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ON THE NONASYMPTOTIC CONVERGENCE OF CYCLIC
COORDINATE DESCENT METHODS∗

ANKAN SAHA† AND AMBUJ TEWARI‡

Abstract. Cyclic coordinate descent is a classic optimization method that has witnessed a
resurgence of interest in signal processing, statistics, and machine learning. Reasons for this renewed
interest include the simplicity, speed, and stability of the method, as well as its competitive per-
formance on �1 regularized smooth optimization problems. Surprisingly, very little is known about
its nonasymptotic convergence behavior on these problems. Most existing results either just prove
convergence or provide asymptotic rates. We fill this gap in the literature by proving O(1/k) con-
vergence rates (where k is the iteration count) for two variants of cyclic coordinate descent under an
isotonicity assumption. Our analysis proceeds by comparing the objective values attained by the two
variants with each other, as well as with the gradient descent algorithm. We show that the iterates
generated by the cyclic coordinate descent methods remain better than those of gradient descent
uniformly over time.
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1. Introduction. As we encounter larger and higher dimensional datasets, we
are faced with novel challenges in designing and analyzing optimization algorithms
that can work efficiently with such datasets. This paper considers one such class of
algorithms, namely, cyclic coordinate descent and variants thereof. There has been
recent work demonstrating the potential of these algorithms for solving large and
high-dimensional �1 regularized loss minimization problems:

(1.1) min
x

1

n

n∑
i=1

�(x, Zi) + λ‖x‖1 ,

where x ∈ R
d is a possibly high-dimensional predictor that is being estimated from the

samples Zi = (Xi, Yi) consisting of input and output pairs, � is a convex loss function
measuring prediction performance, and λ ≥ 0 is a “regularization” parameter. The use
of the �1 norm ‖x‖1 (sum of absolute values of xi) as a “penalty” or “regularization
term” is motivated by its sparsity-promoting properties, and there is a large and
growing literature studying such issues (see, e.g., [5, 9] and the references therein).
In this paper, we restrict ourselves to analyzing the behavior of coordinate descent
methods on problems like (1.1) above. The general idea behind coordinate descent is
to choose, at each iteration, an index j and change xj such that the objective function
decreases. Choosing j can be as simple as cycling through the coordinates, or a more
sophisticated coordinate selection rule can be employed. Hastie and coauthors [10, 11]
use the cyclic rule, which is also the one we analyze in this paper. From their empirical
comparisons on simulated and real datasets, they conclude the following regarding
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cyclic coordinate descent [11]: “Its computational speed both for large N and p are
quite remarkable.”1

It is natural to attempt an analysis that can provide theoretical support for the
good performance of cyclic coordinate descent on the �1 regularized loss minimization
problem (1.1). Our goal is to do this by obtaining nonasymptotic rates of convergence,
i.e., guarantees about accuracy of iterative optimization algorithms that hold right
from the first iteration. This is in contrast to asymptotic guarantees that only hold
once the iteration count is “large enough” (and often what is meant by “large enough”
is not explicitly quantified). For our analysis, we abstract away the particulars of the
setting above and view (1.1) as a special case of the convex optimization problem:

(1.2) min
x∈Rd

F (x) := f(x) + λ‖x‖1 .

In order to obtain nonasymptotic convergence rates, one must assume that f is “nice”
in some sense. This can be formalized in different ways: for instance, by making
assumptions of Lipschitz continuity, differentiability, or strong convexity. We will
assume that f is differentiable with a Lipschitz continuous gradient. In the context
of problem (1.1), it suffices to assume that the loss � is twice differentiable with a
bounded second derivative. Several losses, such as squared loss and logistic loss,
satisfy this condition. Our results therefore apply to �1 regularized least squares2 and
to �1 regularized logistic regression.

For a method as old as cyclic coordinate descent, it is surprising that little is
known about nonasymptotic convergence even under smoothness assumptions. As far
as we know, nonasymptotic results are not available even when λ = 0, i.e., for the un-
constrained smooth convex minimization problem. Given recent empirical successes
of the method, we feel that this gap in the literature needs to be filled urgently. In
fact, this sentiment is shared by Wu and Lange [25], who lamented, “Better under-
standing of the convergence properties of the algorithms is sorely needed.” They were
talking about greedy coordinate descent methods, but their comment applies to cyclic
methods as well.

The situation with gradient descent methods is much better. There are a variety of
nonasymptotic convergence results available in the literature (see, for example, [16]).
Our strategy in this paper is to leverage these results to shed some light on the
convergence of coordinate descent methods. We do this via a series of comparison
theorems that relate variants of coordinate descent methods to each other and to the
gradient descent algorithm. To do this, we make assumptions on the starting point
and an additional isotonicity assumption on the gradient of the function f . Since
nonasymptotic O(1/k) accuracy guarantees are available for gradient descent, we are
able to prove the same rates for two variants of cyclic coordinate descent. Here k
is the iteration count, and the constants hidden in the O(·) notation are small and
known. Nesterov [17] has remarked that it is “almost impossible to estimate the rate
of convergence” of cyclic coordinate descent “in the general case.” We therefore feel
that establishing rates under particular assumptions is a small but important step
towards a full understanding of these methods. Of course, the next step is to relax, or
even eliminate, the additional assumptions we make (these are detailed in section 4),
and doing this is an important open problem left for future work. Our experimental

1Their N and p refer to number of samples and dimensions respectively, i.e., n and d in our
notation.

2This is known as “lasso” in machine learning and statistics and “basis pursuit” in signal pro-
cessing.



578 ANKAN SAHA AND AMBUJ TEWARI

results in section 9 make us confident that nonasymptotic guarantees will eventually
be proven for cyclic coordinate descent under fewer or no restrictive assumptions.

We find it important to state at the outset that our aim here is not to give the best
possible rates for the problem (1.2). For example, even among gradient-based meth-
ods, faster O(1/k2) nonasymptotic accuracy bounds can be achieved using Nesterov’s
celebrated method [15] or its later variants. Instead, our goal is to better understand
cyclic coordinate descent methods and their relationship to gradient descent.

1.1. Related work. Coordinate descent methods are quite old, and we can-
not attempt a survey here. Instead, we refer the reader to the works of Tseng and
coauthors [22, 23, 24] that summarize previous work and also present analyses for
coordinate descent methods. These consider cyclic coordinate descent as well as ver-
sions that use more sophisticated coordinate selection rules. However, as mentioned
above, the analyses either establish convergence without rates or give asymptotic
rates that hold after sufficiently many iterations have occurred. An exception is [23],
which does give nonasymptotic rates but for a version of coordinate descent that is
not cyclic. However, the topic seems to have recently caught the attention of several
researchers, and there are now a handful of other papers [4, 7, 17, 19, 20, 21] that
provide nonasymptotic convergence rates for coordinate descent algorithms that can
be applied to the problem (1.1). We will discuss these papers in section 10.

We mentioned that the empirical success reported in [10] was our motivation to
consider cyclic coordinate descent for �1 regularized problems. They consider the lasso
problem:

(1.3) min
x∈Rd

1

2
‖X x− y‖2 + λ‖x‖1 ,

where X ∈ R
n×d and y ∈ R

n. In this case, the smooth part f is a quadratic,

f(x) = 1
2 〈Ax, x〉 + 〈b, x〉 ,(1.4)

where A = X�X and b = −X�y. Note that A is symmetric and positive semidefinite.
Cyclic coordinate descent has also been applied to the �1 regularized logistic regression
problem [12]. Since the logistic loss is twice differentiable, this problem also falls within
the class of problems considered in this paper.

