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A simple morphological model is considered which describes the interaction between 
a unidirectional flow and an erodible bed in a straight channel. For sufficiently large 
values of the width-depth ratio of the channel the basic state, i.e. a uniform current 
over a flat bottom, is unstable. At near-critical conditions growing perturbations are 
confined to a narrow spectrum and the bed profile has an alternate bar structure 
propagating in the downstream direction. The timescale associated with the amplitude 
growth is large compared to the characteristic period of the bars. Based on these 
observations a weakly nonlinear analysis is presented which results in a Ginzburg- 
Landau equation. It describes the nonlinear evolution of the envelope amplitude 
of the group of marginally unstable alternate bars. Asymptotic results of its coefficients 
are presented as perturbation series in the small drag coefficient of the channel. In 
contrast to the Landau equation, described by Colombini et al. (1987), this amplitude 
equation also allows for spatial modulations due to the dispersive properties of the 
wave packet. It is demonstrated rigorously that the periodic bar pattern can become 
unstable through this effect, provided the bed is dune covered, and for realistic values 
of the other physical parameters. Otherwise, it is found that the periodic bar pattern 
found by Colombini et al. (1987) is stable. Assuming periodic behaviour of the 
envelope wave in a frame moving with the group velocity, simulations of the dynamics 
of the Ginzburg-Landau equation using spectral models are carried out, and it is 
shown that quasi-periodic behaviour of the bar pattern appears. 

1. Introduction 

The bed of most natural rivers consists of material which may be transported by 
currents. The interactions between river flow and the erodible boundaries result in the 
formation of morphological features such as bars, bends and meanders. Observations 
indicate that bars often occur as a series of propagating waves in the downstream 
direction with an alternating transversal amplitude structure. Typical wavelengths are 
of the order of the river width, the waves travel several metres each day and their 
amplitudes are approximately 80 O h  of the undisturbed water depth. On the other hand 
river meanders have much larger characteristic scales than the bars. A better 
understanding of the behaviour of these phenomena is of interest, both from a practical 
and theoretical point of view. 

In general the dynamics of morphological systems is rather complicated due to the 
strong feedback between currents and the various bedforms. Therefore, it becomes 
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worthwhile to consider simplified models in which a particular phenomenon may be 
investigated in isolation. The motivation is that these problems are more easy to deal 
with, but also yield information on the fundamental physical mechanisms. In many of 
such studies, including the present one, it is assumed that only the bottom is erodible 
and the river is modelled as an infinitely long straight channel. This eliminates the 
process of free river meandering, which is believed to be a secondary response on the 
formation of bars on the bottom or which may be generated by forcing mechanisms 
(Blondeaux & Seminara 1985; Crosato 1989). 

The early studies on the dynamics of river bars were based on a linear instability 
theory, see Callander (1969), Engelund & Skovgaard (1973), Parker (1976), Freds~re 
(1978,) Olesen (1983). They investigated the behaviour of small perturbations on a 
basic state describing a uniform current over a flat bottom. The result was a selection 
of the most unstable wavelength, for which alternate bars start to develop, if the width- 
to-depth ratio becomes sufficiently large. These theories, however, describe the initial 
stage of the evolution of the bars. If the amplitude becomes finite the linear theory is 
no longer valid because nonlinear terms become important. 

The nonlinear evolution of bars was investigated by Colombini, Seminara & Tubino 
(1987) and Fukuoka (1989). They applied a weakly nonlinear theory for perturbations 
which grow on a timescale which is large compared to the typical period of the waves. 
The result of their two-timescale analysis was a so-called Landau equation describing 
the time evolution of the wave amplitude. It was demonstrated that all non-transient 
solutions of this equation are periodic and represent a finite-amplitude periodic 
alternate bar pattern. They only considered the case where the wavenumber is fixed in 
the neighbourhood of the critical wavenumber for which instability first occurs. This 
choice is disputable since in fact all waves in a narrow spectrum, centred around the 
critical wavenumber, are unstable. Owing to the dispersion of this wave group, 
modulations will also occur on a spatial scale. If this effect is included in the weakly 
nonlinear theory, a modified amplitude equation is found which is called the 
Ginzburg-Landau equation. Since the group velocity varies with the wavenumber we 
may expect this equation to describe local convergence and divergence of the 
perturbation energy, which may cause the periodic solutions obtained from the Landau 
theory to become unstable (Lighthill 1978). As a result bar patterns with a more 
complex temporal and spatial behaviour may be expected. Furthermore, it is possible 
to determine the stability of its solutions against general perturbations (in contrast to 
the Landau theory, where one can only study the stability of periodic solutions against 
perturbations with exactly the same wavenumber). The Ginzburg-Landau theory is 
therefore an essential extension of the Landau theory. and the aim of the present paper 
is to investigate the possible modified behaviour of bar patterns as described by the 
Ginzburg-Landau equation. 

The Ginzburg-Landau equation has been derived for many physical systems such as 
Rayleigh-Benard convection (Newel1 & Whitehead 1969), Poiseuille flow (Stewartson 
& Stuart 1971), or more recently, wind-driven water waves (Blennerhasset 1980), 
chemical processes (Kuramota 1984), binary fluid convection (Schopf & Zimmerman 
1989) etc. For morphological systems it has, to our knowledge, not yet been derived. 
Therefore in this paper a derivation of the Ginzburg-Landau equation will be 
presented for a simple morphological model and the behaviour of its solutions will be 
studied. The basic model, introduced in 5 2, describes the interaction between currents, 
forced by the inclination of a straight channel with fixed banks, and an erodible 
bottom. The sediment is assumed to be uniform and non-cohesive and is transported 
as bedload. The model has a basic state corresponding to a uniform flow over a flat 
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bottom. From the linear stability analysis of $3, a minimum width-to-depth ratio of the 
channel is obtained at which the basic state becomes unstable. This yields a critical 
wavenumber of the bed form perturbation which first starts to grow. For slightly larger 
values of the width-to-depth ratio a weakly nonlinear theory will be applied in $4 which 
results in the Ginzburg-Landau equation. This equation describes the nonlinear 
dynamics of the envelope amplitude of a packet of marginally unstable free bars, and 
the coefficients are presented in terms of the original morphological parameters, which 
are the friction coefficient, width-to-depth ratio and the sediment transport coefficients. 
In $ 5 solutions of the Ginzburg-Landau equation and the corresponding bed profiles 
are discussed. The analysis of the mathematical properties of the Ginzburg-Landau 
equation has been the subject of many papers. Results of Keefe (1985), Doering et al. 
(1988) and Doelman (1989, 1991) demonstrate the possibility of periodic, quasi- 
periodic and chaotic solutions. However, for the present morphological model a less 
rich behaviour is found for realistic choices of the parameters. It will be demonstrated 
that the periodic alternate bar pattern, obtained by Colombini et al. (1987) using 
Landau theory, can be unstable when the bed is dune covered. The subsequent 
dynamical behaviour is investigated by using a spectral model of the Ginzburg-Landau 
equation. The results show that quasi-periodic bar patterns are found instead. A 
discussion of these results and some conclusions are presented in the final section. 

We would like to emphasize that the main purpose of this paper is the derivation and 
the analysis of the modulation equation. To simplify our presentation we have 
considered a model for the process of river bed evolution which only has the most 
essential features necessary to describe the main characteristics of this process. 
Therefore, we did not consider important effects in our model such as the variation of 
the drag coefficient (Einstein 1950; Colombini et al. 1987), the variation of the bed 
slope coefficient (Sekine & Parker 1992), the effect of secondary currents (Rozovskij 
1957) etc. This probably means that the predictions based on our analysis will only give 
crude indications of what happens in nature. However, comparisons with earlier 
studies on the linear and nonlinear analysis have been made and our results were found 
to be in good agreement with these studies. Furthermore, our model problem can be 
extended to a more realistic model which can be studied by exactly the same 
techniques. We based our analysis on the simple model to minimize the amount of 
mathematical computations and to facilitate the presentation. The (weakly) nonlinear 
pattern formation in a realistic model will also be governed by the same modulation 
equation (only the coefficients will be in a different range). This modulation equation 
is the most general tool in nonlinear stability theory: by its mathematical nature it 
governs all possible pattern generating processes (Newell 1974). We therefore 
emphasize in this paper the structure which is present in morphological processes, a 
structure which enables us to analyse and predict patterns of a non-periodic (or even 
chaotic) kind. 

2. The model 

We consider a depth-averaged shallow water flow in a straight, infinitely long 
channel, having a uniform (mild) slope, which we denote by i,, 4 1. Further, we 
consider the banks to be non-erodible, whereas the bottom consists of non-cohesive 
sediment, which we assume to be transported as bedload. A situation sketch is 
presented in figure 1. It is clear that for using a depth-averaged model the channel 
width should be much larger than the undisturbed water depth. This also motivates the 
neglect of horizontal diffusion of momentum, since this effect is confined to thin 
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FIGURE 1. Sketch of the physical situation studied. 

boundary layers along the sidewalls which are not of interest for the present analysis. 
Furthermore, it can be demonstrated a posteriori that the effect of flow separation, 
caused by the resulting bedforms, may be ignored. This implies that the bar amplitudes 
should be much smaller than their characteristic horizontal scales. This appears to be 
the case for the present features, as was already found by Colombini et al. (1987). 

