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Abstract—The well-known problem of the nonlinear stability of L4 and L5 in the circular
spatial restricted three-body problem is revisited. Some new results under the light of the
concept of Lie (formal) stability are presented. In particular, we provide stability and asymptotic
estimates for three specific values of the mass ratio that remained uncovered. Moreover, in many
cases we improve the estimates found in the literature.
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INTRODUCTION

The nonlinear stability analysis of the points L4 and L5 is completely solved in the planar case.
The spatial case has also been widely studied, mostly first by the Russian school [19, 21, 22, 28]
and more recently by the Italian current [3, 8, 14, 27]. There is a vast literature on the subject and
we do not intend to give all the existing references, but only the most relevant from the point of
view of our study. Despite the popularity of the topic, there are still some open questions and part
of the existing results can be sharpened.

We will look at this system from the point of view of Lie stability, that is a kind of formal
stability. It was Khazin [16] who introduced the concept of Lie stability, although he named it
Birkhoff stability in the case of elliptic equilibria. In [11], dos Santos et al. started calling it Lie
stability. We will use a powerful criterion given in [7] that enlarges previous criteria on Lie stability
and allows us, not only to recover all the formally stable cases reported in previous references, but
also to decide on the formal stability of the system for values of the mass parameter that remained
pending up to now.

The bound estimates of the solutions over exponentially long times in the Lie stable cases are
obtained through a theorem based in the determination of error bounds for adiabatic invariants
in Hamiltonian systems [9]. The theorem appears in [7], see also [6]. In many cases this result
allows us to get better estimates than the existing ones and even to achieve bounds for the three
aforementioned values of the mass ratio. We will make it more precise in sections 4 and 5.
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The paper is structured as follows. In section 1 we establish the equations of motion of the system.
Section 2 is devoted to recall the concepts and the central theorems to establish Lie stability and
estimates on the solution. The main results of the manuscript are contained in sections 3 and 4, the
first one including our analysis on the Lie stability of L4 and L5. Section 4 presents the asymptotic
estimates on the solutions in the Lie stable cases. In section 5 we compare our results with the ones
existing in the literature and outline our main contributions. In section 6 we establish the existence
of invariant 3-tori encasing L4 and L5. At the end of the paper there is an appendix containing
some useful tables.

The main contributions of our approach are two. First, Theorem 3, where we establish the
Lie stability of L4 and L5 in terms of the mass parameter µ. Second, Theorem 4, together with
Corollary 1, where the asymptotic bounds for the Lie stable cases are provided. Furthermore, the
analysis performed in section 5 makes clear that our estimates enhance those obtained in [3] and
other references excepting a few situations, namely: (a) when the frequency vector associated to
the formal first integrals defined in (2.1) is not Diophantine and (b) when the parameter µ lies in
the interval (µ1, µ2), with µi given in Notation 2 and Notation 3, and such that the corresponding
frequency vector given in Definition 1 is a Pythagorean triple, see Definition 2. Details on the
comparison appear in section 5. Finally, the cases not considered in [3], namely the values µ3,
µ(3,3,−2) and µ(0,3,1), have been proved to be Lie stable, see section 3. Their asymptotic estimates

are given in Corollary 1. The case µ(1,3,0), also not treated in [3], is unstable, as it is proved in
section 3.

1. SETTING OF THE PROBLEM

We consider the motion in the three-dimensional space of an infinitesimal particle under the
gravitational attraction of two bodies with masses m1 and m2 that describe circular orbits around
their common centre of mass (see for example [22] or [29] for details). The Hamilton function
associated to this system in rectangular coordinates (x, y, z,X, Y, Z) in a rotating reference frame
is:

H =
1

2

(

X2 + Y 2 + Z2
)

− (xY −Xy)− µ
√

(x+ µ− 1)2 + y2 + z2
− 1− µ
√

(µ+ x)2 + y2 + z2
. (1.1)

It represents an autonomous system with three degrees of freedom depending on the parameter µ,
that stands for the quotient m2/(m1 +m2). Assuming m1 ≥ m2, then µ ∈ (0, 1/2]. The masses m1

and m2 are located at the points (−µ, 0, 0) and (1− µ, 0, 0), respectively, in the coordinate space.
The Hamiltonian system has five equilibria, the Euler points L1, L2 and L3, which are unstable
for all µ, and the Lagrangian (also called triangular) points L4 and L5, whose stability depends
on the parameter µ. The coordinates of the Lagrangian equilibrium points L4 and L5 in the six-

dimensional phase space are
(

1/2− µ, ±
√
3/2, 0, ∓

√
3/2, 1/2− µ, 0

)

, where the upper sign applies
for L4 and the lower sign does for L5. The stability of both equilibria is the same, so from now on
we only refer to the point L4, although the same conclusions are valid for L5.