1.2. Outline. Notation and necessary definitions are given in section 2. The
gradient descent algorithm and two variants of cyclic coordinate descent are pre-
sented in section 3. Section 4 spells out the additional assumptions on f that our
current analysis needs. Section 5 proves a monotonicity result about gradient descent
iterates. Sections 6 and 7 do the same for iterates generated by the two variants of
coordinate descent. Additionally, these two sections prove results comparing the iter-
ates generated by the three algorithms when they are all started from the same point.
Similar comparison theorems in the context of solving a system of nonlinear equations
using Jacobi and Gauss–Seidel methods appear in a paper of Rheinboldt [18]. The
comparison theorems set the stage for the main results given in section 8.

Section 8 converts the comparison between iterates into a comparison between
objective function values achieved by the iterates. The nonasymptotic convergence
rates of cyclic coordinate descent are then inferred from rates for gradient descent.
The main question that remains open after our analysis is whether cyclic coordinate
descent can be shown to enjoy nonasymptotic convergence guarantees with fewer or
perhaps no extra assumptions. Experiments with simulated data in section 9 suggest
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that the answer should be affirmative. Section 10 further discusses avenues for future
exploration and situates our work in the context of existing work on nonasymptotic
guarantees for coordinate descent methods.

2. Preliminaries and notation. We use the lowercase letters x, y, z, g, and
γ to refer to vectors throughout the paper. Letters with parenthesized superscripts,
like x(k), refer to vectors as well, whereas we use subscripts, as in xj , to refer to the
components of vectors. A numerical constant in bold, such as 1, refers to a vector all
of whose entries are 1.

For any positive integer k, [k] := {1, . . . , k}. By sign(a), we mean the interval-
valued sign function defined as

sign(a) :=

⎧⎪⎨
⎪⎩
{−1} if a < 0,

{1} if a > 0,

[−1, 1] if a = 0.

Unless otherwise specified, ‖ · ‖ refers to the Euclidean norm ‖x‖ := (∑i x
2
i

) 1
2 , ‖ · ‖1

denotes the l1 norm ‖x‖1 := (
∑

i |xi|), and 〈·, ·〉 denotes the Euclidean inner product
〈x, y〉 :=

∑
i xiyi. Throughout the paper, inequalities between vectors are to be

interpreted componentwise, i.e., for x, y ∈ R
d, x ≥ y means that xi ≥ yi for all i ∈ [d].

The following definition will be used extensively in the paper.
Definition 2.1. Suppose a function f : Rd → R is differentiable on R

d. Then f
is said to have Lipschitz continuous gradient with respect to the Euclidean norm ‖ · ‖
if there exists a constant L such that

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖ ∀ x, x′ ∈ R
d.(2.1)

An important fact (see, e.g., [16, Thm. 2.1.5]) we will use is that if a function f
has Lipschitz continuous gradient with respect to a norm ‖ · ‖, then it satisfies the
following generalized bounded Hessian property:

∀x, x′ ∈ R
d, f(x) ≤ f(x′) + 〈∇f(x′), x− x′〉+ L

2
‖x− x′‖2.(2.2)

An operator T : Rd → R is said to be isotone iff

(2.3) x ≥ y ⇒ T (x) ≥ T (y).

An important isotone operator that we will frequently deal with is the shrinkage
operator Sτ : Rd → R defined, for τ > 0, as

[Sτ (x)]i := Sτ (xi),(2.4)

where Sτ (a) is the scalar shrinkage operator:

(2.5) Sτ (a) :=

⎧⎪⎨
⎪⎩
a− τ, a > τ,

0, a ∈ [−τ, τ ],
a+ τ, a < −τ.
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Algorithm 1: Gradient descent (GD).

Initialize: Choose an appropriate initial point x(0).
for k = 0, 1, . . . do

x(k+1) ← Sλ/L(x
(k) − ∇f(x(k))

L )
end for

3. Algorithms. We will consider three iterative algorithms for solving the min-
imization problem (1.2). All of them enjoy the descent property F (x(k+1)) ≤ F (x(k))
for successive iterates x(k) and x(k+1).

Algorithm 1, a simple extension of gradient descent (GD), is one of the most
common iterative algorithms used for convex optimization (see [1, 8] and the references
therein). It is based on the idea that, using (2.2), we can come up with the following
global upper approximation of F :

F (x) ≤ f(x(k)) +
〈
∇f(x(k)), x− x(k)

〉
+

L

2
‖x− x(k)‖2 + λ‖x‖1 .

This approximation is exact at x = x(k). It is easy to show [1] that the above
approximation is minimized at x = Sλ/L(x

(k) −∇f(x(k))/L). This is the next iterate
for the GD algorithm. We call it “gradient descent” as it reduces to the algorithm

x(k+1) = x(k) − ∇f(x
(k))

L

when there is no regularization (i.e., λ = 0). Finite time convergence rates for the
GD algorithm are well known.

Theorem 3.1. Let
{
x(k)

}
be the sequence generated by the GD algorithm. Then,

for any minimizer x� of (1.2), and for all k ≥ 1,

F (x(k))− F (x�) ≤ L‖x� − x(0)‖2
2k

.

The above theorem can be found in, e.g., [1, Theorem 3.1].
The second algorithm, cyclic coordinate descent (CCD), instead of using the

current gradient to update all components simultaneously, goes through them in a
cyclic fashion. The next “outer” iterate y(k+1) is obtained from y(k) by creating a

Algorithm 2: Cyclic coordinate descent (CCD).

Initialize: Choose an appropriate initial point y(0).
for k = 0, 1, . . . do
y(k,0) ← y(k)

for j = 1 to d do

y
(k,j)
j ← Sλ/L(y

(k,j−1)
j − [∇f(y(k,j−1))]j /L)

∀i = j, y
(k,j)
i ← y

(k,j−1)
i

end for
y(k+1) ← y(k,d)

end for
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series of d intermediate or “inner” iterates y(k,j), j ∈ [d], where y(k,j) differs from
y(k,j−1) only in the jth coordinate, whose value can be found by minimizing the
following one-dimensional overapproximation of F over the scalar α:

f(y(k,j−1)) + λ
∑
i�=j

|y(k,j−1)
i |+ [∇f(y(k,j−1))]j · (α− y

(k,j−1)
j )

+
L

2
(α− y(k,j−1))2j + λ|α| .(3.1)

It can again be verified that the above minimization has the closed form solution

α = Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
,

which is what CCD chooses y
(k,j)
j to be. Once all coordinates have been cycled

through, y(k+1) is simply set to be y(k,d). Let us point out that in an actual imple-
mentation, the inner iterates y(k,j) would not be computed separately, but y(k) would
be updated “in place.” For analysis purposes, it is convenient to give names to the
intermediate iterates. Note that for all j ∈ {0, 1, . . . , d} the inner iterate looks like

y(k,j) =
[
y
(k+1)
1 , . . . , y

(k+1)
j , y

(k)
j+1, . . . , y

(k)
d

]
.

When updating the jth coordinate,CCD uses the newer gradient value∇f(y(k,j−1))
rather than∇f(y(k)), which is used byGD. We might hope thatCCD converges faster
than GD due to the use of “fresh” information. Therefore, it is natural to expect that
CCD should enjoy the nonasymptotic convergence rate given in Theorem 3.1 (or
better). We show this is indeed the case under an isotonicity assumption stated in
section 4 below. Under the assumption, we are actually able to show the correctness
of the intuition that CCD should converge faster than GD.