The equations of motion then become 

F + ( U . V )  usgvc = 9, 
at 

-+v.s = 0. (2.3) 
at 

As shown in figure 1, we use an orthogonal coordinate system, where we assume that 
the a-direction coincides with the streamwise direction. In (2.1)-(2.3) U = (u, u) is the 
depth-averaged velocity in the x- and y-directions, c is the elevation of the disturbed 
free surface with respect to the undisturbed water depth h,, and z,, is the disturbed bed 
level with respect to the undisturbed water depth. The nabla-operator is defined as 

The vector F represents the forcing and friction mechanisms, which we model as 
v = ( a p ,  alayy). 

Note that this means that we model the bottom stress in the direction of the depth- 
averaged velocity. 

In (2.1)-(2.4), C = g /C; ,  the drag coefficient, where g is acceleration due to gravity 
and C ,  is the ChCzy coefficient. We assume that the bottom evolution only depends on 
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the local flow parameters. The volumetric sediment flux S,  with components S,  and S,  
in the x- and y-directions respectively, is modelled as 

for some b > 0 and y >  0; c depends on the bed porosity and on the sediment 
properties. Note that b > 3 corresponds to a dune-covered bed. Many transport 
formulae are of this type, see the review in van Rijn (1989). Note that we omit the effect 
of secondary flow on the direction of the sediment transport. It is noted by Parker & 
Johannesson (1989) that in the case of a straight channel this is a secondary effect 
which may be neglected. Since our aim is to consider a simple conceptual model, which 
only contains the essential physical mechanisms responsible for morphological 
instabilities, we take constant values for the parameters b, C and y.  In fact, accurate 
values for b are unknown and typical choices range between 2 and 7, see the review by 
van Rijn (1989). A physically more realistic choice for the drag coefficient would be the 
parameterization suggested by Einstein (1950) ; however, we consider the variation on 
the local water depth to be a higher-order effect. Finally, a constant y corresponds to 
the simple expressions derived by Bagnold (1956) and Engelund (1974), in which it 
represents the inverse of the dynamic coefficient of Coulomb friction. More general 
expressions for y ,  including dependence on the bottom stress, are discussed by Sekine 
& Parker (1992). We have taken y of order 1 throughout our analysis. 

We close the model by the following boundary conditions : 

v = 0, S,  = 0 on r, (2.6) 

where we denote by r the walls, i.e. y = 0 and y = y*. These boundary conditions 
represent the assumption that the walls are impermeable for water as well as sediment. 
From (2.5) and (2.6) it easily follows that azb/i3y = 0 on r. 

Note that the model allows for a steady uniform flow in the downslope direction, the 
magnitude of which is determined by a balance between forcing and dissipation (see 
(2.4)). If we denote the corresponding variables with an asterisk, it follows that 

u i  = i,gh,/C, V* = 0, 6,  = 0, zb* = 0. (2.7) 

The next step in the analysis is to make the variables dimensionless. This is done in 
the following way : we substitute 

u= ( U , V )  = u* 0; Zb = 12*2,; x= (x,y) = y * ( X ) , )  

The scaling for l; is motivated by the fact that the pressure force tends to zero if u* tends 
to zero, independent of the value for C. Thus there must be a balance between the 
advection terms and the pressure gradient. The scaling for the time means that we scale 
with the morphological timescale. This should be clear since we are interested in 
bedform instabilities which occur on this timescale. 

Substitution of (2.7) in (2.1)-(2.3) yields the following model for the scaled quantities 
(hats are dropped for convenience) : 

au au  au  al; 

at ax ay ax 
K - + u - + u - + - = - C R  
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Here 

(2.10) 

(2.1 1) 

az, as, as -+-+> = 0. 
at ax ay 

(2.12) 

(2.13) 

and R = y*/h,, F = u*/(gh,)t, K = Y*/u* T, (2.14) 

which are the width-to-depth ratio of the channel, the Froude number and the ratio of 
the timescale of flow adaption and the morphological timescale, respectively. 

We shall now simplify the model (2.9)-(2.12) by applying two approximations. First 
it is observed that the flow responds to a change in the bottom by generating travelling 
gravity waves. This adjustment process is controlled by dissipation, the characteristic 
timescale of which is assumed to be larger than (or of the same order as) the advective 
timescale y,/u,, but small compared to the morphological timescale T. This implies 
that K in (2.9)-(2.12) is very small. We may therefore omit the time derivatives in the 
flow equations, which means that the flow instantaneously adapts to the evolution of 
the bed (quasi-stationary approach). 

The second approximation is related to the observation that many river flows have 
a small Froude number. Thus we shall neglect in (2.9)-(2.12) all terms containing the 
parameter F, which means that we apply the rigid-lid approximation. An additional 
motivation for this step follows from the results of the linear theory to be discussed in 
the next section. It appears that in the limit F-+ 0 the calculations simplify considerably 
whereas essential physical mechanisms determining bed form instabilities are still 
included. On the other hand it implies that the possible applicability of our model to 
laboratory experiments, where Froude numbers are often of order 1 or larger, is 
limited. 

The above considerations lead to the following model, which we shall use as starting 
point for the subsequent analysis : 

a a 
-{u(l -zb)}+-{u(l -z,)} = 0, 
ax aY 

az, as, as 
-+-+d = 0, 
at  ax ay 

with R, S, and S, as in (2.13)-(2.14). 
It is readily observed that a basic state of the scaled model is given by 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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0 

(7 _- 
ax 

3. Linear theory 

In this section we study the linear stability of the basic state q5,) = (u0. r,,,  <,). 

defined in (2.19). Although this kind of analysis is quite standard we shall present 
results in some detail, since the nonlinear theory, developed in 54, is based on the linear 
analysis. We study the stability of the basic state by considering the evolution of small 
perturbations. Thus we substitute in (2.15)-(2.18) 

4 = (u, u, 5, Zb) = 4 0  + 4' (3.1) 

and neglect nonlinear terms to find four linear partial differential equations. The) may 
be symbolically written as 

where the elements of the 4 x 4 matrix L contain known partial derivatives with respect 

L4' = 0, (3.2) 

a a 
ax O n X  
-+2CR 

a c? 
-+CR - 
ax aY 

- 
a 
ax aY 

a 
b- 

ax aY at  

- 

a a 
0 -- - 

i .  (3.3) 

The channel geometry allows for travelling wave solutions in the .\--diicctioii \\ i t h  

unknown lateral structure. Thus we substitute in (3.2) 

(3.4) 

where k is a real-valued wavenumber, w the complex frequency, C.C. denotes complex 
conjugate and f(y) represents the amplitudes. We reduce the four equations to one 
equation for ih by Gauss elimination, resulting in a fourth-order differential equation 

+/ = f( y) elk.c+ot +c.c. with f(y) = (zi(y), f i (y) ,  & y ) ,  j IS j3 ) ) .  

with boundary conditions di,/dy = d3i,/dy3 = 0 on r (i.e. for y = 0,  y = 1). 
In (3.5) 

b, = - (y/R) (ik + 2CR), 

6, = 2ik3(y/R) + k2( - 1 + 3Cy) + ikCR(3 - b), 

b, = - ik5(y/R) + k4( - Cy + 6) - ik'CRb, 

a, = 2RC+ ik, a, = - ik3 - k2CR. 

Equation (3.5) is an eigenvalue problem which admits solutions of the form 
ib(y) = ep". Substitution of this expression in (3.5) gives 

an equation which is quadratic in p, with roots p:,,ui. The solution of (3.5) then reads: 

p46, +p2(wa, + 6,) + (@a, + b,) = 0 ,  (3.6) 

ih(y) = A,e/'i"+A,ep/j~Y+A, .3 e/'2"+A e-/'zY 

and applying the boundary conditions yields the eigenfunctions 

where A is an arbitrary amplitude. Thus in (3.5) the eigenvalues should have the value 

i b ( y )  = A c o s ( ~ E ~ ) ,  p = 1,2, ..., ( 3 . 7 )  
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FIGURE 2.  Neutral curve for the parameter values b = 5,  C = 0.007 and y = 1, thus S = 0.0017 
(8 is defined in (3.1 1)). 

prci. Then by back substitution into the four algebraic equations relating the amplitudes 
of the perturbation we recover for the vector f(y) the following: 

with 

- (k2 y / R +  ik+ w + n2 y / R )  %(a, - 1) (ik + CR) %. (3.8) 
01, = > av=- 2 a< = 

(b-l)ik XP ZP 

Hence, the lateral structure of the wave solution is now known and can be denoted with 
4' = AGE where E = eikX+(Ot. 

