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Abstract 

 
This paper summarizes the results and the problems still open regarding the development of a 
1.5DOF nonlinear mathematical model of the parametric rolling in longitudinal waves with 
particular regard to the head sea condition. A first part is devoted to the case of regular waves, while 
the second concerns parametric rolling generated by irregular waves obtained by means of white 
noise filtered through a linear filter with adjustable bandwidth and by using a Bretschneider 
spectrum. The availability of an extensive series of test results on scale models conducted at 
University of Trieste and at INSEAN, allows a thorough discussion of the problems connected with 
the threshold formulation for parametric rolling and its amplitude modelling above threshold. 

 
 
1 INTRODUCTION 
 
The aim of this paper is that of developing a 
simplified mathematical model for the 
prediction of the excitation threshold and of the 
amplitude above threshold of parametric 
rolling. In this context simplified means using a 
low number of degrees of freedom in order 
have the  possibility of obtaining an 
approximate solution in analytical form, 
preserving on the other hand the fully nonlinear 
and stochastic features of the phenomenon. To 
this end, a large series of tests have been 
started at the University of Trieste and at 
INSEAN on the scale model of a RoRo. The 
threshold of the first and second parametric 
resonance have been investigated in regular 
waves, while the irregular wave tests, focussed 
for the moment on the analysis of the first 
zone, investigated in some detail the effect of 
the shape and bandwidth of the spectrum. The 
capability and limits of two nonlinear 
stochastic approximate solutions of the 

mathematical model are also discussed in the 
paper. 
 
 
2 PARAMETRIC ROLL IN REGULAR 

WAVES 
 
2.1 Analytical model 
 
A ship sailing in a longitudinal sea in upright 
position is subjected  to the action of 
symmetrical motions and waves. Regarding the 
problem of parametric rolling, three 
phenomena should be taken into consideration: 

• heave motion 
• pitch motion 
• wave effect 

The combined action of wave and vertical 
motions leads to a fluctuation (in time) of the 
restoring characteristics of the ship. 
Because the large amplitude motions we are 
dealing with when we are addressing the 
problem of parametric roll, all six degrees of 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 

Escuela Técnica Superior de Ingenieros Navales 
 

306

freedom should be considered as coupled. On 
the other hand, for the particular case reported 
in this paper, the experiments have been 
performed with the model fairly restrained in 
surge, yaw and sway, whereas pitch, heave and 
roll were almost completely free. The sea was, 
moreover, longitudinal and long crested. 
 
The analysis could thus take into consideration 
only the three free degrees of freedom. The 
influence of roll on pitch and heave could be 
modelled as an explicit forcing (with frequency 
equal to twice the roll frequency, thus equal to 
the encounter frequency due to the 
subharmonic regime of the response) , whereas 
the influence of heave and pitch on roll can be 
modelled as a parametric excitation. 
 
The wave induces heave and pitch, modifies 
the hull geometry and the pressure field around 
the hull. 
 
If the displacement of the ship can be 
considered as constant, the roll motion 
equation can be written in the following form: 
 

( ) ( )
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where  is the pitch angle, ϑ η  the heave 
displacement and  the wave crest position 
along the ship. 
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If, moreover, we are able to correlate  and ϑ η  
with  and  , that is Cξ φ
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the restoring term becomes 
 

( ) ( )tGZGZ c ,, φξφ =  (3) 
and the explicit dependence on time can be 
obtained when the ship speed, the wave celerity 
and the encounter angle are known.  

Finally, the equation of motion for the 1.5-
DOF roll motion becomes: 
 

( ) ( ) 0,, 2
0 =⋅++

GM
tGZd φωφφφ &&&  (4) 

 
When we are dealing with regular waves, the 
function ( tGZ ,φ )  is periodic with period T  
equal to the encounter period between ship and 
wave. 

e

 
A first attempt to analyse the equation (4) is 
based on the analysis of the fluctuation of the 
righting arm around the still water (SW) value. 
Let  
 

( ) ( ) ( )tGZGZtGZ SW ,, φδφφ +=  (5) 
 
where ( tGZ ,φδ ) represents the variation of the 
righting arm respect to the still water condition. 
An example of the calculated variation is 
reported for the model TR2 in Fig.  1. The 
characteristics and the body plan of the model 
TR2 used in the experiments are reported in 
Table 1. 
 

Table 1: Body plan, model and full scale data 
of RoRo pax TR2 used in the experiments. 

RoRo pax TR2 - C73-97 
Full scale data:   
∆=7715 tf   
GM=0.865 m   
KG=8.660 m 
T=5.875 m   
xG=-3.599 m 
Lbp=132.2 m 
T0=16.26 s   
 
Scale of tested model 1:50 
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Fig.  1: Difference between the righting arm 

corresponding to wave through 
amidships and wave crest amidships as 
a function of the transversal inclination. 
The curves refer to wave steepness 
sw=1/30, 1/50, 1/100, 1/200, 1/300. 