The third and final algorithm that we consider is cyclic coordinate minimization
(CCM). The only way it differs from CCD is that instead of minimizing the one-

dimensional overapproximation (3.1), it chooses z
(k,j)
j to minimize

F (z
(k,j−1)
1 , . . . , z

(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . , z

(k,j−1)
d )

over α. In a sense, CCM is not actually an algorithm as it does not specify how
to minimize F for any arbitrary smooth function f . An important case when the

Algorithm 3: Cyclic coordinate minimization (CCM).

Initialize: Choose an appropriate initial point z(0).
for k = 0, 1, . . . do
z(k,0) ← z(k)

for j = 1 to d do
z
(k,j)
j ← argminα F (z

(k,j−1)
1 , . . . , z

(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . , z

(k,j−1)
d )

∀i �= j, z
(k,j)
i ← z

(k,j−1)
i

end for
z(k+1) ← z(k,d)

end for
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minimum can be computed exactly is when f is quadratic as in (1.4). In that case,
we have

z
(k,j)
j = Sλ/Aj,j

(
z
(k,j−1)
j − [Az(k,j−1) + b]j

Aj,j

)
.

If there is no closed form solution, then we might have to resort to numerical minimiza-
tion in order to implement CCM. This is usually not a problem since one-dimensional
convex functions can be minimized numerically to an extremely high degree of accu-
racy in a few steps (of, say, the Newton method). For the purpose of analysis, we will
assume that an exact minimum is found. Again, intuition suggests that the accuracy
of CCM after any fixed number of iterations should be better than that of CCD since
CCD only minimizes an overapproximation. Under the same isotonicity assumption
that we mentioned above, we can show that this intuition is indeed correct.

We end this section with a cautionary remark regarding terminology. In the liter-
ature, CCM appears much more frequently than CCD, and it is actually the former
that is often referred to as “cyclic coordinate descent” (see [10] and the references
therein). Our reasons for considering CCD are (i) it is a nice, efficient alternative to
CCM, and (ii) a stochastic version of CCD (where the coordinate to update is cho-
sen randomly and not cyclically) is already known to enjoy a nonasymptotic O(1/k)
expected convergence rate [17, 19, 21].

4. Isotonicity, supersolutions, and subsolutions. We already mentioned
the known convergence rate for GD (Theorem 3.1) above. Before delving into the
analysis, it is necessary to state an assumption on f that, once appropriate starting
conditions are imposed, results in particularly interesting properties of the convergence
behavior ofGD, as described in Proposition 5.1. The GD algorithm generates iterates
by applying the operator

TGD(x) := Sλ/L

(
x− ∇f(x)

L

)
(4.1)

repeatedly. It turns out that if TGD is an isotone operator, then the GD iterates
satisfy the properties claimed in Proposition 5.1, which is essential for our convergence
analysis. The above operator is a composition of Sλ/L, an isotone operator, and
I − ∇f/L (where I denotes the identity operator). To ensure overall isotonicity, it
suffices to assume that I−∇f/L is isotone. We formally state this as an assumption.

Assumption 1. The operator x �→ x− ∇f(x)
L is isotone.

Similar assumptions appear in the literature comparing Jacobi and Gauss–Seidel
methods for solving linear equations. For example, the Stein–Rosenberg theorem [3,
Chapter 2] holds under these assumptions. When the function f is quadratic as
in (1.4), our assumption is equivalent to assuming that the off-diagonal entries in A
are nonpositive, i.e., Ai,j ≤ 0 for all i = j. For a general smooth f , the following
condition is sufficient to make the assumption true: f is twice differentiable and the
Hessian ∇2f(x) at any point x has nonpositive off-diagonal entries.

There are many examples of such matrices A which are of interest. In particular,
graph Laplacians given by L = D −W (where W refers to the weighted adjacency
graph and D is a diagonal matrix given by Di,i =

∑
j Wi,j) have nonpositive off-

diagonal entries. Minimization of the corresponding quadratic objective forms the
basis of spectral partitioning [6] as well as semisupervised learning [2]. We note that
matrices with positive diagonal and nonpositive off-diagonal entries occur frequently
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enough in matrix analysis to have a name: they are calledMinkowski–Metzler matrices
[14].

In the next few sections, we will see how the isotonicity assumption leads to
an isotonically decreasing (or increasing) behavior of GD, CCD, and CCM iterates
under appropriate starting conditions. To specify what these starting conditions are,
we need the notions of super- and subsolutions.

Definition 4.1. A vector x is a supersolution iff, for some τ > 0,

x ≥ Sλ/τ

(
x− ∇f(x)

τ

)
.

Analogously, x is a subsolution iff, for some τ > 0,

x ≤ Sλ/τ

(
x− ∇f(x)

τ

)
.

Since the inequalities above are vector inequalities, an arbitrary x may be neither
a supersolution nor a subsolution. The names “supersolution” and “subsolution” are

justified because equality holds in the definitions above
(
i.e., x = Sλ/τ

(
x − ∇f(x)

τ

))
iff x is a minimizer of F . To see this, note that subgradient optimality conditions say
that x is a minimizer of F = f + λ‖ · ‖1 iff for all j ∈ [d]

0 ∈ [∇f(x)]j + λ sign(xj) .(4.2)

Further, it is easy to see that

∀a, b ∈ R, τ > 0, 0 ∈ b+ λ sign(a) ⇔ a = Sλ/τ (a− b/τ) .(4.3)

From the definition of super- and subsolutions, it is obvious that a solution (in
other words, a minimizer of F ) is both a super- and subsolution. If that was all,
then any result that holds under the assumption that the starting point is a super-
or subsolution would be vacuous. To show that the super- and subsolution concepts
are not degenerate, we provide the following result.

Lemma 4.2. A sufficient condition for x to be a supersolution (resp., subsolution)
is ∇f(x) ≥ λ1 (resp., ∇f(x) ≤ −λ1).

Proof. Since y + λ1 ≥ Sλ (y) for any y, we have

∇f(x) ≥ λ1 ⇒ x ≥ x−∇f(x) + λ1 ⇒ x ≥ Sλ (x−∇f(x)) .

The proof for the subsolution case is similar.
Consider the quadratic case again. That is, the function f is as in (1.4). The

above lemma implies that if x satisfies Ax + b > λ1, then it is a supersolution. If
we can find an x such that Ax > 0, then, after a possible scaling, we can satisfy
Ax > λ1 − b and hence find a supersolution. Moreover, this discussion also shows
that supersolutions are available in abundance if A is nonsingular since Ax = y has
a solution for every y > 0. We mentioned Minkowski–Metzler matrices above. If a
Minkowski–Metzler matrix is also diagonally dominant, then we have A1 > 0, and
hence 1 can be scaled to produce a supersolution. Recall that a matrix A is said to
be (strictly row) diagonally dominant whenever

∀i, |Ai,i| >
∑
j �=i

|Ai,j | .
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It is interesting to note that, in the context of solving a system of linear equations, di-
agonally dominant matrices play a crucial role in ensuring the convergence of iterative
methods [3, Chapter 2].

Now we prove a couple of properties of super- and subsolutions that will prove
useful later. The first is a scale invariance property of super- and subsolutions. This
scale invariance with respect to τ means that we can replace the quantifier “for some
τ > 0” to “for all τ > 0” in Definition 4.1 without changing the concept being defined.

Lemma 4.3. If the inequality

x ≥ Sλ/τ

(
x− ∇f(x)

τ

)
(4.4)

holds for some τ > 0, then it holds for all τ > 0.
Similarly, if the inequality

x ≤ Sλ/τ

(
x− ∇f(x)

τ

)

holds for some τ > 0, then it holds for all τ > 0.
Proof. We provide the proof for the supersolution case only, as the proof in the

subsolution case is analogous. Suppose, for a particular τ > 0, we have

x ≥ Sλ/τ

(
x− ∇f(x)

τ

)
.