Finally, the frequency w is related to the wavenumber k by a dispersion relation, as 
f n l l n w c  frnm 11 61. 
- V A L -  I." .."LA. \d.",. 

p4rc4b, -p2rc2b2 + b, 
w =  

p2n2a2 -a, 
(3.9) 

It is obvious from (3.4) that the stability of the basic state is determined by the real part 
of w. If the real part w, of w is smaller than 0, perturbations of the kind (3.4) decay 
exponentially in time, i.e. the basic state is stable. Accordingly, if w, is greater than 
zero, we are dealing with exponentially growing solutions, i.e. an unstable basic state. 
Hence, w, = 0, the so-called neutral curve, is a separatrix between the exponentially 
growing and decaying solutions of the linear problem. Using (3.9) we derive a formula 
describing the neutral curve : 

~~ (2 in\ 
-x(x+ 113 

1 -  

with 

'I - S(X+T)(X+2)2-X(2X+ 1)' 
[J.LWJ 

(3.11) 
p-It- p-R- P 

In figure 2 we have plotted the neutral curve for a fixed value of S which lies in the 
physically interesting area. We observe that for a width-to-depth ratio R smaller than 
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a certain critical value R,, all perturbations decay exponentially. For R > R, a range 
of linear waves have positive growth rate (w,  > 0) and consequently the basic state is 
unstable. We expect interesting behaviour of the perturbations if R passes through R,, 
i.e. when the basic state looses its stability properties. It turns out that varying R is a 
good starting point for studying the dynamics of our underlying system. 

Let us finally make a more detailed observation about the position of the minima of 
the neutral curves as a function of p. If we denote by (k,(p), R,(p)) the minimum as 
function of p ,  it is clear from (3.10) that 

(kc(P), R,(P)) = P(k(1L Rc(l)). 

This means that increasing p leads to a higher minimum of the neutral curve and a 
larger critical wavenumber. Thus, the ( p  = 1)-mode (the situation of alternate bars) is 
the first mode that becomes unstable. Therefore, we may restrict our attention on the 
casep = 1. 

From now on a subscript ‘c’ means the evaluation of operators and functions at 

critical conditions, i.e. at k = k,, R = Re. So for instance, @, = @lx=c,  The linear 

solution of the problem at critical conditions then reads 
R-R,’ 

Q l L  = 4: = A@P,E,,  (3.12) 

where @ follows from (3.8) and E, = eikCzfwct . In order to obtain a better understanding 
of the neutral curve we perform a perturbation analysis with respect to the small 
parameter S = yC/p. For realistic choices of the morphological parameters, typical 
values for S range between 0.0001 and 0.01. Although this expansion is in principle 
unnecessary, it provides predictions concerning the bar formation which depend 
explicitly (instead of implicitly) on the model parameters b, C and y .  Therefore, this 
approach yields a better insight in the fundamental behaviour of the model. Then, 
using (3.10) two physically interesting roots of the denominator appear: 

XI = 4s+ 0(62), 

x, = 2/6-$+ O(S), 

(3.13) 

(3.14) 

i.e. there are no destabilizing waves with wavenumbers outside the interval described 
by these two asymptotes. The asymptotic expressions for k, and R, read 

k, = 4 2  d{ 1 + yS+ 0(&)}, 

R, = (xy//3)8-~{1+2&+48+0(8)}, 

and we derive the asymptotic expression for w, from (3.9) 

w, = - ik,{ 1 + p$ - 5ps + o(&}. 

(3.15) 

(3.16) 

(3.17) 

Note that (iw,l is the wave frequency at critical conditions. Asymptotic expressions for 
aur aV, ac are given in Appendix A. 

The physical mechanism of instability can be understood from a closer investigation 
of the perturbation equations (3.1)-(3,2). In order to obtain unstable bedform 
disturbances the morphological system should allow for convergence of sediment at the 
wave crests. As described by the evolution equation for the bottom this requires a 
phase difference between the divergence of the sediment transport and the bottom 
disturbances that is between gx and $x. Here only the transport corresponding to 
y = 0 needs to be considered, since the downslope term in the total transport always 
causes damping of the perturbations. It follows straightforwardly from (3.2H3.3) that 
in the cases CR = 0 (no bottom friction), b = 1 or u’ = 0 (a one-dimensional model) 
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this phase difference is exactly arc or gx. This implies that perturbations will decay by 
diffusive mechanisms, due to the downslope correction term in the volumetric sediment 
transport. Some of these results follow directly from combination of the two linearized 
continuity equations in (3.2)-(3.3), yielding 

(3.18) 

This is an advection-diffusion equation which, in the absence of forcing on the right- 
hand side, describes decaying travelling wave solutions. Obviously, necessary 
conditions for the occurrence of unstable free bars are a two-dimensional model and 
the presence of bottom friction. On the other hand the latter mechanism also causes 
direct damping of the perturbations. This implies that the energy flux from the basic 
flow to the perturbations should exceed the dissipation of energy due to bottom 
friction. The energy gain is provided for by advection terms in the equations of motion, 
which in the linear theory are proportional to the wavenumber k .  Thus instabilities 
cannot occur in the limit k+O, i.e. long waves are stable. On the other hand, the 
diffusive terms in the sediment continuity equation are proportional to yk ' /R  and thus 
cause stabilization of the short waves. The combined effect of bottom friction and the 
downslope correction term in the volumetric sediment transport results in a critical 
width-to-depth ratio below which all waves are stable. The long- and short-wave cut- 
offs are described by the asymptotic results (3.13) and (3.14). In figure 2 only the long- 
wave asymptote of the neutral curve is visible. We remark that the stabilization of short 
waves in the model of Colombini et al. (1987) cannot be explained in this sense, since 
they neglect longitudinal bed slope corrections in the parameterization of the sediment 
transport. On the other hand, they allow for a drag coefficient depending on the local 
bed roughness as well as for free surface effects, which are important when the Froude 
number is not small. Both mechanisms appear to cause an effective damping of 
perturbations with large wavenumbers. 

For realistic values of the morphological parameters we find critical width-to-depth 
ratios between 20 and 30, critical wavelengths between 5 and 15 channel widths and 
wave periods between 5 and 15 morphological timescale units. We have compared 
these predictions with those of previous linear stability studies concerning free bars in 
straight channels. In particular the results of Engelund & Skovgaard (1973), Fredsoe 
(1978) and Colombini et al. (1987) are relevant because their models include the 
important effect of bed slope correction terms in the sediment transport. In all of these 
studies it is demonstrated that the agreement of the theoretical findings with 
observations is quite satisfactory. At this point we recall that our model contains three 
major simplifications compared to the other models, i.e. free surface effects, the 
variation of the drag coefficient with the local water depth and the presence of a critical 
shear stress for erosion are neglected. Despite these rather rigorous simplifications the 
results of our linear stability analysis are in good agreement with those of the previous 
studies. In particular it follows from Colombini et al. (1987) that in the low Froude 
number regime their critical width-to-depth ratios /3, = $R, ranges between 10 and 15, 
whereas their critical wavelengths are 6 to 12 river width units. 

4. Weakly nonlinear theory 

In the previous section it has been demonstrated that for width-to-depth ratios larger 
than a critical value R, the basic state of our model, i.e. a uniform flow over a flat bed, 
is unstable. The linear theory shows that in this case a spectrum of wave-like 
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perturbations with exponentially growing amplitudes will develop. However, this 
description is only valid in the initial growth stage, where the wave amplitudes are 
infinitesimally small. If we want to describe the nonlinear dynamic behaviour, we must 
take into account the nonlinear interactions between the various (linearly unstable) 
wave components. A detailed analysis is possible if the width-to-depth ratio R is only 
slightly larger than the critical value Re. Therefore, we restrict ourselves to width-to- 
depth ratios R, for which 

R = Rc(l +k2) = R,. +re2  where e -g 1, i = O(1), r = O(R,). (4.1) 

From a mathematical point of view, parameter E should be 'small enough' in order to 
be able to perform a perturbation analysis. The nonlinear theory described below has 
been applied to various classical hydrodynamic stability problems (see for instance 
Newel1 & Whitehead 1969; Stewartson & Stuart 1971) and has been tested 
experimentally (see for instance Drazin & Reid 1981 for an overview). In these 
experiments it has been found that the predictions based on the (weakly) nonlinear 
theory might be valid for R/Rc considerably larger than 1, i.e. physically, the theory 
seems to be valid for E of an order-1 magnitude. 

