = n(Gr) = n(GrQ0T) = n*(AQ0T, i+),

and, since is a permanent deformation history corresponding to itself, this relation
and (P3) tell us that

n„(A) = n*(AQ/, i+) = n„(AQ0r)

whenever Q0 is a symmetry transformation and A is sufficiently close to 1. Of course,
Qo may be replaced by Q0T throughout the proof and hence

n„(A) = n„(AQ„)
for Qo and A as described above.

It is now possible to state and prove the following proposition.
Given a material with elastic range, a history F', and a permanent deformation

history Fj corresponding to F', it follows that Q0Fj is also a permanent deformation
history corresponding to F' whenever Q0 is a symmetry transformation of the material.
In particular, if the material is isotropic, then for every proper orthogonal Q0 the history
Q0FP' is a permanent deformation history corresponding to F'.

Thus, the existence of many symmetry transformations of the material leads to many
possibilities for the permanent deformation.
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The proposition can be established simply by showing that if the conditions (PI),
(P2) and (P3) are valid for Fp', then they are valid for QaFv' whenever Q0 corresponds
to a symmetry transformation.

(PI). By (PI) for the history F', the tensor Fj(a) is in E(F'_,r); since Q0Fv\a) is in
Q0E(F'~°), (*) (Sec. 2) then implies that

QoK'M e QoE(F"°) = E(F'~°),
i.e., Q0FJ obeys (PI). (In particular, since E(F'~°) is open, the point Q0Fj(<r) is not
in dE(F'").)

(P2). Suppose that (P2) is not satisfied. There then exists points Ai,A2, ■ ■ ■ ,A„,
in 3E(F') and times uy , <r2 , • • • , • • • , with lim„_a, <r„ = 0, such that the distance
between An and Q0Fp'(tjn) tends to zero as n tends to infinity. However, Q0Fp'(<Tn) tends
to Q0Fpl(0) as n tends to infinity, so that the sequence {} must tend to the same limit.
This is impossible, since the limit of the sequence {-A„} must be in dE(F') whereas
Q0Fv'(0) is not in dE(F').

(P3). For every A £ E^1-") which is near FJ(a), n*(/l, F'~') = n0(A(F„'(<7-))-1)
since Fp is a permanent deformation corresponding to F' and (P3) holds for it. However,
for each Q0 in the symmetry group of the given material, the preliminary remark implies
that

MACFJCe))-1) = no(4(F,,W)-1<2or) = nMlQoF,'^)]-1),
and this relation holds for all A in E (F'~°) close to Fv\<j). Hence, for all such A and for
all <r > 0

n*(A, F'~°) = noCAIQoF,'^)]-1].
This argument establishes (P3).

4. Elastic deformations and the non-uniqueness of elastic rotations. Given a
history F' and a corresponding permanent deformation history Fp', we define for every
<7 > 0

Fe'(a) = FVXfVGO)-;
Fe' is called an elastic deformation history corresponding to F'. Thus the relation

F\a) = F.'WF.'W
holds for all a > 0. Since, for each symmetry transformation Q0 , the history Q„FP
also is a permanent deformation history corresponding to F', it follows that for each Q0
the history F'Q/ is an elastic deformation history corresponding to F' whenever Fe'
is an elastic deformation history. In particular, for an isotropic material the histories
F'Q0T are, for every choice of proper orthogonal Qo , elastic deformation histories
corresponding to F'.

These remarks suffice to establish the non-uniqueness of elastic rotations. In fact,
one can write the polar decomposition F ' = V,'R.' for any elastic deformation history
F'\ thus each orthogonal tensor Q0 in the symmetry group gives rise to an elastic deforma-
tion history

Fe'Qj = V.WQJ)
having the same stretch Ve' but different elastic rotation.
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Note added, in proof: M. Silhavy has kindly pointed out to me that the condition (/32)
actually follows from the priniciple of material frame indifference. Accordingly, beyond
frame indifference one need only assume that (/33) and the condition on 1+ at the end of
Sec. 2 hold in order to establish the results in this note.