 
As explained in [6] and [2], under some 
approximations, we can write 
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being 
 

( ) 2
210 φφ ⋅+= pph  (7) 

 
With an appropriate time translation and using 
a linear plus cubic model for the damping term 
the roll equation becomes 
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This equation represents the so called 
"uncoupled" model as reported in [6]. The 
parameter  should be considered as a 
constant and should be obtained from the 
analysis of the still water righting arm. The 
parameter  represents the relative variation 
of the metacentric height, whereas the 
parameter  is used  in order to take into 
consideration some nonlinear aspects of the 
righting arm fluctuation (see Fig.  1). The 
values of the parameters  and  depends on 
the wave height, the wave length and the 
assumptions done about the relation between 
heave, pitch and wave position. Basically three 
approaches can be used [6]: 

3α

1p

2p

1p 2p

 
• fix trim hydrostatic 
• free trim hydrostatic 
• dynamic (based on seakeeping 

calculation) 
 
The chosen approach modifies both the still 
water righting arm and the righting arm on 
wave. Only when the third approach is used 
(dynamic) a variation of the displacement in 
time must be taken into consideration. 
 
Using a direct analysis of the righting arm in 
waves as proposed in [2] (that is without 
splitting GZ  in a still water part and a wave 
fluctuation component) the problem of 
calculating SWGZ  would be avoided. 
 
The linearised version of the model represented 
by equation (8) is a Mathieu equation that is 
known [6],[11],[20] to exhibit instability of the 
solution  when the ratio between 
encounter frequency and natural frequency is in 
the range 

0=φ
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0
=≈

n
e

ω
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as one can see from Fig.  2 [7]. The dashed 
zones represent regions of parameter space 
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where the Mathieu equation shows instability 
of the trivial solution. 
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Fig.  2: Threshold boundaries of the first three 

instability zones for the linear 
undamped Mathieu equation. The 
diagram has been adapted to variables 
relevant to parametric rolling. 

 
The presence of damping changes 
quantitatively the picture  giving a minimum 
value for the threshold in proximity of the 
exact synchronism. This minimum value of the 
instability threshold depends on the linear 
damping and on the zone index as follows: 
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Linking the analytical results known for the 
Mathieu equation and the calculation of the 
parametric excitation by means of a standard 
hydrostatic software, the instability boundaries 
can be predicted [6]  as reported in Fig.  3 . 
 
The linearised equation predicts a growing 
without bounds of the solution in the instability 
region. When a nonlinear model (in restoring 
and/or damping) is used, the possibility of 
bounded solution is predicted. Damping 
nonlinearities tend to reduce the motion 
because of the larger energy dissipation rate at 
larger amplitude of motion, whereas restoring 
nonlinearities reduce motion  amplitude due to 
the detuning effect. As reported in past papers 
[9] the effect of nonlinear damping seems to be 

of less importance when compared with the 
effect of the nonlinear restoring. 
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Fig.  3: Comparison between experimental 

results and analytical threshold curves. 
The stability calculations were made 
with fixed trim. 

 
The model proposed in equation (8) can be 
tackled using approximate analytical 
techniques such as the averaging method [7] 
and the amplitude of motion above threshold 
can be expressed as a function of the 
parameters. 
 
The behaviour of the experimental results 
obtained at the DINMA towing tanks in the 
case of wave steepness equal to 1/50 and 
different wave length is reported in Fig.  4. 
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Fig.  4: Steady roll motion amplitude of 

parametric rolling as a function of ship 
forward speed (given at model scale) at 
constant wave steepness. 
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A fitting of the steady state amplitude of 
motion above threshold using the model (8) in 
the case of wave steepness 1/30 and 1/50 is 
shown in Fig.  5 and Fig.  6. 
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Fig.  5: Steady roll motion amplitude of 

parametric rolling as a function of ship 
forward speed (at model scale). λw/L =1 
and sw=1/30.  

 
As one can see, the behaviour observed from 
the experiments can be reproduced quite well 
using the proposed model in equation (8) when 
parameters are obtained by means of a 
parameter identification technique [6]. The 
main characteristics of the phenomenon 
(presence of bifurcations at low and high speed 
and large but limited amplitude of motion 
inside the instability region) are well 
reproduced. The values of the damping 
parameters have been obtained from free decay  
experiments [6].  
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Fig.  6: Steady roll motion amplitude of para-

metric rolling as a function of ship 
forward speed (at model scale). λw/L =1 
and sw=1/50.  

 
In Fig.  6 a smooth decrease of the steady state 
amplitude of motion can be seen in following 
sea. The proposed model (8) is not able to 
reproduce this behaviour, probably due to the 
fact that only a little part of nonlinear 
contribution arising from the fluctuation of the 
restoring lever has been taken into 
consideration. 
 