Fix an arbitrary coordinate j and recall that S is the scalar shrinkage operator. The
remainder of the proof is divided into arguments dealing with three disjoint cases
depending upon the value of [∇f(x)]j .
Case 1: [∇f(x)]j − λ > 0. This case is illustrated in Figure 4.1. As τ > 0 changes,

the graph of the scalar function

(4.5) p �→ Sλ/τ

(
p− [∇f(x)]j

τ

)

changes, but it is clear that division by τ does not alter the relative ordering
of the values attained by the above function and the identity function. As
is evident from Figure 4.1, the graph of p �→ p always lies above that of the
function (4.5) above. Thus

xj ≥ Sλ/τ

(
xj − [∇f(x)]j

τ

)
(4.6)

for all values of τ > 0.
Case 2: 0 ∈ [[∇f(x)]j − λ, [∇f(x)]j + λ]. This case is illustrated in Figure 4.2. It is

clear from the figure that, for τ > 0, we have xj ≥ Sλ/τ

(
xj − [∇f(x)]j

τ

)
iff

xj ≥ 0. Just as in the previous case, changing the value of τ does not alter the
relative ordering of the values attained by the function (4.5) and the identity
function. Thus (4.6) holds iff xj ≥ 0 irrespective of the value of τ > 0.

Case 3: [∇f(x)]j + λ < 0. As illustrated in Figure 4.3, in this case the graph of the
function (4.5) always lies below that of the identity function. Thus (4.6) will
not be satisfied for any value of τ , which makes this case vacuous.
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Fig. 4.1. Interval to the right of zero.

Fig. 4.2. Interval crossing zero.

Fig. 4.3. Interval to the left of zero.

Therefore, in all three cases, whether or not the inequality (4.6) holds is independent
of the value of τ > 0.

The second property is the monotonicity of a certain function of a single variable.
Lemma 4.4. If x is a supersolution (resp., subsolution), then for any j, the

function

τ �→ Sλ/τ

(
xj − [∇f(x)]j

τ

)

is monotonically nondecreasing (resp., nonincreasing) on (0,∞).
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Fig. 4.4. Interval to the right of zero.

Fig. 4.5. Interval crossing zero.

Proof. Let

h(τ) = Sλ/τ

(
xj − [∇f(x)]j

τ

)
.

We again look at the three disjoint cases for arbitrary τ1, τ2 ∈ (0,∞) with τ1 ≥ τ2.
Case 1: [∇f(x)]j − λ > 0. Note that both the hinge points in the graph of the

functions

p �→ Sλ/τi

(
p− [∇f(x)]j

τi

)
, i ∈ {1, 2},

will be positive (Figure 4.4). Further, we have

[∇f(x)]j − λ

τ1
≤ [∇f(x)]j − λ

τ2
,

[∇f(x)]j + λ

τ1
≤ [∇f(x)]j + λ

τ2
.

Thus, it is easy to see that h(τ1) is greater than h(τ2).
Case 2: 0 ∈ [[∇f(x)]j − λ, [∇f(x)]j + λ]. Since x needs to be a supersolution, we

only need to consider the subset of the domain when xj ≥ 0. We still have
[∇f(x)]j+λ

τ1
≤ [∇f(x)]j+λ

τ2
, and it is obvious from Figure 4.5 that h(τ1) ≥ h(τ2).

Case 3: [∇f(x)]j + λ < 0. Since x can never be a supersolution in this case as shown
in the proof of Lemma 4.3, this case is vacuous.

Thus, we have shown that h(τ1) ≥ h(τ2) in all three cases.
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5. Gradient descent. The next result says that, under Assumption 1, GD

generates iterates whose components decrease (resp., increase) monotonically when
started from a supersolution (resp., subsolution).

Proposition 5.1. Suppose Assumption 1 holds. If x(0) is a supersolution and{
x(k)

}
is the sequence of iterates generated by the GD algorithm, then for all k ≥ 0

(1) x(k+1) ≤ x(k), (2) x(k) is a supersolution.

If x(0) is a subsolution and
{
x(k)

}
is the sequence of iterates generated by the GD

algorithm, then for all k ≥ 0

(1) x(k+1) ≥ x(k), (2) x(k) is a subsolution.

Proof. We only prove the supersolution case. The proof for the subsolution case
is analogous. Consider the operator

TGD(x) := Sλ/L

(
x− ∇f(x)

L

)

given by (4.1). By the isotonicity assumption, TGD is an isotone operator. We will
prove by induction that TGD(x

(k)) ≤ x(k). This proves that x(k+1) ≤ x(k) since
x(k+1) = TGD(x

(k)). Using Lemma 4.3, the second claim follows by the definition of
the TGD operator.

The base case TGD(x
(0)) ≤ x(0) is true by Lemma 4.3 since x(0) is given to be a

supersolution. Now assume TGD(x(k)) ≤ x(k). Applying the isotone operator TGD on
both sides, we get TGD(TGD(x(k))) ≤ TGD(x

(k)). This is the same as TGD(x(k+1)) ≤
x(k+1) by the definition of x(k+1), which completes our inductive claim.

6. Cyclic coordinate descent. Now, we prove a result for CCD that is anal-
ogous to Proposition 5.1. However, this time a little more work is involved.

Proposition 6.1. Suppose Assumption 1 holds. If y(0) is a supersolution and{
y(k)

}
is the sequence of iterates generated by the CCD algorithm, then for all k ≥ 0

(1) y(k+1) ≤ y(k), (2) y(k) is a supersolution.

If y0 is a subsolution and
{
y(k)

}
is the sequence of iterates generated by the CCD

algorithm, then for all k ≥ 0

(1) y(k+1) ≥ y(k), (2) y(k) is a subsolution.

Proof. We will only give the proof for the supersolution case, as the proof for
the subsolution case is similar. We start with a supersolution y(0). We will prove the
following: if y(k) is a supersolution, then

(6.1) y(k+1) ≤ y(k) ,

(6.2) y(k+1) is a supersolution.

Then the lemma follows by induction on k. Let us make the induction assumption
that y(k) is a supersolution and try to prove (6.1) and (6.2). To prove these, we will
show that y(k,j) ≤ y(k) and y(k,j) is a supersolution by (a second or inner) induction
on j ∈ {0, 1, . . . , d}. This proves (6.1) and (6.2) for y(k+1) since y(k+1) = y(k,d).
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For the base case (j = 0) of the (inner) induction, note that y(k,0) ≤ y(k) is trivial
since the two vectors are equal. For the same reason, y(k,0) is a supersolution since
we have assumed y(k) to be a supersolution. Now assume y(k,j−1) ≤ y(k) and y(k,j−1)

is a supersolution for some j > 0. We want to show that y(k,j) ≤ y(k) and y(k,j) is a
supersolution.

Since y(k,j−1) and y(k,j) differ only in the jth coordinate, to show that y(k,j) ≤ y(k)

given y(k,j−1) ≤ y(k), it suffices to show that y(k,j) ≤ y(k,j−1), i.e.,

(6.3) y
(k,j)
j ≤ y

(k,j−1)
j = y

(k)
j .

Since y(k,j−1) ≤ y(k), applying the isotone operator I−∇f/L on both sides and taking
the jth coordinate gives

y
(k,j−1)
j − [∇f(y(k,j−1))]j

L
≤ y

(k)
j − [∇f(y(k))]j

L
.

Applying the scalar shrinkage operator on both sides gives

Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k)
j − [∇f(y(k))]j

L

)
≤ y

(k)
j .