Because the neutral curve can be approximated by a parabola near its minimum, we 
consider wavenumbers k for which 

Jk-kc(  = O(E), E % 1. (4.2) 

The unstable waves are thus limited to a narrow spectrum around the critical 
wavenumber k,. Besides, the waves are marginally unstable : they grow on a timescale 
which is large compared to the typical wave periods. The consequence of these 
assumptions can be seen by expanding the complex frequency o in a Taylor series near 

(k?, R,) : 

where r,+iu, = (g),, iu, = (g) C , r,z+ivk2 = (g),, (4.4) 

where 'c '  means, as before, evaluation at critical conditions. Here r,-measures the 
growth rate of the marginally unstable waves, whereas u, gives the frequency shift of 
the perturbation with respect to the basic wave. Furthermore, u, is the group velocity 
of the wave packet; rk2 and ukz will be interpreted later on. Note that w, in (4.3) is an 
imaginary number, as defined in (3.17). 

Substitution of (4.3) in the linear solution of the bottom perturbation (3.4) yields 

zb - eikx+"it +...+ C.C., 
- eik,x+w t i(k-k,)(x+v t - c e  

= A ( [ ,  7) E, + . . . + C.C. 

k exp [(r,(R - R,) + i~,Z(k - k,)'} t ]  + . . . + c.c., (4.5) 

(4.6) 

This describes (the modulation of) a basic critical wave with wavenumber k,  and 
frequency we. The modulation is at slow temporal and spatial scales, which are 
described by the coordinates 

7 = E2t, 6 = E ( X +  u, l ) ,  (4.7) 

where (4.1) and (4.2) are used. Note that we thus have introduced a long timescale r 
and a long spatial scale 6 which is a slow, moving coordinate, travelling with the group 
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velocity. This is because the envelope of a linear dispersive wave packet travels with this 
velocity. This behaviour suggests the use of multiple scale analysis in order to obtain 
an evolution equation for the amplitude A($ ,T) .  

Note also that the proposed scaling has an influence in the set of equations 
(2.15)-(2.18) : 

a a  a a a a a  
- + - + I ? - - +  €Ilk- -+ -+ E - .  
a t  at  a7 a" ax ax a t  

Since we expect that solutions of the full system will be small for R close to R, we 
expand 

where h = e" for some v to be determined. Substituting (4.8)-(4.9) into (2.15)-(2.18) 
yields, by construction, at zeroth order the basic solution: 4, = (1, 0, 0,O). By collecting 
terms of order-h we recover the linear problem (at k = k,, R = R,) as was considered 
in $ 3 .  However, there is an essential difference now : q51 is (also) a function of $ and 7. 

Since these two variables do not appear in the linear analysis we find 

h ( x ,  Y ,  t ,  $, 7) = A($, 7) @, E,, (4.10) 

(compare to (3.12)) for some, up till now, unknown function A (see below for a more 
detailed discussion). We have to analyse the higher-order systems in order to determine 
the behaviour of A ( [ , T ) .  The nonlinear interactions generate at the second order 
second harmonics and residual components ; however, no extra information on A can 
be obtained. At third order, the fundamental wave is reproduced by interaction of the 
fundamental wave itself and the components produced at the second order. This h3- 
component should balance the linear growth of the fundamental wave, which is of 
order e'h. Hence we choose h = e, i.e. I) = 1. Based upon the observed interaction 
mechanism between the various harmonics components and on scaling (4.7) we 
propose the expansion 

4 = #,+hq+,+h2q+,+ ...+ C.C., (4.9) 

#(x, Y ,  t ,  5 , T )  = 4 0  + €2#02 + €3q5n3 + . . . 
+ E,[erj,, + ~ ' q 5 , ~  + ~ ' 4 , ~  + . . .] + C.C. 

+ E;[e2q5,, + ~ ~ q 5 ~ ~  + . . .] + C.C. 

+ E,3[€34,, + . . .] + C.C. 

+ ...) (4.1 1) 

with qjpq = bpq(6, 7 , ~ )  describing the response in 0 ( e q ,  E,"). 
We substitute (4.1 1) into (2.15)-(2.18) (and take into account (4.1) and (4.8)) and 

compare equal orders of eqE:. In general, we will find a set of linear ordinary 
differential equations of the type 

L,,(6,, = fpq where L,, = L p J R - R , ,  k - k ,  (4.12) 

p(ik)+2CR 0 PW) CR I 
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and f,, are inhomogeneous terms which depend on 6, r and y .  They are generated by 
the nonlinear interactions between the various harmonics and due to the coordinate 
transformations and the introduction of the 'new' control parameter r. Note that L,  
coincides with the linear operator defined in (3.3). This means that f,, is singular. 
Thus, a priori, (4.12) will not be solvable for a general inhomogeneous term f,, : one 
has to apply a solvability criterion (or Fredholm alternative) in order to solve (4.12) 
(there are no problems for p + 1). Applying such a condition at the level p = 1, 
q = 3 results in the desired balance between the linear growth and the influence of the 
nonlinear interactions and yields a nonlinear evolution equation which governs the 
behaviour of A(( ,  7). This equation is known as the Ginzburg-Landau modulation 
equation. 

We shall now discuss equations of the type (4.12) for several values of p and q. We 
start with p = 0, q = 0, which leads to the recovering of the basic solution 4,. The case 
p = 1, q = 1 has already been discussed; we recovered the linear problem and, since 
f,, = 0 and f does not depend on 6 and r we introduced the amplitude function A(& 7). 

Note thus that q511 = A ( [ , 7 )  Q,, where Q, follows from (3.12). The next case we 
consider is the O(s2) residual balance, i.e. p = 0, q = 2. Note thatf,, is non-zero since 
it is generated by interactions between the &,-mode and its complex conjugate. Because 

for some &(y)  which can be 
calculated explicitly. It turns out that we have 

is already known, it follows that h2 = 

/ c, sin2 (ny)  + c, cos2 (xy)\ 

c, sin (2ny) 

c4 cos (2ny) 

c5 cos (2xy) 

f a 2  = IAI2 

Making use of the structure of Lo, and fo2, we find the solution for q502 : 

p o 2 s  sin2 ( X Y )  + u02c  cos2 (v)\ 
vo2 sin (2xy) 

40' = ( [02cos (2xy) 

(4.14) 

(4.15) 

\ 202  cos (2XY) / 

The coefficients uO2?, vo2, lo2, zo2 are functions of (CI~)~ ,  (av)c, (a&, k,  and R,, which 
are known as asymptotic series in the small parameter 6, defined'in (3.11). The final 
results are presented in Appendix A. 

The next case we consider is p = 2, q = 2, i.e. the second-order and second-harmonic 
system. This system is forced by nonlinear interactions between the &,-mode and 
itself. The analysis of this case is similar to the previous one, i.e. the first-order field #,, 
generates the inhomogeneous term fZ2, which can now be written as 

d, sin2 (ny) + d2 cos2 (ny) 

d3 sin2 (ny) 

d4 sin' (ny) + d5 cos2 (xu) i2 d, sin' (xy) + d, cos2 (ny) 

f 2 2  = A 2  

The solution (4.12) with p ,  q = 2 is of the form 

(4.16) 

(4.17) 



338 R. Schielen, A. Doelman and H .  E. de Swart 

and substitution results in seven algebraic equations for the seven unknowns in (4.16). 
The asymptotic results are give in Appendix A. 

Now, consider the first harmonic response of the second-order system, i.e. the case 
p = 1, q = 2. This results in the equation 

Ll, 4 1 2  =Lz. 
Calculations show that f,, can be written as follows 

(4.18) 

(4.19) 

Note that in this casef,, is generated due to the coordinate transformation introduced 
in (4.7) and therefore contains only first-order derivatives with respect to the slow 
spatial coordinate [, i.e.f12 = (aA/a[ )x , ,  for somex2(y). We now make the following 
observation : consider the general linear problem (3.2)-(3.3), which in the context of 
this section can also be written as 

L,@ = 0. (4.20) 

Differentiation of (4.20) with respect to k and evaluation in k = k,,  R = R, yields 

(4.21) 

This observation can be used to find a solution for the problem L,, #12 =flz. Equation 
(4.18) can be reformulated as 

(4.22) 

with the solution 4 1 2  = 412,  + 412h,  (4.23) 

where 41,p = -I-(-) .aA a@ and Ll , / ,2h = 0. a[ ak c 

Note that +l,p is a known particular solution, whereas the homogeneous solution is 
given by ( 1 2 h  = A 2 ( [ ,  7) @c, with a second, unknown amplitude function A,. This 
second amplitude function is a result of the application of the Fredholm alternative 
where the solvability condition on this level is automatically satisfied byf,, (essentially 
this is a consequence of our ‘choice’ to move with the group velocity vk. see (4.7)). We 
have to introduce A ,  as a consequence of the non-uniqueness of the solution as 
provided by the Fredholm alternative and it should be noted that A ,  is unimportant 
for the subsequent analysis. Owing to the structure of expansion we will meet at any 
level of the analysis this type of ‘solvability’ behaviour. 

The final case we consider is p = 1, q = 3, i.e. 