 
2.2 Numerical model 
 
In order to evaluate the influence of the whole 
GZ  fluctuation, a fully numerical approach 
(regarding the restoring term) in time domain 
has been undertaken. The equation (4) has been 
used for describing the motion with a linear 
plus cubic damping model whose coefficients 
have been obtained from sallying experiments. 
As a first approach, in this work, the damping 
coefficients and the natural frequency have 
been considered as not speed dependent. The 
mean values in the range of the tested speeds 
have been used. 
 
The Foude-Krylov hypothesis has been 
assumed. This assumption is supported by the 
work of Bogdanov et al. [1]. The procedure is 
based on an estimation of the value of 
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( CGZ ξφ , )  for twenty-one position of the wave 
crest along ship. A table containing the value of 
GZ for different heeling angles and different 
wave crest position is thus created. The motion 
equation is integrated by means of a Runge-
Kutta algorithm and, at each time step, the 
position of the crest along ship is evaluated 
(ship speed and wave length are known). When 
the instantaneous heeling angle is known, and 
thus the value of  ( )( tGZ Cξφ , )  can be evaluated 
by means of interpolation. When a steady state 
is achieved, the stationary response is analysed. 
Two different approaches in the evaluation of  
GZ  have been used: 

• free trim hydrostatic 
• fix trim hydrostatic 

Correction for non-hydrostatic pressure field 
has been neglected. As reported by Paulling 
[15], this assumption leads to negligible errors 
when large heeling angles are considered, 
whereas it should leads to significant errors in 
the estimation of the metacentric height 
fluctuation. 
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Fig.7: Experimental results and predictions 

obtained by means of the numerical 
approach. . 30/1=Ws

 
Some comparisons between the experimental 
results and the prediction obtained by means of 
the aforementioned procedure are shown in the 
following figures. For the reported cases the 
following parameters have been used: 
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Fig.7 and Fig.  8 report the cases with 

 and . 30/1=Ws 50/1=Ws
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Fig.  8: Experimental results and predictions 

obtained by means of the numerical 
approach.  . 50/1=Ws

As one can see from the graphs, the instability 
zone predicted by the fix trim approach is 
always larger than that predicted by the free 
trim approach. 
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Fig.  9: Experimental results and predictions 

obtained by means of the numerical 
approach. . 200/1=Ws

 
This is due to the fact that the fluctuations of 
the righting arm are smaller when GZ  is 
evaluated allowing the trim to vary. This fact 
leads to an overestimation of the roll amplitude 
near the limits of the instability zone by the fix 
trim model. The quite smooth decrease of the 
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response curve in the low speed and following 
sea regions is now properly predicted. Looking 
at the  case, the free trim approach 
seems to give the best agreement with 
experimental data. The conversely appears for 
the  case. However, in both cases, the 
maximum amplitude (that could be referred as 
a design parameter) is quite well predicted by 
both approaches.  
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Fig.  10: Experimental results and predictions 
obtained by means of the numerical approach. 
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In the case  reported in Fig.  9 a 
larger disagreement is seen. In order to try to 
find a better fitting, the roll response predicted 
by the simulation has been shifted accordingly 
to a 7% reduction of the natural frequency. 
This change is equivalent to an increase of the 
virtual radius of inertia by about 7.5%. 
Although after this change the agreement 
between prediction and experimental results 
looks better, the maximum amplitude is 
underestimated by the free trim approach, 
whereas the fix trim approach predicts motion 
amplitudes close to the maximum experimental 
value. Unfortunately more experimental points 
for this particular case would be necessary in 
order to decide whether or not the prediction is 
satisfactory.  Somewhat similar occurs in the 
case as can be seen in Fig.  10. 

200/1

Ws
 
Finally, the agreement between simulation 
performed using the numerical approach and 
experiments can be considered quite 

satisfactory.  From the analysis of the different 
cases it can’t be said which approach (fix trim 
or free trim) is better. From a conservative 
point of view, the fix trim approach should be 
preferred. Moreover the maximum value of the 
roll amplitude above the instability threshold 
seems to be predicted quite satisfactory by both 
approaches, at least in this case, for large 
values of steepness. 
 
From this numerical simulation, this seems to 
be a promising simple tool and some work is in 
progress in order to obtain a “not-too-much-
simplified” analytical model based on the 
analysis of the whole GZ  fluctuation. 
 
 
3 PARAMETRIC ROLL IN 

IRREGULAR SEA 
 
3.1 Introduction to the experiments 
 
The real sea is almost always irregular, thus the 
parametric excitation induced on the ship roll 
motion has a stochastic nature. 
The general equation (4) 
 

( ) ( ) 0,, 2
0 =⋅++

GM
tGZd φωφφφ &&&  

 
can be considered still valid, but now GZ  is a 
stochastic process. In a way similar to what has 
been done in the case of regular sea, two major 
problems arise when we are dealing with 
parametric roll in a stochastic environment: 
 

• the determination of the stability 
threshold 

• the evaluation of the statistical 
properties of the process when stability 
limits have been exceeded 

 
Regarding the problem of instability threshold, 
it must be said that many different definition of 
stochastic stability can be used 
[2],[8],[12],[13],[16] making the analysis of the 
stability threshold much more difficult than 
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that performed when a deterministic excitation 
is addressed. 
 