The left-hand side is y
(k,j)
j by definition, while the second inequality follows because

y(k) is a supersolution. Thus, we have proved (6.3).
Now we prove that y(k,j) is a supersolution. Note that we have already shown

y(k,j) ≤ y(k,j−1). Applying the isotone operator I− ∇f
L on both sides gives

y
(k,j)
j − [∇f(y(k,j))]j

L
≤ y

(k,j−1)
j − [∇f(y(k,j−1))]j

L
,(6.4)

∀i = j, y
(k,j)
i − [∇f(y(k,j))]i

L
≤ y

(k,j−1)
i − [∇f(y(k,j−1))]i

L
.(6.5)

Applying a scalar shrinkage on both sides of (6.4) and noting that the right-hand side

is y
(k,j)
j by definition, we have

(6.6) Sλ/L

(
y
(k,j)
j − [∇f(y(k,j))]j

L

)
≤ y

(k,j)
j .

For i = j, we have

y
(k,j)
i = y

(k,j−1)
i ≥ Sλ/L

(
y
(k,j−1)
i − [∇f(y(k,j−1))]i

L

)

≥ Sλ/L

(
y
(k,j)
i − [∇f(y(k,j))]i

L

)
.(6.7)

The first inequality above is true because y(k,j−1) is a supersolution (by the induction
assumption and Lemma 4.3). The second follows from (6.5) by applying a scalar
shrinkage on both sides. Combining (6.6) and (6.7), we get

y(k,j) ≥ Sλ/L

(
y(k,j) − ∇f(y

(k,j))

L

)
,

which proves that y(k,j) is a supersolution.
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6.1. Comparison theorem: GD versus CCD. As mentioned below, our
strategy for deriving rates for CCD (and CCM) is via a comparison with GD. The
result below establishes a comparison theorem for GD versus CCD.

Theorem 6.2. Suppose Assumption 1 holds and
{
x(k)

}
and

{
y(k)

}
are the se-

quences of iterates generated by the GD and CCD algorithms, respectively, when
started from the same supersolution x(0) = y(0). Then for all k ≥ 0

y(k) ≤ x(k) .

On the other hand, if they are started from the same subsolution x(0) = y(0), then the
sequences satisfy, for all k ≥ 0,

y(k) ≥ x(k) .

Proof. We will prove Theorem 6.2 only for the supersolution case by induction
on k. The base case is trivial since y(0) = x(0). Now we assume y(k) ≤ x(k) and will
prove y(k+1) ≤ x(k+1). Fix a j ∈ [d]. Note that we have

y
(k+1)
j = y

(k,j)
j = Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
.

By Proposition 6.1, y(k,j−1) ≤ y(k). Applying the isotone operator Sλ/L ◦ (I−∇f/L)
on both sides and taking the jth coordinate gives

Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k)
j − [∇f(y(k))]j

L

)
.

Combining this with the previous equation gives

(6.8) y
(k+1)
j ≤ Sλ/L

(
y
(k)
j − [∇f(y(k))]j

L

)
.

Since y(k) ≤ x(k) by the induction hypothesis, applying the isotone operator Sλ/L ◦
(I−∇f/L) on both sides and taking the jth coordinate gives

Sλ/L

(
y
(k)
j − [∇f(y(k))]j

L

)
≤ Sλ/L

(
x
(k)
j −

[∇f(x(k))]j
L

)
.

By definition,

(6.9) x
(k+1)
j = Sλ/L

(
x
(k)
j − [∇f(x(k))]j

L

)
.

Combining this with the previous inequality and (6.8) gives

y
(k+1)
j ≤ x

(k+1)
j .

Since j was arbitrary this means y(k+1) ≤ x(k+1), and the proof is complete.
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7. Cyclic coordinate minimization. SinceCCMminimizes a one-dimensional
restriction of the function F , let us define some notation for this subsection. Let

f|j(α;x) := f(x1, . . . , xj−1, α, xj+1, . . . , xd),

F|j(α;x) := F (x1, . . . , xj−1, α, xj+1, . . . , xd) .

With this notation, CCM update can be written as

z
(k,j)
j = argmin

α
F|j(α; z(k,j−1)),(7.1)

∀i = j, z
(k,j)
i = z

(k,j−1)
i .

In order to avoid dealing with infinities in our analysis, we want to ensure that the
minimum in (7.1) above is attained at a finite real number. This leads to the following
assumption.

Assumption 2. For any x ∈ R
d and any j ∈ [d], the one-variable function f|j(α;x)

(and hence F|j(α;x)) is strictly convex.
This is a pretty mild assumption—considerably weaker than assuming, for in-

stance, that the function f itself is strictly convex. For example, when f is quadratic
as in (1.4), then the above assumption is equivalent to saying that the diagonal entries
Aj,j of the positive semidefinite matrix A are all strictly positive. This is much weaker
than saying that f is strictly convex (which would mean A is invertible).

The next lemma shows that the CCM update can be represented in a way that
makes it quite similar to the CCD update.

Lemma 7.1. Fix k ≥ 0, j ∈ [d] and consider the CCM update (7.1). Let g(α) =

f|j(α; z(k,j−1)). If the update is nontrivial, i.e., z
(k,j)
j = z

(k,j−1)
j , it can be written as

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j −

[∇f(z(k,j−1))
]
j

τ

)

for

(7.2) τ =
g′(z(k,j)j )− g′(z(k,j−1)

j )

z
(k,j)
j − z

(k,j−1))
j

.

Furthermore, under Assumption 2 we have 0 < τ ≤ L.
Proof. Since g(α) = f|i(α; z(k,j−1)) we have

g′(α) =
[
∇f(z(k,j−1)

1 , . . . , z
(k,j−1)
j−1 , α, z

(k,j−1)
j+1 , . . . z

(k,j−1)
d )

]
j
.

Therefore,

g′(z(k,j−1)
j ) = [∇f(z(k,j−1))]j .(7.3)

Since, by definition, z
(k,j)
j is the minimizer of g(α) + λ|α|, we have

0 ∈ g′(z(k,j)j ) + λ sign(z
(k,j)
j ) .
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For notational convenience we denote z
(k,j)
j as α�, since it is the minimizer of g(α) +

λ|α|. With this notation we have

(7.4) τ =
g′(α�)− g′(z(k,j−1)

j )

α� − z
(k,j−1)
j

.

Note that τ is well defined since the denominator is nonzero by our assumption of a
nontrivial update. Further, τ > 0 by Assumption 2 and τ ≤ L since ∇f (and hence
g′(α)) is L-Lipschitz continuous.

Depending on the sign of α�, there are three possible cases.
Case 1: α� > 0. In this case, we have

g′(α�) + λ = 0 .(7.5)

By (7.4),

g′(α�) = g′(z(k,j−1)
j ) + τ(α� − z

(k,j−1)
j ) .

Plugging this into (7.5), we get

g′(z(k,j−1)
j ) + τ(α� − z

(k,j−1)
j ) + λ = 0 .

Using the definition of shrinkage operator (2.5) combined with the fact that
α� > 0, we have

α� = z
(k,j−1)
j − 1

τ
g′(z(k,j−1)

j )− λ

τ
= Sλ/τ

(
z
(k,j−1)
j − g′(z(k)j )

τ

)
.

Case 2: α� = 0. The corresponding condition is

0 ∈ [g′(α�)− λ, g′(α�) + λ] .

Again using (7.4) and the fact that α� − 0, we have

g′(α�) = g′(z(k,j−1)
j ) + τ(α� − z

(k,j−1)
j ) = g′(z(k,j−1)

j )− τ(z
(k,j−1)
j ) .

