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6. Correction for hydrostatic force. Since gravity has been neglected above, it is
interesting to have a rough estimate of the effect of gravity on the pressure exerted by
a liquid on a missile moving through it with wetted area W' trailed by a cavity (Fig. 2).
We suppose the liquid incompressible, and bounded by W', container walls W", and a
free surface S. The additional instantaneous acceleration b due to a vertical gravity
field with intensity g satisfies b = gVB, where V2B = 0, B = y (depth coordinate)
on S, and dB/dn = 0 on W + W" = W; the associated hydrostatic pressure is pg(y — B).

For given boundary configurations S and W, the resulting "hydrostatic acceleration
potential" gB can be most easily estimated using an electrolytic tank, and the results
interpreted in terms of the dimension! ess cavity buoyancy coefficient

n _ hydrostatic bouyancy force
H — \ ~ ~

pg X mean depth X horizontal projection of W'

In this way, CH was estimated7 for three two-dimensional cavity flows, having profiles
similar to that of Fig. 2. The cavity buoyancy coefficients averaged about 25 per cent.
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ON THE NON-UNIQUENESS OF PERIODIC SOLUTIONS FOR AN
ASYMMETRIC LlfiNARD EQUATION*

By G. F. D. DUFF and N. LEYINSON (Massachusetts Institute of Technology)

The following result has been stated by H. Serbin [5, Theorem II]. Let f(x), g(x)
be continuous for — °° < x < °°, and let

f(x) < 0, —x[ < x < xx , (1.0)

f(x) >0, X < —x[ , Xi < x, (1.1)

where x[ > 0 and xt > 0. Let

f f(x) dx > 0 (1.2)
J 0

xg{x) >0, x 7^ 0 (1.3)

*Received Aug. 20, 1951. This paper was written in the course of research sponsored in part by
the Office of Naval Research.
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and let either /" /(x) dx or g(x) dx diverge. Then the equation

x + f(x)x + g(x) = 0, x = dx/dt, (1.4)

has a unique periodic solution.
In case g(x) = x and f(x) is even (1.4) has been treated by Lienard [3]. In case

f(x) is even and g(x) is an odd function (1.4) has been treated by Levinson and Smith
[2], Here an example will be given with g(x) = x and with f{x) meeting the requirements
(1.0), (1.1) and (1.2) where at least three periodic solutions for (1.4) exist thus showing
that the result of Serbin is incorrect as stated.

We note that if f(x) satisfies the required conditions so does ef(x) for any e > 0.
The equation to be considered here is

x + ef(x)x + x = 0 (1.5)

where fix) is a polynomial. If x = r cos 6 and x = — r sin 6 then (1.5) yields r = e r
f (r cos 6) sin2 6, 6 = 1 + e/(r cos 6) sin 6 cos 6 from which follows

dr trf(r cos 6) sin2 6 .
dd 1 + e/(r cos 6) sin 9 cos 6'

For each solution of (1.6) r = r(6) periodic of period 2x there corresponds a periodic
solution of (1.5).

Since with e = 0 the solutions of (1.6) r = const., are bounded and since the right
side of (1.6) is analytic in r, 6 and e it follows from the successive approximations existence
theorem, as indicated for example in Lefschetz [1, Chap. II] that the solutions of (1.6)
with r = p for 6 = 0 are given by r = 11 (8, p, e) where H is analytic in (6, p, e) for any
finite range such as 0 < 6 < 2ir, 5 < p < 5, and | e | sufficiently small. Thus II can be
expanded in powers of e yielding

r = H0(d, p) + ei7i(0, p) + «"t(0, P, e)

where | 7 | is uniformly bounded for the above range of 6 and p for | e | small. Using
r = H in (1.6) it follows, equating powers of e on each side of the equation, that H0(6, p) =
p and

If

then

p) = / pf(p cos a) sin2 <r da.
J 0

C 2t

F(p) = / p/(p cos a) sin2 a da (1.7)
Jo

H(2ir, p, e) — p = eF(p) + t2y(2ir, p, e). (1.8)

If H(2ir, p, e) — p vanishes for some p then as already stated (1.5) has a periodic solution
passing through the point x = p, x = 0 in the phase plane of the variables (x, x).
Let p0 > 0 and let F(p0) = 0 and let F(pj change sign at p = p0 . Then for a given
small 5 > 0, it follows from (1.8) that H(2ir, p, t) — p has opposite signs for p = p0 — 8
and p = p0 + S providing e is small enough. Since 7/(2x, p, e) — p is continuous in p
this implies that H (2ir, p, e) — p vanishes for some p between p0 — 5 and p0 + 8.

It follows therefore that if it is shown that F(p) in (1.7) has 3 positive zeros and
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changes sign at each zero then for small e (1.5) has at least three periodic solutions as
stated. [4]

Let
fix) = A3x* — A2x4 + Arx2 — A0 — Cx (1.9)

where A,■ and C are constants. Let

Ih = / sin2<r cos 2h a da, k = 0, 1, 2, 3.
Jo

Then Ik > 0 and from (1.7) it follows that

F{p) = A3I3p7 — A2I2p5 + AJiP3 — A0I0p.

Let A3I3 = 1, A2I2 = 14, AJi — 49 and A0I0 — 36. Then all the A, are positive and

F(P) = p(p2 - l)(p2 - 4)(p2 - 9).

Thus F(p) vanishes at p = 1, 2, and 3 and changes sign at each of these zeros which
proves that (1.5) has at least three periodic solutions for small e.

Since (1.2) is assured by A3 > 0 in (1.9) it remains only to show that f(x) satisfies
(1.0) and (1.1). Since the A,- are already fixed and since A3 > 0 and A0 > 0 it follows
easily that if C is large enough then Cx = A3x6 — A2x4 + Axx2 — An has only one
negative root, which is near x = 0 and will be designated by —x[, and only one positive
root, which is large and will be designated by x1 . Clearly f(x) now satisfies (1.0) and
(1.1) and the example is complete.

With polynomials of higher degree the existence of more periodic solutions can be
established. (The argument of Serbin fails in that he does not recognize the restricted
range of the monotonicity of <j>, in Lefschetz's notation, as stated by Lefschetz [1, p. 193]
and to which Serbin refers.)
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THE COMPRESSIBLE FLOW CORRESPONDING TO A LINE DOUBLET*
By J. W. CRAGGS (St. John's College, Cambridge)

Introduction. The use of the hodograph equations for irrotational compressible flow
in two dimensions leads, as noticed by Chaplygin1 and others, to a method of con-
structing compressible flow patterns by reference to similar problems in incompressible
flow. For certain elementary flows, as for example the flow due to a line source, a line

*Received December 11, 1950.
1Chaplygin, On gaseous jets, Ann. Sci. Moscow Imperial University, Math.-Phys. section 21, (1904).