A series of experiments have been performed 
in order to analyse the aforementioned 
problems. The assumptions of  stationarity and 
ergodicity for the process   have been used 
in the analysis of the experimental data. 

( )tφ

 
The experiments have been performed at the 
towing tank of the INSEAN. 
 
Two different sea spectra have been used. The 
first one is an idealized spectrum  obtained by 
filtering a white noise process with a linear 
filter [2],[5]: 
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The moments of this spectrum have been 
calculated analytically [2] and thus a simple 
control of the spectral bandwidth parameter, 
defined as 
 

( )
12

1

20 −
⋅

=
m

mm
sbw  (12) 

 
is possible. When  is close to zero the 
major part of the energy is concentrated in the 
vicinity of the modal frequency. The smaller 
the parameter , the narrower the band of the 
process. Moreover  is related to the 
characteristics of the wave grouping 
phenomenon [14],[10]. Many tests at different 
speeds and significant wave heights have been 
performed using the spectrum (11) with  
equal to 0.1,0.25,0.4 in order to analyse the 
influence of the bandwidth of the sea process 
on the response. 

sbw

sbw
sbw

sbw

 
A Bretschneider spectrum  given by the 
following expression 

 

( ) 





−⋅= 45 exp

ωω
ω BAS z  (13) 

 
has been used in order to describe a realistic 
sea state. 
 
For both spectra the modal wave length has 
been fixed equal to the .  Different ship 
speeds in head and following sea have been 
tested in the vicinity of the condition 

BPL

 
0, 2 ωω ⋅≈me  

 
being   the modal frequency of the sea 
spectra at the encounter frequencies. 

me,ω

 
The experimental time series have been 
analysed and some statistical averages have 
been calculated, that is: 
 

• roll standard deviation 
• roll mean 
• roll envelope mean 
• roll envelope standard deviation 
• significant envelope amplitude (mean 

of 1/3 of the largest envelope 
amplitudes) 

• maximum roll amplitude 
 
A complete report of the result can be found in 
[8]. In the following, only the major results are 
reported. 
 
 
3.2 Experimental results 
 
The experiments have been performed in order 
to answer to four major questions regarding the 
problem of parametric rolling in irregular sea. 
The first question is:  
 
“Does parametric roll occur in stochastic 
sea?” 
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Fig.  11: Comparison between roll (upper) and 

wave elevation (below) time histories. 
Bretschneider spectrum, V , 

. 
sm /0=

25/1/3/1 =BPLH
 
Looking at a typical time history reported in 
Fig.  11 it is possible to say that not only the 
phenomenon exists, moreover it is, probably, 
more subtle and dangerous in a stochastic 
environment than in regular sea. This is due to 
the fact that, when the parametric excitation is 
random, the growth of the roll amplitude can be 
very fast if a sufficiently large group of high 
waves is encountered by the ship. This can be 
seen for the case reported in Fig.  11 where, in 
the initial part of the time history, the 
amplitude grew from 10deg to almost 50deg in 
only four roll cycles. Thus the unpredictability 
(from a deterministic point of view) of the 
phenomenon and the possible very high rate of 
growth of the amplitude are the main 
dangerous characteristics of parametric roll in 
irregular longitudinal sea. 
 
The second question is: 
 
“Is the behaviour of the phenomenon similar to 
what happens in regular sea?” 
 
In Fig.  12 the roll standard deviation evaluated 
from the experimental time histories is reported 
as function of the speed for a Bretschneider sea 
spectrum with significant wave height equal to 
5.3m at full scale. Regarding the other 
statistical averages, the qualitative behaviour is 
very similar. A comparison between Fig.  12 
and, for example, Fig.  8 shows that the 

response in regular sea (presence of an 
instability zone, bounded amplitude inside the 
instability region) is qualitatively reproduced 
by the behaviour in irregular. 
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Fig.  12: Estimated experimental roll standard 

deviation. Bretschneider spectrum, 
. 25/1/3/1 =BPLH

 
The third question is: 
 
“Are the instability regions qualitatively 
similar to those obtained in regular sea?”  
 
For the regular sea case, a stability charts has 
been reported in Fig.  3. The tested cases have 
been divided is stable, unstable and uncertain 
conditions after the analysis of the 
experimental time histories.  Deciding whether 
or not a case should be considered as stable 
could be a very difficult task, especially when 
the parametric excitation is not large (as in the 
case of moderate sea states). 
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Fig.  13: Stability chart in the case of 

Bretschneider spectrum. 
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Fig.  14: Stability chart in the case of NB 
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From a comparison between Fig.  3, Fig.  13 
and Fig.  14 it can be seen that the instability 
regions in irregular sea have a shape similar to 
that obtained analytically and experimentally in 
regular sea. Looking at Fig.  13 and Fig.  14, an 
almost triangular instability region with the 
presence of a minimum threshold can be 
guessed. The behaviour, thus, recall the 
instability regions reported in Fig.  3.  
 