This can equivalently be written as

α� = 0 ∈
[
g′(z(k,j−1)

j )

τ
− z

(k,j−1)
j − λ

τ
,
g′(z(k,j−1)

j )

τ
− z

(k,j−1)
j +

λ

τ

]

or as

α� = 0 = Sλ/τ

(
z
(k,j−1)
j − g′(z(k,j−1)

j )

τ

)
,

where the last step follows from the definition of the shrinkage operator (2.5).
Case 3: α� < 0. In this case, we have

g′(α�)− λ = 0 .
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Using (7.4) to substitute for g′(α�) as in the previous cases, we have

g′(z(k,j−1)
j ) + τ(α� − z

(k,j−1)
j )− λ = 0,

which yields

α� = z
(k,j−1)
j − 1

τ
g′(z(k,j−1)

j ) +
λ

τ

= Sλ/τ

(
z
(k,j−1)
j − g′(z(k,j−1)

j )

τ

)
,

where the last inequality follows because α� < 0.
Now, using (7.3), we see that

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j −

[∇f(z(k,j−1))
]
j

τ

)

holds in all three cases.
We point out that this lemma is useful only for the analysis of CCM and not for

its implementation (as τ depends recursively on z
(k,j)
j ) except in an important special

case. In the quadratic example (1.4), g(α) is a one-dimensional quadratic function.

In this case τ does not depend on z
(k,j)
j and is simply Aj,j . This leads to an efficient

implementation of CCM for quadratic f .
We are now equipped with everything to prove the following result about the

behavior of the CCM iterates.
Proposition 7.2. Suppose Assumptions 1 and 2 hold. If z0 is a supersolution

and
{
z(k)

}
is the sequence of iterates generated by the CCM algorithm, then for all

k ≥ 0

(1) z(k+1) ≤ z(k), (2) z(k) is a supersolution.

If z0 is a subsolution and
{
z(k)

}
is the sequence of iterates generated by the CCD

algorithm, then for all k ≥ 0

(1) z(k+1) ≥ z(k), (2) z(k) is a subsolution.

Proof. See Appendix A.

7.1. Comparison theorem: CCD versus CCM. We already have a compar-
ison theorem comparing GD with CCD (Theorem 6.2). Now, we provide a result for
CCD versus CCM.

Theorem 7.3. Suppose Assumptions 1 and 2 hold and
{
y(k)

}
and

{
z(k)

}
are the

sequences of iterates generated by the CCD and CCM algorithms, respectively, when
started from the same supersolution y(0) = z(0). Then for all k ≥ 0

z(k) ≤ y(k) .

On the other hand, if they are started from the same subsolution y(0) = z(0), then the
sequences satisfy, for all k ≥ 0,

z(k) ≥ y(k) .

Proof. See Appendix B.
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8. Convergence rates. Our results so far have provided inequalities compar-
ing the iterates generated by the three algorithms. We finally want to compare the
objective function values obtained by these iterates. To do this, the next lemma is
useful.

Lemma 8.1. If y is a supersolution and y ≤ x, then F (y) ≤ F (x).
Proof. Since F is convex, we have

F (y)− F (x) ≤ 〈∇f(y) + λρ, y − x〉(8.1)

for any ρ ∈ ∂‖y‖1. We have assumed that y ≤ x. Thus in order to prove F (y)−F (x) ≤
0, it suffices to show that

∀i ∈ [d], ∃ρi ∈ sign(yi) s.t. γi + λρi ≥ 0 ,(8.2)

where, for convenience, we denote the gradient∇f(y) by γ. Since y is a supersolution,
Lemma 4.3 gives

∀i ∈ [d], yi ≥ Sλ/L

(
yi − γi

L

)
.(8.3)

For any i ∈ [d], there are three mutually exclusive and exhaustive cases.
Case 1: yi >

γi+λ
L . Plugging this value into (8.3) and using the definition of scalar

shrinkage (2.5), we get

yi ≥ yi − γi + λ

L
,

which gives γi + λ ≥ 0 and hence yi > 0. Thus, we can choose ρi = 1 ∈
sign(yi), and we indeed have γi + λρi ≥ 0.

Case 2: yi ∈ [γi−λ
L , γi+λ

L ]. In this case, we have yi ≥ Sλ/L(yi − γi

L ) = 0. Thus,

γi + λ

L
≥ yi ≥ 0 .

Thus we can choose ρi = 1 ∈ sign(yi), and we have γi + λρi ≥ 0.
Case 3: yi <

γi−λ
L . Plugging this value into (8.3) and using the definition of scalar

shrinkage (2.5), we get

yi ≥ yi − γi − λ

L
,

which gives γi−λ ≥ 0. Now if yi ≤ 0, we can set ρ = −1 ∈ sign(yi) and have
γi+λρi ≥ 0. On the other hand, if yi > 0, we need to choose ρi = 1, and thus
γi + λ ≥ 0 should hold if (8.2) is to be true. However, we know γi − λ ≥ 0,
and λ ≥ 0, so γi + λ ≥ 0 is also true.

Thus, in all three cases, there is a ρi ∈ sign(yi) such that (8.2) is true.
There is a similar lemma for subsolutions whose proof, being similar to the proof

above, has been omitted.
Lemma 8.2. If y is a subsolution and y ≥ x, then F (y) ≤ F (x).
If we start from a supersolution, the iterates for CCD and CCM always maintain

the supersolution property. Thus, Lemma 8.1 ensures that starting from the same
initial iterate, the function values of the CCD and CCM iterates always remain less
than the function values of the corresponding GD iterates. Since the GD algorithm
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has O(1/k) accuracy guarantees according to Theorem 3.1, the same rates must hold
true for CCD and CCM. This is formalized in the following theorem.

Theorem 8.3. Starting from the same super- or subsolution x(0) = y(0) = z(0),
let
{
x(k)

}
,
{
y(k)

}
, and

{
z(k)

}
denote the GD, CCD, and CCM iterates, respectively.

Under Assumptions 1 and 2, for any minimizer x� of (1.2), and for all k ≥ 1,

F (z(k)) ≤ F (y(k)) ≤ F (x(k)) ≤ F (x�) +
L‖x� − x(0)‖2

2 k
.

Proof. The theorem follows immediately by combining the comparison theorems
(Theorems 6.2 and 7.3) and Lemmas 8.1 and 8.2 with the GD guarantee (Theo-
rem 3.1).

9. Numerical experiments. We perform a set of experiments to compare the
objective function values produced by gradient descent (GD), cyclic coordinate de-
scent (CCD), and a stochastic variant of coordinate descent (SCD) as described in
[21]. We run these algorithms on the lasso problem (1.3) with the purpose of numeri-
cally investigating the two intuitive claims that motivated this work: (i) CCD should
outperform GD, and (ii) the performance of CCD should be similar to that of SCD.

We generate the data in the same manner as described in section 5 of the work
of Friedman et al. [10]. In particular, we generated n × d matrices X by sampling
the n rows from a d-dimensional mean zero multivariate Gaussian distribution. The
pairwise correlation between any two of the d dimensions was set to be 0.3. The values
for n and d that we chose are given in Table 9.1. The observations were generated
using the linear model

y = Xx+ α · Z ,(9.1)

where x has rapidly decaying entries xj = (−1)j exp(−2(j − 1)/20) and Z is a multi-
variate Gaussian noise vector with zero mean and unit variance. The coefficient α is
chosen so that the signal-to-noise ratio (SNR) is 3.0.

Table 9.1

Sizes of the datasets used in the experiments.