‘ 1 , 4 1 3  = f i 3  =fL, lin + f 1 3 ,  nonlin’ (4.24) 

Here, fi3, lin contains terms which are linear in the amplitude A, whereas f,,, nonlin 

contains all the nonlinear terms. It turns out that the linear terms inf,, can be written 
as 

fl,, l in = M412 +N4,,, (4.25) 

where (4.26) 
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and S is a 4 x 4 matrix with all elements zeros, except 

(4.27) 

Substituting (4.25)-(4.27) in (4.24) and using (4.20) to evaluate the derivatives o f f  with 
respect to k and R results in 

In the derivation of (4.28), we have used a same kind of reasoning as in the case of 
p = 1, q = 2, where (4.18) was rewritten as (4.22). In the present case we have used the 
differentiation of (4.20) with respect to R, as well as the second-order derivative of 
(4.20) with respect to k. We must apply the Fredholm alternative to the right-hand side 
of (4.28). This means that we have to determine 

1 

( f 1 3 ,  @ c )  = I f i 3  @: dY = O, 

where @: are the eigenfunctions of the adjoint linear problem at critical conditions. To 
avoid calculation of the eigenfunctions of the adjoint problem, we again reduce 
problem (4.28) to one equation for @, where q!~$) is the fourth component of the 
vector q513, in which case the eigenfunctions (i.e. - cos(p7cy)) coincide with their 
adjoints. Note however that, in applying the Fredholm alternative, the first term in the 
right-hand side of (4.28) vanishes, and thus Sqjl1 is the only contribution to the linear 
terms when we evaluate the inner product. We observe that the reduced problem can 
be written as L$$4,' = 2, where L follows from (3.5) and 2 reads: 

a* 
a Y  

2 = -kE(ikc + CRJ K 3  -fLI + (ikc + 2CRJ 7 E 3  -&I 

a 2  a 
ay2 l3 aY 

-ik,(b - 1 )  f u  - (b - 1) k; -f13 + kE(b - 1) (ik, + CR,)fi3. (4.29) 

The components8;) of the vectorf,, can be found in Appendix B. Tedious calculations 
then show that 

2 = g l ( y )  + g ,  cos (7cy) + IA12 A(g3 cos (nu) sin2 (ny) +g, c0s3 (ny)). (4.30) 

For g,, ...,g, refer again to Appendix B. The Fredholm alternative reads in this case 

(4.3 1) 

Evaluating expression (4.3 1) finally leads to a nonlinear partial differential equation for 
the amplitude A : 

(2(Y), cos (XY)) = a Y >  cos (ZY) dY = 0. 1: 

(4.32) 

This modulation equation, the so-called Ginzburg-Landau equation, governs all the 
pattern generating processes. The evolution of a pattern, whether it is periodic or non- 
periodic (see $5), is always determined by the timescale 7 and the spatial scale [ (see 
(4.7)). Thus, the timescale on which a solution of (4.32) develops into a stable pattern 
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FIC;L,RI: -3. .-\ppr~~"iriiHtions at various ordcr of the bed prolilc ;is described by (4.1 I ) .  Solutions up to 
( I ( ( )  arc k n o \ r i i  in terms of tlic parameters 8, c, ;itid the amplilude A.  Ori thc short spatial scale 

usualired hzrc. the amplitude may hc considered as  ii constant. which is yet unspecified. Here wc have 
tahcn I ,  = 5~ C'  = 0.007. = 1. (, = 0.35 and A = 1. ( o )  The O ( L )  approximation of  the bcd profile, i.c. 
the liricar ~ v a v e  solution ;it critical conditiuns. ( / I )  The nonlinear O((.') correction o n  the linear profile. 
( i , )  7 ' 1 ~  O(( ') ;ipproiim;ition of  nonlinear bed profile. This is thc supcrposition of the two profiles 
s h n \ ~ n  in ( i i )  ;ind ( A ) .  hote  thc steep wave fronts and thc llat wakes caused by the phase diKcrcnce 
tJct\vceii thc  1iiie:ii- profile a n d  the nonliric;ir O((.') correction. 

does not depend on the complexity of'this pattern. Furthermore. if (4.32) has no stable 
periodic solutions (see $ 5 ) .  then an) initial pattern will immediately (on  the 7-timescale) 
evolve to a non-periodic pattern : an observer will not see a first itimc-)step in which 
the initial pattern becomes periodic and a second step in  which this periodic pattern is 
slowly ( in  7) modulated into ;i non-periodic pattern. 
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Note that the coefficients of the linear terms follow from the expansion for w (see also 
(4.4)). For asymptotic results for the coefficients of (4.32) refer to Appendix B. It 
should be remarked here that c, is smaller than zero (for physically interesting values 
of b, y and C). In terms of the Ginzburg-Landau equation it means that the 
exponential growth governed by the linear part is counteracted by nonlinear effects, so 
we may expect finite-amplitude solutions. 

At this point in the theory the expressions for +11, +02, +12 and d2, are known in terms 
of the model parameters. Thus, we are able to visualize the nonlinear bed profile, using 
(4.1 l), for an, at this time, undetermined amplitude. A typical result is shown in figure 
3. Individual waves move with the phase velocity liw/k), where k satisfies (4.2). On the 
other hand, the energy of the wave group moves with the group velocity lvkl (for an 
asymptotic expression for vk, see Appendix B). In turns out that lio,/kl > lukl where k 
satisfies (4.2), i.e. the group velocity is larger than the phase velocity. This phenomenon 
is called anormal dispersion. 

5. Analysis of the Ginzburg-Landau equation 

In this section we shall present some properties of the Ginzburg-Landau equation 
which are relevant for our morphological model. At first, we consider the possibility 
of periodic solutions. We shall give conditions for the stability of these solutions and 
give predictions of their (finite) amplitude and phase. 

We consider periodic solutions of the following form: 

A ( [ ,  7 )  = Gei(KS+WT) with G, K, W E  R. (5.1) 

Note that periodic solutions of this type correspond to the bifurcating unstable waves 
(the alternate bars) of the linearized theory and also appear in the Landau theory 
(however, then K is fixed, here it is a parameter). The solution with K = 0 is called the 
Stokes wave. Substitution of (5.1) in (4.32) and splitting the expression into real and 
imaginary parts yields 

0 = r7, + iK2rk2 + G'c,., (5.2) 

W =  rv,+iK2vk2+G2ci. (5.3) 

Equation (5.2) gives, for every choice of K and r ,  the amplitude and the shift in phase 
(with respect to the critical wave) of the periodic solutions (i.e. the amplitude and the 
phase of the free bars). We use the periodic solutions (5.1) of the Ginzburg-Landau 
equation where K, G and W follow from (5.2)-(5.3) in order to find an expression for 
the bottom evolution zb. Applying (4.1 1) yields 

zh = eA(,C, 7 )  eikrs+%t cos (ny)  + . . . + C.C. 

= EG exp [i(k,, + eK) x + (wr + iwk K+ ie2 W) t ]  cos (ny)  + . . . + C.C. (5.4) 

Thus, in this case, the fundamental wave is modulated, where the modulation is 
expressed in an O(e) change in the critical wavenumber and an O(e2) change in the 
critical frequency. Note that (5.2) represents (half) an ellipse in the (K,G)-plane for 
r > 0. This is due to the signs of T,, 7kZ and c, (see Appendix B). Thus, periodic solutions 
only exist for r > 0, i.e. R > R,, which agrees with the linear predictions. Figure 4 is 
a contour plot of the maximal amplitude which is reached at K = 0, i.e. at k = k,.  Note 
that it can be seen from (5.2) that increasing r leads to increasing amplitude G. To find 
the maximal amplitude, we have set r = R,, as is motivated by (4.1). It appears that our 
predicted amplitudes are slightly larger than those obtained from the model of 
Colombini et al. (1987). A reasonable comparison is expected to be possible if we 
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FIGURE 4. A contour plot of the maximal amplitude of the Stokes wave, as determined by (5 .2) ,  in 
the b, C parameter space for y = 1 and r = R,, where R,, is defined in (3.16). The contour line in the 
middle corresponds to a maximal amplitude of 0.54. The distance between the contour lines is 0.01. 

choose b = 3, y = 1 and C between 0.002 and 0.003, which implies that free surface 
effects in the latter model are negligible. In this case we obtain amplitudes of order 0.4 
whereas Colombini et al. (1987) report values of order 0.3. These differences are 
because their model includes the variation of the drag coefficient with the local water 
depth, the presence of a critical shear stress for erosion and the dependence of the bed 
slope correction coefficient on the bottom shear stress. On the other hand, slightly 
larger amplitudes are not unrealistic since the results of Colombini et al. (1987) show 
more under- than overestimation of observed alternate bar amplitudes. 

We remark that (5.3) is again a dispersion relation. Since the coefficient ci is positive 
(see Appendix B), it can be seen from (5.3) that the frequency W increases with 
increasing amplitude. This means that the total frequency of the alternate bars, which 
is I - iw, + cvk K+ c2 WI, decreases if the amplitude becomes larger or, in other words, 
the nonlinear bars move slower than is predicted by linear theory. This is a general 
property of anormal dispersive waves. 