The problem of deciding whether or not a case 
has to be considered as stable or not from the 
analysis of only one realization of the process 
is clearly represented by Fig.  15. In this figure 
two different realization of the same process 
have been reported. In the first case (upper time 

history), after the initial perturbation, the roll 
motion time history clearly shows the presence 
of  a solution above the stability threshold. 
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Fig.  15: Two different realizations of the 

phenomenon of parametric rolling 
with the same sea spectrum (NB, 

, ). Arrows 
indicate external perturbations. 
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In the lower graph, before the first perturbation 
the motion seems to be stable, and after the 
first perturbation roll seems to decay. Such a 
case would have been catalogued as a stable 
condition, if a second perturbation had not been 
applied. After the second perturbation, a 
behaviour typical for conditions inside the 
instability region can be seen. The 
experimental evaluation of the threshold is, 
thus, likely to be associated to a quite large 
level of uncertainty. 
 
The last question needing an answer is: 
 
“Does a threshold exist below which the 
motion can be considered as stable?” 
 
The answer to this question is implicit in the 
answer to the previous problem. From Fig.  13 
and Fig.  14, the presence of a threshold as a 
function of the speed is clearly shown. The 
dependence of the value of the threshold from 
the type of spectrum can be clearly seen in Fig.  
16. 
 
Some qualitative considerations can be done: 
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• a threshold exists beyond which the 
solution  is unstable 0=φ

• the narrower the spectrum, the lower 
the threshold  

• the narrower the spectrum, the larger 
the standard deviation of the roll 
motion, given the significant wave 
height 

 

Roll standard deviation as a function of the 
significant wave height
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Fig.  16: Relation between significant wave 

height, roll standard deviation and 
spectrum type in the case of model 
speed equal to 0.3m/s. 
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Fig.  17: Comparison between Bretschneider 

spectrum ( , dash-dotted 
line) and LB spectrum ( , 
solid line). Model scale. 

425.0=sbw
400.0=sbw

It’s extremely interesting to compare the results 
obtained for the Bretschneider spectrum and 
the spectrum named “LB”, that is the 
theoretical spectrum with . The two 
spectra are reported in Fig.  17 for a significant 
wave height of 5.3m at full scale. 

4.0=sbw

 
Although the significant wave height is the 
same for both spectra, the way the energy is 
distributed in the frequency domain is 
completely different. The LB spectrum shows a 
large part of energy at low frequency (long 
waves), whereas the conversely occurs for the 
Bretschneider spectrum, that has a large part of 
energy at frequencies higher than the modal 
frequency (short waves). 
 
Moreover the percentage of energy in the 
vicinity of the modal frequency is larger for the 
LB spectrum than for the Bretschneider. Short 
waves are less effective in promoting the build 
up of parametric rolling, due to the small value 
of the ratio between wavelength and ship 
length [3],[6]. 
 
The aforementioned differences between the 
two spectra explain the behaviour of the curves 
in Fig.  16. 
 
 
3.3 Mathematical modelling 
 
Prediction of stability boundary and behaviour 
above threshold in the stochastic case – 
Introduction 
 
In order to try to analyse the phenomenon of 
parametric rolling in a stochastic environment, 
two approaches have been used, based on the 
works of Rong et al. [18] and Roberts [16]. The 
analytical results from Roberts have already 
been used in the past by Skomedal [19] to 
assess stability boundaries related to parametric 
excitation in beam and following sea. 
 
In the work of Rong the method of multiple 
scales is used and the solution to the stochastic 
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problem is obtained as a perturbation of the 
deterministic solution. Damping is supposed to 
be linear. Nonlinearities of the restoring 
moment are taken into account with a constant 
cubic coefficient. This approach has been used 
in order to try to predict both the threshold 
(that depends on the linear part of the motion 
equation) and the amplitude of motion above 
threshold (because the major cause of 
boundness is the detuning effect). 
 
In the work of Roberts, based on the stochastic 
averaging technique, the nonlinearities of the 
righting arm and those related to the damping 
term are decoupled. Thus the amplitude above 
threshold is bounded only by the nonlinear 
effects of damping. From experiments, 
analytical results and simulation, it has been 
shown that, when parametric excitation is 
large, the principal factor determining the 
extent of the instability region and the 
amplitude of motion above threshold are the 
nonlinearities of the restoring moment 
(although nonlinear damping has an interesting 
role in avoiding the erosion of the safe basin 
and in limiting very large motion spikes). The 
damping term alone can’t be used for 
predicting amplitude of motion above 
threshold, thus the analytical results obtained 
by Roberts have been used only in order to 
predict the stability boundary.  
 
 
The modelling of metacentric height 
fluctuation 
 
In the following analysis the modelling of the 
metacentric height fluctuation as a stochastic 
process will be needed. In order to model the 
metacentric height spectrum, a linear approach 
based on the work of Dunwoody [3] has been 
used. 
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Fig.  18: Example of predicted spectrum for the 

nondimensional metacentric height 
fluctuation . Bretschneider sea 
spectrum. 