Parameters Values
n 10 50 100
d 500 4000 10000

As in Algorithm 1, the step size at every iteration of GD is chosen to be 1/L,
where L is the Lipschitz continuity constant of the smooth part of the objective. For
the lasso objective (1.3), L becomes the spectral norm of the covariance matrix X�X .
However, for CCD and SCD, a larger step size still guarantees descent. We follow the
choice made by Shalev-Shwartz and Tewari [21] and set the step size for CCD and
SCD to be 1/L1, where L1 is the Lipschitz continuity constant of single-dimensional
derivatives of the smooth part of the objective (see section 10 for a formal definition).
For the lasso objective (1.3), L1 turns out to be the maximum diagonal element of
X�X .

We set the regularization parameter λ to be 0.1 and run 200 iterations of each
of the three algorithms to compare the lasso objectives produced by them. Since one
update of either CCD or SCD just updates a single coordinate of x, an “iteration”
is defined as d consecutive updates for both CCD and SCD.
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(a) n = 10, d = 500 (b) n = 10, d = 4000 (c) n = 10, d = 10000

(d) n = 50, d = 500 (e) n = 50, d = 4000 (f) n = 50, d = 10000

(g) n = 100, d = 500 (h) n = 100, d = 4000 (i) n = 100, d = 10000

Fig. 9.1. Plots showing logarithm of lasso objective values against number of iterations for
three algorithms: GD, CCD, and SCD. CCD performs better than GD and is comparable to SCD

across all values of n and d that we considered.

The objective values of the three algorithms over 200 iterations are shown in log
scale in Figure 9.1. It is interesting to note that we started from the same arbitrary
initial point x = 0 for all three algorithms. Clearly, this point is not necessarily
a supersolution (or subsolution) for the randomly generated data. Despite starting
from an arbitrary point, we observe that the objective values produced by CCD

are uniformly lower than the objective values obtained by running GD. Moreover,
SCD produces objective values comparable to those of CCD, but both of them are
significantly better than GD. This reinforces our belief that CCD should enjoy a
nonasymptotic convergence rate of O(1/k), similar to those enjoyed by GD and SCD,
regardless of the assumptions regarding isotonicity and starting from a super- or
subsolution. These assumptions are probably just artifacts of our proof technique,
whereas the experiments make us feel confident that nonasymptotic guarantees for
CCD should be possible under much more general conditions.
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10. Discussion. Recently, coordinate descent–based methods have seen a resur-
gence of popularity in the statistics, signal processing, and machine learning commu-
nities due to the simplicity and speed of the updates when dealing with large scale
and high-dimensional data. However, nonasymptotic convergence rates for various
types of coordinate descent methods are just beginning to be understood. We now
summarize a few recent papers that have shed new light on such convergence rates.
This will not only help us situate our work with respect to existing literature, but will
also indicate avenues for future work.

In the discussion below, “convergence rate” refers to a nonasymptotic one. Tseng
and Yun’s work [23] appears to be the first to provide convergence rates for coordinate
descent for solving smooth plus separable convex minimization problems. For their
convergence rate analysis, they consider minimization of a function F = f +P , where
f is smooth and convex and P is convex and separable. In fact, they additionally
assume that there are m linear equality constraints. So, the setting of this paper
would be the special case when m = 0 and P (x) = λ‖x‖1. Also, they analyze block
coordinate descent where more than one coordinate can be simultaneously selected
and updated. They call their selection rule the “Gauss–Southwell q-rule.” For vanilla
coordinate descent, i.e., when the block size is one, their accuracy guarantee (obtained
by combining Theorem 5.1 and Proposition 6.1 in [23]) after k iterations is

(10.1) O

(
dL1R

2
TY

k

)
,

where L1 = maxj∈[d] L1,j is the Lipschitz continuity constant for single-dimensional
derivatives of f . That is, whenever x and x′ agree in all coordinates except j, we have

f(x) ≤ f(x′) + 〈∇f(x′), x− x′〉+ L1,j

2
|xj − x′

j |2 .

Note that we always have L1 ≤ L, but L1 can be much smaller than L in some cases.
The constant RTY measures how far the starting point is from a minimizer x�:

RTY = max
{
‖x− x�‖ : F (x) ≤ F (x(0))

}
.

Shalev-Shwartz and Tewari [21] analyze stochastic coordinate descent (SCD),
a randomized version of coordinate descent where the selection of a coordinate is
made at random. Shalev-Shwartz and Tewari fix the probabilities to be uniform over
coordinates and show an expected accuracy bound of

(10.2) O

(
d(L1‖x� − x(0)‖2 + F (x(0)))

k

)

after k randomized selection steps. We note that only P = λ‖ · ‖1 is considered
in [21], but the proof techniques therein easily extend to any convex separable P .
Even though (10.1) and (10.2) look similar, it is important to remember that the
Gauss–Southwell q-rule typically takes O(d) time to implement. The O(1) implemen-
tation of the randomized rule was one of the main motivations for its consideration
in [21]. Another motivation behind Shalev-Shwartz and Tewari’s choice of uniform
probabilities was a justification for the good practical performance of CCD. The in-
tuitive (but, so far, not rigorously justified) reasoning behind this justification is that
the randomized rule should behave similarly to the cyclic rule.

Independently of [21], Nesterov [17] also analyzed randomized versions of coordi-
nate descent for solving smooth convex minimization problems. He considered blocks
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of arbitrary sizes and nonuniform probabilities for selecting a block at random. There
are several results in his paper, but the one most relevant to our discussion here is
his Theorem 1. Specializing to block size 1 and uniform probabilities, the rate in that
theorem becomes

(10.3) O

(
dR2

N

k

)
,

where

RN = max
{
‖x− x�‖[1] : F (x) ≤ F (x(0))

}
is defined using the norm

‖x‖[1] :=
√∑

j∈[d]

L1,j|xj |2 .

Note that we can always upper bound L1,j by L1, giving us rates comparable to (10.1)
and (10.2). But having a bound directly in terms on L1,j’s is quite useful if they vary
widely.

Richtárik and Takáč [19] provide a nice synthesis by simultaneously generaliz-
ing the results in both [21] and [17]. Like [21], their analysis applies to composite
nonsmooth functions of the form f + P where the nonsmooth part P is separable.
Moreover, they consider probabilities more general than the ones considered in [17].

We wish to alert the reader to the fact that, in the bounds (10.2) and (10.3), the
counter k refers to the number of randomized coordinate updates. On the other hand,
in Theorem 8.3, k refers to the number of iterations of CCD and CCM. Since we have
defined an iteration of CCD and CCM to consist of d coordinate updates, the reader
can now see why d appears in (10.2) and (10.3) but does not occur in Theorem 8.3.

With the growing interest in large scale data analysis, researchers have naturally
gotten interested in parallelization issues. Even though coordinate descent seems
inherently sequential, recent work by Bradley et al. [4] has shown that it can be
parallelized with linear speedups up to a problem-dependent constant. Their analysis
builds on that of Shalev-Shwartz and Tewari [21] and is also nonasymptotic.

Finally, we mention that several “greedy” versions of coordinate descent have
appeared in the literature. They all build on the idea of choosing a coordinate greedily
to optimize some myopic measure of “progress.” Some of these versions, such as the
one proposed in [13], have been analyzed from a nonasymptotic viewpoint [7, 20], while
others, such as the proposal in [25], still lack nonasymptotic convergence guarantees.