The periodic solutions obtained so far are also found by standard Landau theory, 
in which case they are always stable (Colombini et al. 1987). In our model, interactions 
between various wave components can cause the basic periodic solution (5.1) to 
become unstable. In order to investigate this possibility, we consider a general 
perturbation of a periodic solution of the type (5.1): 

(5.51 A(( ,  7) = [G +p([ ,  T)] ei(KE+W'+H(S,r)) .  

Inserting (5.5) into (4.32) and using (5.2) and (5.3) to simplify intermediate results 
yields after linearizing 

(5.6) p, = r7, p + i 1 7 k 2 1  (pss - 2GK8, - K2p)  + $vk2(2Kps + GO,,) - 31cJ G2p 

GO, = - Wp+rv,p+$1~~21 (2Kp,+GO,,)-~vkz(p,,-2GKO,-KZp)+3ci G2p. (5.7) 

Owing to the structure of these linear equations we may assume 

p(<,7) = X(7)eiz,, ( 5 . 8 )  

GO = Y(7)ei25, (5.9) 
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FIGURE 5. Neutral curve with inner parabola for the case b = 5 ,  C = 0.007 and y = 1. The dotted line 
is the second-order approximation of the neutral curve which is represented as a solid line. The 
dashed line is the boundary of the stable area from the nonlinear point of view. 

with an arbitrary wavenumber 1 E R.  Substitution of (5.8)-(5.9) into (5.6)-(5.7), and 
using (5.2)-(5.3) we get rid of terms containing W and K 2 ,  leads to 

)(3. (5.10) 
-$F17k21+ ivk2 lK-2(crl G 2  -$l2vP2 -ilK]7,4 

-iF17,21+ ilKvk2 "(7 d7 Y = ( i12vkz + i l K ] ~ , ~ 1 +  2ci G 2  

The stability of a general periodic solution of type (5.1) of the Ginzburg-Landau 
equation is now reduced to the stability of the zero-solution in the ( X ,  Y)-system, a 
linear 2 x 2  matrix equation. Hence, we compute the eigenvalues of this matrix and 
impose the condition that the real parts of both eigenvalues have to be negative for all 
1. This yields, after tedious calculations, a condition on K':  

(5.11) 

For more details on the stability analysis of periodic solutions of the Ginzburg-Landau 
equation, we refer to Stuart & DiPrima (1978) or to Matkowski & Volpert (1993). 
Expression (5.1 1) gives a bandwidth in which one can expect finite-amplitude solutions. 
The condition on K defines an 'inner-parabola' in the neutral curve in which periodic 
solutions are stable with respect to general perturbations. Figure 5 is a plot of the 
neutral curve with inner parabola, for a fixed value of S (see (3.1 1)). Note that whenever 

X = lC,l 17p/ + Ci vkz < 0 (5.12) 

(5.1 1) cannot be satisfied for any K. This means that all periodic solutions of the type 
(5.1) are unstable. In figure 5 it means that the inner parabola vanishes at K = 0, thus 
the Stokes wave is the last periodic solution to become unstable. 

A physical explanation of this stability criterion has been given by Lighthill (1978). 
Consider a slowly modulated Stokes wave, the amplitude of which is described by 
(4.32). The bedforms will have their largest elevations at the top of the envelope wave. 
Since ci > 0 in our model, the dispersion relation (5.3) implies that the phase velocity 
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FIGURE 6. The neutral stability curve x = 0 (x  is defined in (5.12)), for periodic bar patterns of the type 
( 5 .  I )  in the b, C parameter space for y = 1, in the case of a continuous model. To the left of this curve, 
standard Landau theory yields valid results while in the other region different bed profiles are to be 
expected. 

at the top is smaller than at either side. Consequently, the bedforms on the downstream 
side are enlarged whereas the waves at the upstream sides are shortened. A necessary 
condition for instabilities to occur is that there will be an accumulation of energy at the 
top. Since energy is transported by the group velocity vk, this requires in the present 
model alvkl/ak > 0 or, in other words, vk2 < 0. This is precisely what is determined by 
condition (5.12). 

The computations give analytical results on the stability, i.e. existence in physical 
sense, of the alternate bars (periodic solutions (5.1)). Stability interval (5.11) and, 
maybe more important, condition (5.12) can be derived from the fact that the 
Ginzburg-Landau theory admits spatial variation. The Landau theory can only 
predict the stability of an alternate bar with respect to very special perturbations (those 
with exactly the same wavenumber as the bar), which for instance yields that all 
alternate bars are stable. Hence, the non-existence of stable alternate bars (condition 
(5.12)) cannot be predicted by the Landau theory. In figure 6 we plot the expression 
x = 0 for 0.001 < C < 0.01 and for 2 < b < 10 while y = 1. It is readily observed that 
the physically interesting domain for C and b contains combinations of the parameters 
where we can expect stable periodic solutions as well as combinations where the 
instability criterion (5.12) is satisfied, i.e. where the periodic solutions are not stable. 
From figure 6 we can conclude that for b < 3, the periodic bar pattern as predicted by 
the Landau theory (Colombini et al. 1987) is stable, while for b > 3 ,  i.e. when the bed 
is dune covered, more complicated bed profiles may be expected, depending on the 
value for C. Thus, within the natural parameter region there is a change from existence 
to non-existence of stable alternate bars. It should be noted (again), that, due to the 
character of evolution equation (4.32), there is no transient behaviour between a 
periodic and a non-periodic pattern when instability criterion (5.12) is satisfied: any 
initial solution will immediately evolve to a non-periodic pattern, without becoming 
periodic first. 

We will use some numerical techniques in order to study the evolution of solutions 
of the Ginzburg-Landau equation when all periodic solutions are unstable. First, we 
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FIGURE 7. The coefficients (a) a1 and (b) a2 of the rescaled Ginzburg-Landau equation (5.14), as 

function of C for several values of b when y = 1. 

bring equation (4.32) into a standard form (as is done in Doelman 1991 ; Doering 
et al. 1988; Keefe 1985). Substitution of 

A = DA’(c ,  7’)  e‘’”r7’ (5.13) 

yields the rescaled Ginzburg-Landau equation (primes are dropped for convenience) 

(5.14) 

with a1 = vk2/rk2;  a2 = ci/c,. Plots of a, and a2 are given in figure 7. We cannot choose 
a,  and a2 arbitrary, as is done in some theoretical studies. They are determined by our 

12 F L M  252 
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model parameters and it appears that we end up with pairs (a1, 01,) that have not been 
studied in the context of the Ginzburg-Landau equation before. Because the Stokes 
wave is the last wave to become unstable, and we are interested in bifurcating solutions 
from this last stable wave, it is natural to perform a stability analysis around the Stokes 
wave. Repeating the above general stability analysis for the special case of the Stokes 
wave, which now corresponds to exp (- ia, 7),  for the scaled equation (5.14), we find 

(5.15) 

the analogue of (5.10), and the Stokes wave is stable if perturbations of the type (5 .5 )  

decay exponentially, i.e. if the eigenvalues of (5.15) are smaller than zero. This leads to 
a condition on 1 :  the Stokes wave is stable against perturbations with wavenumbers 1 
satisfying 

-2(1+a1a,) t 1, 111 2 1, = ( (5.16) 

i.e. perturbations with a small wavenumber are the most unstable ones (this has already 
been observed by Benjamin & Feir 1967; Stuart & DiPrima 1978). Note that the Stokes 
wave is stable against all perturbations if 1 f a ,  a, > 0; 1 +a,a, < 0 is the rescaled 
version of (5.12). 

Since we cannot apply numerical methods to (5.14) on an unbounded domain, 
we restrict 5 to an interval [0,2.n/q] and consider no-flux boundary conditions (i.e. 
aA/ag  = 0 at 5 = 0,2.n/q). Physically this means that we cut the infinitely straight 
channel into periodic parts of length 2.n/q. The boundary conditions are introduced 
mainly for convenience, they are of no essential significance to our problem. We can 
use the spectral method also discussed in Keefe (1985) and Doelman (1991) and 
introduce 

A(5,7) = 2 zn(7) ein**. (5.17) 

Note that 2, = 2-,, which is a result of the boundary conditions, and that q 
corresponds directly to the 1 in the stability analysis. By decreasing q we introduce 
solutions (and thus perturbations) with small wavenumbers 1 to the interval [0,2.n/q]. 
In other words, the Stokes wave is a stable solution of the Ginzburg-Landau equation 
on the interval [0,2n/q] (with no-flux boundary conditions) if q > qc = 1, where 1, is 
defined in (5.16) (for more details, see Doelman 1991). In figure 8 a contour plot is 
shown of 1", in the (b, C )  parameter space for y = 1 .  From this it can be seen that for 
realistic combination of these parameters the critical value q = qc ranges between 0 and 
0.32. Note that 2.n/qC is the minimum interval length necessary for observing 
modulations of the Stokes wave as solutions of the rescaled Ginzburg-Landau 
equation (5.14). Using (4.6) and (5.13) we define the minimum modulation length for 
the unscaled Ginzburg-Landau equation (4.32) as 

m 

n--m 

(5.18) 

in units of channel width. Actual values for L, strongly depend on the value of e. As 
we have already discussed we expect the weakly nonlinear theory to yield valid results 
even if E becomes of order 1. Consequently, typical values for L, range from several 
tens to a few hundred channel widths, which do not seem unrealistically large. In our 
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FIGURE 8. A contour plot of c (where 1, is defined in (5.16)) in the b, C parameter space for y = 1. 
Here 1, corresponds to a critical value q, for the parameter q (the smallest resolved wavenumber) in 
the spectral model, below which the Stokes wave is unstable. Note that the contour line c = 0 
coincides with the curve x = 0 of the continuous model, as presented in figure 6. The distance between 
the contour lines is 0.01. 

experiments we considered q 2 0.05 such that the channel lengths were less than 
approximately 300/e width units. 