( )th

The transfer function of the fluctuation of GM  
has been estimated using the analytical formula 
given in [3], thus from the given sea spectrum, 
the spectrum of the relative fluctuation of the 
metacentric height  has been obtained. In 
this approach the ship is seen as a linear filter 
between the sea elevation and the metacentric 
height fluctuation. The quasi-static assumption 
and the hypothesis of slender ship are done in 
[3]. A typical spectrum of  is shown in Fig.  
18. The characteristic multi-modal behaviour is 
due to the particular shape of the transfer 
function for , that shows many oscillations 
when the wave length is shorter that the ship 
length [2], [3], [8]. 

( )th

( )th

( )th

 
 
Stability boundaries – Fokker-Planck method 
[16] 
 
The motion is described by the following 
equation 
 

( ) ( )( ) 012 3
3

2
00 =⋅+⋅+⋅++⋅⋅+ φαφωφφωνφ thdnl

&&&&  (14) 
 
being ( )φ&nld

( )ωhS

 the nonlinear damping component.  
 is supposed to be a gaussian stationary 

process with zero mean and spectrum (single 
side) . The equation is analysed in [16] 
by means of the stochastic averaging technique 

( )th
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and Fokker-Planck equation. Stability 
condition is given on the base of the existence 
of a nontrivial stationary probability density 
function for the process (sample stability) and 
for the n-th statistical moments (stability of the 
n-th moment). The condition for sample 
stability is given by 
 

( )00 2
8

ωωπν hS⋅⋅>  (15) 

 
In order to obtain , the spectrum of  
is estimated at zero speed and then Doppler 
effect is applied to obtain the spectrum of the 
fluctuation at the encounter frequencies. 

( 02ωhS ) ( )th

 
The value of significant wave height , at 
each speed, for which the following condition 
is satisfied 

lim,3/1H

 

( )lim,3/100 ,,2
8

HVS eh ωωωπν =⋅⋅=  (16) 

 
gives the stability threshold in the ( )  
plane. 

LppHV /, 3/1

 
 
Stability boundaries – Multiscale method [18] 
 
The motion equation is supposed to be of the 
following form: 
 

( )( ) 012 3
3

2
00 =⋅+⋅+⋅+⋅⋅+ φαφωφωνφ th&&&  (17) 

 
( )th  is supposed to be a narrow band, stationary 

gaussian process with zero mean. Thus  can 
be expressed by means of two slowly varying 
functions (phase  and envelope ) in the 
following form [14],[18] 

( )th

)( )tγ (tm

 
( ) ( ) ( )( )tttmth γ+⋅Ω⋅= 1sin  (18) 

 
( )tm  is Rayleigh distributed, whereas  has a 

uniform distribution in [ . Following 
Panjaitan [14],  is the mean frequency 
defined as 

( )tγ

]π2,0

1Ω

 

( )

( )∫

∫
∞+

+∞

⋅

=Ω

0

0
1

eeh

eehe

dS

dS

ωω

ωωω

 (19) 

 
The solution of equation (17) is supposed to be 
of the form 
 

( ) ( ) ( ) ( )







 −Θ
−⋅

Ω
⋅⋅=

22
cos2 1 ttttat γφ  (20) 

 
The unknown functions  and  are split 
in their mean value and fluctuation as follow: 

( )ta ( )tΘ

 
( ) ( )
( ) ( )




Θ+=Θ
+=

tt
taata

10

10

ϑ
 (21) 

 
( )tm  is supposed to show little fluctuations 

around its mean value, that is 
 

( ) { } ( )
( ) { }

{ }



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

⋅=

<<
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hmE
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tmmEtm

σπ

δ
δ

2

 (22) 

 
being  the standard deviation of the process 

. The expected value of the envelope  
hσ

( )th
 

( ){ } ( ){ } 022 ataEtCE =⋅=  (23) 
 
can be obtained from 
 

( ){ } { } ( )




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

⋅−Ω=

⋅−⋅±⋅
⋅

=

01

220

3

0

2

4
23

4

ω

ν
ω

α
ω

s

mEstCE  (24) 

 
The minimum threshold can be calculated as 
 

{ } ν⋅= 4mE  (25) 
 
The same boundary has been found by 
Dunwoody [4] as a sample stability limit. 
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From the limiting standard deviation for the 
process , the corresponding limiting 
significant wave height can be evaluated. 