We conclude the paper by reiterating the major open problem concerning cyclic
coordinate descent that inspired this work. Through our comparative analysis of GD,
CCD, and CCM algorithms, we were able to provide the first known nonasymptotic
guarantees for the convergence rates of cyclic coordinate descent methods. However,
our results require that the algorithms start from a supersolution (or subsolution) so
that the property is maintained for all the subsequent iterates. We also require an
isotonicity assumption on the I−∇f/L operator. It is quite desirable to have a more
general analysis without any restrictive assumptions. Since stochastic coordinate de-
scent [17, 19, 21] converges at an O(1/k) rate as GD without additional assumptions,
intuition and the experiments in section 9 suggest that the same should be true for
CCD and CCM. Proving this rigorously remains an open problem.
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Appendices. Proofs. The two proofs given below were omitted from the main
body of the paper because they were similar to ones already presented.

Appendix A. Proof of Lemma 7.2. Again, we will only prove the supersolu-
tion case, as the subsolution case is analogous. We are given that z(0) is a supersolu-
tion. We will prove the following: if z(k) is a supersolution, then

z(k+1) ≤ z(k) ,(A.1)

z(k+1) is a supersolution.(A.2)

Then the lemma follows by induction on k. Let us assume that z(k) is a supersolution
and try to prove (A.1) and (A.2). To prove these we will show that z(k,j) ≤ z(k) and
z(k,j) is a supersolution by induction on j ∈ {0, 1, . . . , d}. This proves (A.1) and (A.2)
for z(k+1) since z(k+1) = z(k,d).

The base case (j = 0) of the induction is trivial because z(k,0) ≤ z(k) since the two
vectors are equal. For the same reason, z(k,0) is a supersolution since we have assumed
z(k) to be a supersolution. Now assume z(k,j−1) ≤ z(k) and z(k,j−1) is a supersolution
for some j > 0. We want to show that z(k,j) ≤ z(k) and z(k,j) is a supersolution. If
the update to z(k,j) was trivial, i.e., z(k,j−1) = z(k,j), then there is nothing to prove.
Therefore, for the remainder of the proof assume that the update is nontrivial (and
hence Lemma 7.1 applies).

Since z(k,j−1) and z(k,j) differ only in the jth coordinate, to show that z(k,j) ≤ z(k)

given that z(k,j−1) ≤ z(k), it suffices to show that z(k,j) ≤ z(k,j−1), i.e.,

(A.3) z
(k,j)
j ≤ z

(k,j−1)
j = z

(k)
j .

As in Lemma 7.1, let us denote f|j(α; z(k,j−1)) by g(α). The lemma gives us a τ ∈
(0, L] such that

(A.4) z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)
.

Since z(k,j−1) is a supersolution by the induction hypothesis and τ ≤ L, using
Lemma 4.4 we get

z
(k,j)
j ≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)

≤ Sλ/L

(
z
(k)
j − [∇f(z(k))]j

L

)
≤ z

(k)
j ,

where the second inequality above holds because z(k,j−1) ≤ z(k) by the induction
hypothesis and since Sλ/L ◦ (I−∇f/L) is an isotone operator. The third holds since

z(k) is a supersolution (coupled with Lemma 4.3). Thus, we have proved (A.3).
We now need to prove that z(k,j) is a supersolution. To this end, we first claim

that

(A.5) z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ
= z

(k,j)
j − [∇f(z(k,j))]j

τ
.
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This is true since

z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ
− z

(k,j)
j +

[∇f(z(k,j))]j
τ

= z
(k,j−1)
j − z

(k,j)
j − 1

τ
(g′(z(k,j−1)

j )− g′(z(k,j)j ))

= z
(k,j−1)
j − z

(k,j)
j − (z

(k,j−1)
j − z

(k,j)
j ) = 0 .

The first equality is true by definition of g and the second by (7.2). Now, applying
Sλ/τ to both sides of (A.5) and using (A.4), we get

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)

= Sλ/τ

(
z
(k,j)
j − [∇f(z(k,j))]j

τ

)
.(A.6)

For i = j, z
(k,j)
i = z

(k,j−1)
i and thus we have

z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ
− z

(k,j)
i +

[∇f(z(k,j))]j
τ

= − 1

τ

[
[∇f(z(k,j−1))]i − [∇f(z(k,j))]i

]
≥ 0 .

The last inequality holds because we have already shown that z(k,j−1) ≥ z(k,j), and
thus by isotonicity of I−∇f/L we have

[∇f(z(k,j−1))]i − [∇f(z(k,j))]i ≤ L(z
(k,j−1)
i − z

(k,j)
i ) = 0 .

Using the monotonic scalar shrinkage operator, we have

Sλ/τ

(
z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ

)
≥ Sλ/τ

(
z
(k,j)
i − [∇f(z(k,j))]i

τ

)
,

which, using the inductive hypothesis that z(k,j−1) is a supersolution, further yields

z
(k,j)
i = z

(k,j−1)
i ≥ Sλ/τ

(
z
(k,j−1)
i − [∇f(z(k,j−1))]i

τ

)

≥ Sλ/τ

(
z
(k,j)
i − [∇f(z(k,j))]i

τ

)
.(A.7)

Combining (A.6) and (A.7), we get

z(k,j) ≥ Sλ/τ

(
z(k,j) − ∇f(z

(k,j))

τ

)
,

which proves that z(k,j) is a supersolution.

Appendix B. Proof of Theorem 7.3. We will only prove the supersolution
case, as the subsolution case is analogous. Given that y(0) = z(0) is a supersolution,
we will prove the following: if z(k) ≤ y(k), then

(B.1) z(k+1) ≤ y(k+1) .
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Then the lemma follows by induction on k. Let us assume z(k) ≤ y(k) and try to
prove (B.1). To this end we will show that z(k,j) ≤ y(k,j) by induction on j ∈
{0, 1, . . . , d}. This implies (B.1) since z(k+1) = z(k,d) and y(k+1) = y(k,d).

The base case (j = 0) is true by the given condition in the lemma since z(k,0) =
z(k) as well as y(k,0) = y(k). Now, assume z(k,j−1) ≤ y(k,j−1) for some j > 0. We want
to show that z(k,j) ≤ y(k,j).

Since z(k,j−1), z(k,j) and y(k,j−1), y(k,j) differ only in the jth coordinate, to show
that z(k,j) ≤ y(k,j) given that z(k,j−1) ≤ y(k,j−1), it suffices to show that

(B.2) z
(k,j)
j ≤ y

(k,j)
j .

If the update to z(k,j) is nontrivial, then using Lemma 7.1, there is a τ ∈ (0, L], such
that

z
(k,j)
j = Sλ/τ

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

τ

)

≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
,(B.3)

where the last inequality holds because of Lemma 4.4 and the fact that z(k,j−1) is a

supersolution (Proposition 7.2). If the update is trivial, i.e., z
(k,j)
j = z

(k,j−1)
j , then

using (7.1) and (4.2) we have

0 ∈ [∇f(z(k,j))]j + λ sign(z
(k,j)
j ),

which coupled with (4.3) gives

z
(k,j)
j = Sλ/L

(
z
(k,j)
j − [∇f(z(k,j))]j

L

)
≤ Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
,

where the last inequality is obtained by applying the isotone operator Sλ/L◦(I−∇f/L)
to the inequality z(k,j) ≤ z(k,j−1), which holds by Proposition 7.2. Thus (B.3) holds
irrespective of the triviality of the update.

Now applying the same isotone operator to the inequality z(k,j−1) ≤ y(k,j−1) and
taking the jth coordinate gives

Sλ/L

(
z
(k,j−1)
j − [∇f(z(k,j−1))]j

L

)
≤ Sλ/L

(
y
(k,j−1)
j − [∇f(y(k,j−1))]j

L

)
.

The right-hand side above is, by definition, y
(k,j)
j . So, combining the above with (B.3)

gives (B.2) and proves our inductive claim.
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