Note that any initial perturbation of the flat bed evolves on an O(1/e2) timescale to 
a fully developed periodic or quasi-periodic bed profile. During this transient 
behaviour, the envelope amplitude propagates with an O( 1) group velocity v,, which 
means that we would actually need a channel with a length of the order 1/e2 and not 
of the order of l/e as is suggested by L, (see (5.18)). Therefore, a realistic indication 
of the minimum channel length necessary for actually observing a quasi-periodic 
modulation behaviour is given by LJe. A consequence of this observation is that, if we 
want to detect the predicted bed profiles in laboratory or field conditions, we are 
obliged to choose e not too small. Otherwise, the length needed in a laboratory or the 
length of a straight natural river as predicted by our theory (i.e. 0(1/e2)) will become 
unrealistically large. 

By substituting (5.17) into (5.14) one analyses the stability of the Stokes wave 
(Z0(7) = exp (- ia, 7), ZJ7)  = 0, n $: 0), because the terms exp (in&) are perturbations 
to which the Stokes wave eventually (i.e. by sufficiently small q) will become unstable. 
Hence, it is natural to consider q as a bifurcation parameter in the subsequent analysis. 
Performing the former substitution yields an oo-dimensional system of nonlinear 
coupled differential equations and truncating at a finite dimension N yields a Galerkin 
approximation : 

(5.19) 
d 
d7.Z.” = (1 - n2q2( 1 + ia,)) 2, + (1 + ia,) C Z ,  Z ,  Z,. 

k+l+m < N 
lW.l,l, Iml<N 

We consider (5.19) with N = 3 as approximating system of (5.14) (i.e. a 4-dimensional 
complex or a 8-dimensional real system). This choice is motivated by experiments of 
Doelman (1991) who investigated more thoroughly system (5.19) and found nQ 
significant difference in the dynamics of the system when truncated at N = 3, and at 

1 2 - 2  
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FIGURE 9 (a, 6). For caption see facing page. 

N = 31, which was studied by Keefe (1985). In the numerical simulation of system 
(5.19), we fixed the morphological parameters b, C, y and 2% and computed the 
coefficients a, and az in (5.14) using the asymptotic expressions presented in 
Appendix B. The corresponding bed profile, as given by (4.1 l), becomes 

zb = €A( [ ,  r )  eikcx+'dct cos (xy) + . . . + C.C. 
N 

= e~ 2 z.n(t)e'(Cinx+C zn t ) cos (xy) + . . . + C.C., (5.20) 
n=-N 

where D follows from (5.13), g,(t) = Z,(ezrrrt)  and 

c,, = e n q ( x ) i + k c ,  - 2 ~ 7 ,  (5.21) 

(5.22) 
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Ficiuw 9. L,ong-krni behaviour of the bed profile (a t  a fixed position near the channel bank) as a 
function of the dimensionless time r .  I n  the numerical simulations we have set h = 6. C = 0.003, 
y = I ,  r = R8, = 26.91 ;ind t = 0.2. ( ( I )  q = 0.28, which is larger than the critical value 4,. = 0.2556. 
The solution of the spectral model i s  a Stokes wave, resulting in a regular oscillatory bed profile. 
(h )  q = 0.2, which is between q,  and q, ,  : 0. I 168. The spectral niodel hiis a periodic solution where all 
components Z,, have Gnitc, non-zero amplitudc. As follows from (5 .20) ,  the behaviour of thc bed is 
quasi-pcriodic with two fundamental frequencies (1.) q = 0.1 < y,,. Solutions of the spectral model 
are quasi-periodic wilh two fundamental frcqucncies, resulting in quasi-pcriodic bcd evolution with 
three rundaincntal frequencies. 

Here, use has becn made of definition (4.7). transformation (5.13) and representation 
(5.17). 

Experiments with q > qc = I ,  (see (5.16)) demonstrated that in these cases, solutions 
of the spectral model converge to a stable Stokes wave, for which 

Z,(t) = exp (- ia, e2r7, t )  

and Z,(t) = 0 for n =!= 0. According to (5.20), this describes a periodic alternate bar 
pattern. The corresponding bed profile, at a fixed position of the bank of the channel, 
as a function of the dimensionless time t is shown in figure 9(a) .  At q = qc, the Stokes 
wave becomes unstable, due to a pitchfork bifurcation. For slightly smaller q-values, 
two new periodic solutions with in([) =i= 0 for all n are observed. From (5.20) it follows 
that, in this case, the bed profile is composed of a series of travelling waves, each with 
their own wavenumber and frequency. It appears that all frequencies of this solution 
follow from integer combinations of two fundamental frequencies which are mutually 
irrational. Consequently, the temporal and spatial behaviour of the bar pattern is 
quasi-periodic, even though the solutions of the spectral model are periodic. An 
example of the bed evolution for such a situation at a fixed position near the bank as 
a function of time is shown in figure 9 ( b ) .  If q is further decreased. the two periodic 
attractors become unstable due to a Hopf bifurcation at the critical value q = qH. 
Solutions of the spectral model are then themselves quasi-periodic with two 
fundamental frequencies. As a consequence of (5.20), the bed profile become quasi- 
periodic with three independent frequencies. An example of the corresponding bed 
profile is shown in figure 9(c) .  As can be seen from (5.20)-(5.22), the bed pattern is not 
only quasi-periodic in time, but also in space. This behaviour is visualized in figure 10, 
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FIGURE 10. Quasi-periodic behaviour of the bed profile (at a fixed time). We have set 
b = 6, C = 0.003, y = 1, r = R, = 26.91, B = 0.2 and q < qH. 

which is a plot of a part of the river bed at a fixed time. The non-periodic behaviour 
is obvious. The role of 8 in figure 9 can also be seen from (5.20)-(5.22): increasing E 

causes the time- and spatial scales of the periodic and quasi-periodic behaviour to 
become smaller, i.e. we need shorter time and smaller distance in space to detect quasi- 
periodic behaviour . 

So far, the preceding bifurcation scenario is similar as described by Keefe (1985) and 
Doelman (1991) who studied solutions of (5.19) for a1 = 4, a2 = -4. They 
demonstrated that for values of q < qH chaotic solutions were encountered. Within the 
context of morphological models, the presence of chaotic solutions would be extremely 
relevant, since they have limited predictability properties. However, regions with 
chaotic behaviour could not be located in our simulations. One reason might be that 
our values for qc are an order of magnitude smaller than those found by Doelman 
(1991) and Keefe (1985). Since all interesting dynamical behaviour occurs in the region 
0 < q < qc, the windows with chaotic behaviour might have become so small that they 
are missed by our search procedure. Alternatively, the bifurcation scenario in our case 
might be different, since our values for ctl and a2 are quite different, as can be seen from 
figure 7. We have not investigated these possibilities in great detail since deviations 
from quasi-periodic behaviour occur for small q-values. As will be demonstrated in the 
next section, these correspond to rather long channels which are not physically 
realistic. 