( )th

 
It is worth recalling that the variance of the 
process  is supposed to be not dependent on 
the speed. The minimum threshold will be 
reported in the following graphs as a horizontal 
line in the plane . Moreover, the 
position of the two bifurcation points can be 
obtained for each significant wave height. 
Under the conservative assumption of zero 
damping (far from the speed of perfect 
synchronism , the influence of damping is 
negligible when large parametric excitations 
are considered), from equation (24), one 
obtains: 

( )th

( LppHV /, 3/1 )

0=s

 

{ } ( )3/1
00

2,1 222
HmEs hσπωω

⋅⋅±=⋅±=  (26) 

 
Using the expressions governing the Doppler 
effect, the speeds leading to the corresponding 
values for , can be obtained. 1Ω

 
It’s important to note that the bifurcation points 
coincides, as a first order approximation, with 
the points obtained by the intersection of an 
horizontal line (at the given value of )  
with the boundaries of the instability region in 
the deterministic stability chart (Fig.  3). Thus 
the minimum threshold value and the couple of 
lines giving the position of bifurcation points 
are a first approximation of the instability 
region. 

{ }mE

 
 
3.4 Comparison between experimental 

and theoretical stability threshold 
 
The stability charts for the cases of narrow 
band ( ) and Bretschneider sea spectra 
are reported in  

1.0=sbw

 
 
 

Fig.  19 and  
 
Fig.  20 respectively. These two spectra are the 
narrowest and the largest regarding the value of 
the spectral bandwidth. The stability 
boundaries obtained by using the multiscale 
method and by using the Fokker-Planck 
method are marked MS and FP respectively. 
Dashed curves in Fig. 20 correspond to 
stability limits obtained by taking into 
consideration the saturation effect of the 
transfer function of the metacentric height 
fluctuation, as reported in [8]. The presence of 
two minima in the stability limit curve obtained 
by means of the Roberts’ approach depends on 
the multi-modal nature of the spectrum of . 
The experimental stability conditions are 
reported as follows: 

( )th

 
• black squares: unstable 
• white squares: uncertain 
• white diamonds: stable 
•  

First of all it can be said that the behaviour of 
the stability boundaries is reproduced by the 
analytical results. In both cases there are no 
unstable conditions outside the boundaries, for 
both approaches. The proposed procedure can 
thus be considered “on the safe side”. First of 
all it can be said that the behaviour of the 
stability boundaries is reproduced by the 
analytical results. In both cases there are no 
unstable conditions outside the boundaries, for 
both approaches. The proposed procedure can 
thus be considered “on the safe side”. 
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Fig.  19: Stability boundaries for the narrow 

band (NB) sea spectrum. 
 
In the case of narrow band spectrum ( 
Fig.  19) a very good agreement is found 
between limits evaluated using Roberts’ 
approach and experimental results. In the same 
case the approach of Rong overestimates the 
width of the instability region. The minimum 
threshold evaluated with the multiscale method 
is smaller than the threshold calculated with the 
Fokker-Planck method, and the latter better 
represents the experimental behaviour.  
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Fig.  20: Stability boundaries for the 

Bretschneider sea spectrum. 

In the case of Bretschneider spectrum ( 
Fig.  20), only one point flagged as stable is 
available. Is thus difficult to draw ultimate 
conclusions about the minimum threshold. 
Regarding the width of the instability zone, the 
approach of Rong seems to give a good 
agreement with experimental results, while 
Roberts’ approach cannot be discussed in 
detail. Using the semi-empirical correction for 
nonlinear relation between wave height and 
amplitude of metacenter fluctuation gives even 
a worst agreement with experiments in both 
cases.  
 
The use of bifurcation points as stability limits, 
although not theoretically correct, seems to be 
a quite good tool. The idea of using the 
position of bifurcation in order to draw a 
stability boundary arose by the experimental 
evidence that, outside a certain range of speed, 
in regular sea, no resonant solutions have been 
found. The same seems to hold in a somewhat 
similar way for the stochastic case (Fig.  12). 
 
 
3.5 Comparison between predicted and 

estimated statistical averages above 
threshold  

 
The following quantities have been estimated 
for each experiment: 
 

• mean value of the roll envelope  medioA

• significant roll amplitude  3/1A

• maximum roll angle  maxA
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Fig.  21: Comparison between experimental 

results and predicted mean 
amplitude. NB spectrum. 

 
The obtained values have been compared with 
the predicted expected value of the roll 
envelope using equation (23). The cubic 
restoring coefficient has been estimated from 
the still water righting arm. The results are 
reported in Fig.  21 and Fig.  22. In the figures 

 is reported as circles,  as diamonds 
and as squares.  

medioA
A

3/1A

max

 
The agreement between predicted mean 
amplitude and estimated mean amplitude from 
experiments is completely unsatisfactory.  
Prediction largely overestimates the 
experimental results. A good agreement can be 
seen, instead, between the analytical curves and 
the values of .   3/1A
 
A rigorous explanation for this fact has not 
been found; but, from a qualitatively point of 
view, it seems that the prediction is able to 
represents somewhat that can be referred as 
“the mean value of the activated process”. 
Calculating the mean only on the 1/3 of the 
highest roll amplitudes coincides with filtering 
the part of motion associated with small 
amplitudes, where the achieving of a stationary 
condition above threshold is doubtful.  The 
phenomenon of parametric rolling in irregular 
longitudinal sea is know to be a phenomenon 
that has to be “switched on” ([19], Fig.  15) and 
that can stay “switched off” for long periods. 

This fact introduces some problems in the 
statistical analysis of the time histories. 
 
This problem need further attention and should 
be tackled both experimentally and, maybe 
firstly, numerically (by means of Monte Carlo 
simulation, for example). 
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Fig.  22: Comparison between experimental 

results and predicted mean amplitude. 
Bretschneider spectrum. 

 
 
3.6 Future work 
 
The obtained predictions for the stability 
boundaries have shown to be in very good 
qualitative agreement with the experimental 
results. The approximation of narrow band 
process for the metacentric height fluctuation 
seems to give a quite good quantitative 
agreement when the sea spectrum is extremely 
narrow. Unfortunately the results are 
quantitatively worst when the spectral 
bandwidth of the sea spectrum is larger.  
 
Regarding the prediction of the statistical 
averages above threshold, the proposed 
approach overestimates the quantity it should 
predict, that is the average of the roll envelope 
amplitude, but the width of the instability zones 
seems to be quite well reproduced. Because of 
the fact that, in the used model, the amplitude 
above threshold depends linearly on the inverse 
of the square root of the cubic restoring 
coefficient (see equation (24)), whereas the 
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width of the instability region depends almost 
only on the standard deviation of the 
parametric excitation, it can be said that, 
probably, a better modelling of the nonlinear 
restoring is needed, whereas the level of 
parametric excitation have been quite well 
modelled. The cubic restoring coefficient has 
been shown to be, actually, time dependent, 
both in regular sea (equation (8)) and in 
irregular sea [8]. A correct modelling of the 
correlation, in irregular sea, between the 
fluctuation of linear and nonlinear term would 
hopefully lead to a reduction of the statistical 
averages above threshold, and, thus, a to better 
agreement with experiments.  
 
Moreover, the problem of a correct analysis of 
the experimental data should be solved: which 
parts of the experimental record should be used 
in order to obtain the statistical averages? The 
complete record, or only the part showing, 
clearly, the presence of parametric rolling? And 
what does “clearly” mean from a mathematical 
point of view? 
 
Regarding the bandwidth of the process, the 
analytical results shown in this paper have been 
obtained by the respective authors (Roberts and 
Rong) by means of the approximation of 
narrow band process for the metacentric height 
fluctuation. In the work of Rong et al. [18] a 
numerical validation of the analytical results 
has been performed using a very narrow 
spectrum. The same has not been done in the 
case of the work of Roberts [16]. It would be 
interesting to understand whether or not the 
analytical results obtained in such an 
approximation can be used for not narrow 
spectra (although the border between large 
band and narrow band process is not, and can’t 
be, sharp). A numerical investigation by means 
of Monte Carlo simulations, using somewhat 
like a “standard” spectrum for the process  
would be very useful. Moreover, if only the 
stability boundaries are of concern, a 
completely linear model can probably be used. 

( )th

 

4 CONCLUSIONS 
 
In this paper the experimental results for the 
parametric rolling of RoRo ship in regular and 
irregular longitudinal waves have been 
reported. A mathematical modelling of the 1.5-
DOF roll motion has been proposed in the case 
of both regular and irregular sea. In the case of 
regular sea a good agreement between 
experimental results and prediction have been 
obtained, both with a fully analytical and a 
fully numerical approach. Some problems must 
be solved regarding the modelling of the 
restoring lever fluctuation in regular waves. 
Taking into consideration the vertical motions 
in waves will certainly lead to a better 
prediction of the experimental results, but this 
will make the modelling more complicated. If 
the target of the study is a simple model able to 
give good, but not necessary very exact 
prediction of the roll response above threshold, 
too many complications should be avoided, 
especially if one wants to use an analytical 
approach in order to give the roll response 
curve in a quite closed form.  
 
From the reported results, it seems that a model 
using the fluctuation of the GZ  curve evaluated 
by a fix trim hydrostatic approach can be 
considered “on the safe side”, and can well 
predict the maximum roll amplitude inside the 
instability region. Some problems have been 
encountered for the smallest tested waves. 
 
Regarding the comparison between 
experimental results and analytical prediction, 
it seems that the proposed model is able to give 
a prediction of the stability boundaries “on the 
safe side” too. Unfortunately the predicted 
minimum threshold seems to be too 
conservative. The minimum threshold not only 
depends  on the level of linear damping and on 
the relation between significant wave height 
and metacentric height standard deviation, but 
depends on the particular definition of stability 
one wants to use (sample stability, stability of 
the mean, stability of the mean square,…). The 
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limiting significant wave height could differs 
from that calculated using the sample stability 
definition, even by 50% or 100%, depending 
on the used formula. Thus an agreement on a 
“standard” practical definition of stochastic 
stability should be found. 
 
Regarding the behaviour of the statistical 
averages above threshold, a very good 
qualitative agreement has been found in spite 
of the simplicity of the used model. Concerning 
the quantitative predictions, some problems 
arose that need further numerical and 
experimental research.  
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