6. Conclusions 

In this paper we have studied the nonlinear behaviour of free bars generated by a 
unidirectional current in an infinitely long straight channel with an erodible bottom 
and non-erodible banks. Our main aim was to derive a modified modulation equation 
describing the amplitude behaviour of the bars and to demonstrate its potential 
importance for understanding the dynamics of free bars in rivers and laboratory tanks. 
We have chosen to consider a simple model which only contains the basic mechanisms 
responsible for bedform instabilities. Therefore, we excluded effects like the variation 
of the drag coefficient with the local water depth (Einstein 1950) and the dependence 
of the bed slope correction coefficient in the sediment transport parameterization on 
the bottom stress (Sekine & Parker 1992). Finally, we have assumed straight and non- 
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Calculated Value for Value for 
Parameter Value from Determines river case tank case 

kC 0.70 (3.15) wavelength 1975 m 39.5 m 
RC 26.97 (3.16) channel width 220 m 4.4 m 
14 0.77 (3.17) wave period 9 months 9 days 
Ic,l 1.11 (3.15), (3.17) phase velocity 7 m day-' 4.2 m day-' 
IVkI 1.80 (App. B) group velocity 11 m day-' 6.8 m day-' 

0.86 (5.4) bar amplitude 4.3 m 8.6 cm 
4,  0.26 (5.16) critical q 
LC 65 (5.18) minimum modulation 1.43 x lo4 m 286 m 

- - 
'b 

length 

TABLE 1. Model results for the parameter values b = 6,  C = 0.003, y = 1, r = R,, B = 0.8. For the 
river case holds: h, = 5 m, u, = 1 m s-l, T = 3 x lo6 s. For the tank case holds: h, = 0.01 m, 
u,=O.Ims-', T = 1 0 6 s .  

erodible channel banks. Nevertheless, our model reproduces most of the principal 
aspects of the bar behaviour whereas the amount of mathematical computations is 
minimized, and we have demonstrated that the agreement with other linear and 
nonlinear studies is quite satisfactory. The model allows for a basic state, representing 
a uniform flow over a flat bottom, which, for sufficiently large width-to-depth ratios of 
the channel turned out to be unstable. A perturbation analysis of the basic state 
showed in linear theory that alternate bars started to develop with a certain critical 
wavenumber k, and a certain critical frequency I W , ~ .  A weakly nonlinear theory, which 
is valid near critical conditions, has been applied in order to derive an amplitude 
equation for the marginally unstable bedforms. The procedure is similar to that 
presented by Colombini et al. (1987), who obtained a Landau equation describing the 
long-term behaviour of a single unstable wave. However, the situation near critical 
conditions is such that a narrow spectrum of waves becomes unstable. Taking that into 
account, we obtained a Ginzburg-Landau equation describing the evolution of the 
envelope amplitude of the wave group. This result also includes modulations on a long 
spatial scale, which are due to the dispersive properties of the wave packet. It has been 
demonstrated that this approach leads to situations where the periodic alternate bar 
pattern predicted by Colombini et al. (1987) can become unstable for realistic 
combinations of the physical parameters. It turns out that a necessary condition for 
instability is that the bed is dune covered. 

Information on the subsequent dynamical behaviour has been obtained by cutting 
the channel into periodic intervals of length 2n/q and using a spectral method. It was 
found that q should be smaller than a critical value l,, defined in (5.16), in order to let 
the Stokes solution become unstable by the sideband interaction mechanism. 
Physically, q, corresponds to a minimum modulation length L, required to observe a 
unstable pattern. 

We have investigated if such lengths are realized in natural rivers or might be 
simulated in laboratory tanks. This was done by fixing the morphological parameters 
at b = 6,  C = 0.003, y = 1, r = R, and e = 0.8. In table 1 results are presented for the 
corresponding critical width-to-depth ratio R,, critical wavenumber k,, frequency I w J ,  
phase velocity cf ,  group velocity vk, characteristic amplitude ib of the bars, the 
bifurcation value qc and the corresponding minimum modulation length L,. The 
results have been translated into dimensional predictions of the observed bedforms for 
both a typical lowland river and a laboratory tank environment. These cases have been 
characterized by an undisturbed water depth, the intensity of the basic uniform flow 
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and a morphological timescale. Of course the latter is strongly dependent on the 
sediment properties and has been chosen rather arbitrarily. In particular the chosen 
value for the laboratory tank requires very fine sediment. As noted at the end of $5 ,  
the evolution of initial perturbations of the flat bed to a fully developed bed profile 
takes place on a l/e2 timescale. Therefore, in order to observe the periodic or quasi- 
periodic profiles in reality, we need lengths of laboratory tanks or natural straight 
reaches of the order of 1/c2 times the width of the tank or the river. If we then want 
to get realistic values, we must take E of the order unity in our theory. Once the bed 
profile is fully developed, we may detect any quasi-periodic behaviour from the spatial 
structure of the profile (see figure 10). 

It appears that the bar amplitudes are typically 80% of the undisturbed water 
depth. However, this result strongly depends on the value selected for the parameter 
E ,  which measures the difference between the actual and critical width-to-depth ratio. 
In Colombini et al. (1987) order-1 values for c are chosen for which the weakly 
nonlinear theory still yields useful results, see the discussion in 54. In this case the bar 
amplitudes become of the order of the undisturbed water depth which agrees better 
with observed alternate bars in rivers and laboratory experiments. In order for the 
rigid-lid approximation to be valid, the Froude number should be smaller than 
approximately 0.1, as can be traced back from (2.9)-(2.12). This poses rather strong 
conditions on the intensity of the basic flow which, especially in the case of laboratory 
tank experiments, are difficult to meet. Furthermore, it is found that the minimum 
modulation length is approximately 65 channel width units. Both for the river and the 
tank situation this condition might possibly be satisfied. Our experiments have shown 
that in these cases the bed profiles behave quasi-periodically, both in space and in time. 
Although the evolution seems rather complicated, see the time series in figure 9, the 
dynamics are still perfectly predictable. In principle the Ginzburg-Landau equation 
also allows for chaotic solutions with associated limited predictability properties 
(Keefe 1985; Doelman 1991). However, they were not observed in our simulations, 
resulting in the conclusion that they might only occur for an extremely small region of 
q-values. Thus the occurrence of chaos seems not very relevant within the context of 
the present model. 

We thank H. J. de Vriend, E. Mosselman, and the referees for useful suggestions and 
comments. 

Appendix A 

The asymptotic results for au, a, and a5, defined in ( 3 . Q  read as follows: 

a, = &{ 1 - 5& + ~ ( 6 ) )  + i+ 2/2& 1 + o(s)}, 
a, = d{ 1 + o(s)) + if 2/2& 1 - & + o(s)}, 
a< = - 2& 1 - :& + o(J)) + i2 2/2& 1 + ;&+ o(s)}. 

Below, we show the asymptotic results for the solutions of the equations Lo, dO2 =fo2  
and L,,+,, = f,, which were considered in 94. In (4.15), 



where 
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-4+3b b(l +b) 

4(b- 1 )  uo2s = 

353 

4(b- 1) u02,  = - 

+ O(4 ; 
-b b( l+b)$  

uo2 = $+O(&), zo2 = ~- 
2(b- 1 )  2(b- 1 )  

and in (4.17), 

z22s sin2 (ny) + zzZc cos2 (ny) /  
where 

@ + 0(6), - 1 2/2 i(b - 6 )  &+ (21 - 24b + b2)  $+ 4 2  i( -47 + 29b -b2 )  
u22s = ~- 

6(b- 1 )  12(b- 1 )  12(b- 1 )  12(b- 1) 

d + O(@, 
1 4 2  i( - 12 + b) (-45 + 33b+2b2) $+ 2/2i(59-41- 5b2) '+ 12(b- 1 )  12(b- 1 )  u22c = ~ 6(b- 1)' 12(b- 1 )  

@ + 0(6), 
2 2/2 i( - 8 + 5b) (-29 + 20b + b2) $+ 2/2 i( - 116 - 3b) '+ 6(b- 1) 24(b - 1 )  

u22 = ~ 

3(b- 1)' 6(b- 1 )  

z22s = ~ 2/2i 8-r I - ~ b-2 -\/2i(-20+16b+b2)$+ -62+53b+5b2d+O(8), 

3(b- 1) 3(b- 1 )  -t 12(b- 1) 24(b - 1 )  

- - i d 2  6-2  i2/2(20-22b-b2) 38-59b+b2d+0(d). '+ 24(b - 1 )  
6 - 2  + ~ 

3(b- 1 )  3(b- 1 )  + 12(b-1) z 2 2 c  = ~ 

Note that the expressions for gO2, and cz2, are omitted. It appeared that they were not 
necessary for the derivation of the nonlinear term of the Ginzburg-Landau equation. 
This is due to the assumption that the Froude number is small, which physically means 
that there are no dynamical effects due to variations in the water surface. 

Appendix B 

In this Appendix we shall specify the expressions that appear in the inhomogeneous 
term 2, (4.29), as used in the weakly nonlinear analysis. For convenience we write k and 
R where we mean k ,  and R,. First, we define the following quantities: 
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Working out the solvability condition (4.30) (thereby using the terms inf13 that are 
linear in q511 and q5J results in the Ginzburg-Landau equation: 

where 

d2P28(1 -3$+O(S)), 
2sp2 

7, = --(1-4&+O(S)), V ,  = 
Y Y 

c. = (20-30b+9b2)42xd+(-162+294b-133b2+ 15b3)2/2x f$ + O(&), 
24(b - 1 )  24(b - 1 )  

2~ + cr = -~ 3(b- 1 )  

(62 - 78b + 19b2 - 9b3) TC 1 

si+ O(S). 
12(b- 1) 

The expression for the group velocity reads 

vk = - { 1 + 7(b - 1) $- 18(b - 1) S+ O(B)}. 
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