We translate the equilibrium solution L4 to the origin by means of the linear change of

coordinates given by x = x1 + 1/2− µ, y = y1 +
√
3/2, z = z1, X = X1 −

√
3/2, Y = Y1 + 1/2−

µ, Z = Z1. Then, Hamiltonian function (1.1) is expanded in Taylor series around 0, constant terms
are dropped and we get a Hamiltonian of the form

H = H2 +H3 + · · ·+Hj + · · · , (1.2)

where

H2 = 1
8(x

2
1 − 5y21 + 4z21) +

1
2(X

2
1 + Y 2

1 + Z2
1 )− (x1Y1 −X1y1)− 3

4

√
3x1y1(1− 2µ),

H3 = 1
16

[

3
√
3y1(x

2
1 + y21 − 4z21)− x1(7x

2
1 − 33y21 + 12z21)(1− 2µ)

]

,

H4 = 1
128(37x

4
1 − 3y41 − 48z41) +

3
64(−41x21y

2
1 + 4x21z

2
1 + 44y21z

2
1)

+ 5
32

√
3x1y1(5x

2
1 − 9y21 + 12z21)(1− 2µ).
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The linearisation matrix associated to L4 is

B =





























0 1 0 1 0 0

−1 0 0 0 1 0

0 0 0 0 0 1

−1
4

3
4

√
3(1− 2µ) 0 0 1 0

3
4

√
3(1− 2µ) 5

4 0 −1 0 0

0 0 −1 0 0 0





























.

The eigenvalues of matrix B read ±λ1,±λ2,±λ3, and are pure imaginary whenever 0 < µ < µR =
1
2(1−

√
69/9) with λ1 = iω1, λ2 = iω2, λ3 = iω3 and

ω1 =

√

1 +
√

1− 27µ+ 27µ2

√
2

, ω2 =

√

1−
√

1− 27µ+ 27µ2

√
2

, ω3 = 1. (1.3)

The value µR is the so-called Gascheau’s or Routh’s critical value. Note that when 0 < µ < µR one
has

0 < ω2 <

√
2

2
< ω1 < 1 and ω2

1 + ω2
2 = 1. (1.4)

It is also convenient to express µ in terms of ω1, ω2, leading to

µ =
1

2

(

1−
√

27− 16ω2
1 + 16ω4

1

3
√
3

)

=
1

2

(

1−
√

27− 16ω2
2 + 16ω4

2

3
√
3

)

. (1.5)

Observe that, taking into account (1.3), ω1 =
√
2/2 corresponds to µ = µR while ω1 = 1 is associated

to µ = 0. When µ > µR the equilibrium L4 is of focus-centre type, therefore unstable as it comes
from a symplectic system and the eigenvalues are ±λ± iν with λ, ν positive numbers. When µ = µR
the linear system is not diagonalisable, thus the equilibrium points are not of elliptic nature. This
case was proved to be Liapunov stable in the planar case in [17, 24] and formally stable in the
spatial case, see [22]. In the context of the planar restricted problem with µ = µR it is also worth
mentioning papers [28], where a first attempt to study nonlinear stability in the sense of Liapunov
is performed, and [2], where the author shows that, in a neighbourhood of µR, for most initial
conditions, trajectories are conditionally periodic. An account of the stability achievements when
µ ∈ (0, µR], also for the planar case, appears in [23]. In our analysis we focus on the interval (0, µR)

for µ, equivalently (
√
2/2, 1) for ω1 and (0,

√
2/2) for ω2.

There are several ways of performing the normal form transformation of Hamiltonian H in (1.2).
The most standard one consists in introducing a real linear symplectic change of coordinates to
put H2 in linear normal form by using the eigenvalues and eigenvectors of matrix B. We call the
transformed variables x = (q1, q2, q3, p1, p2, p3), where the qi stand for coordinates and pi do for
their conjugate momenta. Then, a complex linear change is introduced to express H2 in complex
diagonal form. Next, the two changes are applied to the higher-order terms. Finally, a procedure
based on Lie transformations is applied to normalise the terms from H3 on so that the resulting
Hamiltonian at each step commutes with H2. This process is executed up to a finite order and in
most of the cases in this problem order two is enough, which means, including the polynomials of
degree four that define H4.

In general we denote by Hp the normal form truncated at order p− 2, in other words, at degree
p in terms of rectangular coordinates, thus

Hp = H2 +H3 + · · ·+Hp, (1.6)

and the Poisson brackets {H2,Hk} = 0 for k = 2, . . . , p. In the setting of elliptic equilibria the
normal form is the so-called Birkhoff normal form, see for instance Theorem 5.5 in [1].
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To achieve the normal form we need to calculate the associated generating function that is used
to define the symplectic transformation. Since the expressions of the two terms of the generating
transformation are lengthy, we do not include them here, but they are available upon request from
the authors. The calculations have been performed in terms of the parameter ω1 using symbolic
arithmetic.

Now, we introduce the usual action-angle coordinates, say

(I, θ) = (I1, I2, I3, θ1, θ2, θ3)

where Ij =
1
2(q

2
j + p2j ) are the actions conjugate to the angles θj = tan−1(pj/qj) with j = 1, 2, 3.

Then H2 is converted into

H2 = ω1I1 − ω2I2 + ω3I3.

Notice that H2 is indefinite when µ ∈ (0, µR).

The normalised Hamiltonian in action-angle coordinates reads as

H = H2 +H4 + · · · , (1.7)

where

H4 = c200I
2
1 + c110I1I2 + c101I1I3 + c020I

2
2 + c011I2I3 + c002I

2
3 (1.8)

and

c200 =
ω2
2(124ω

4
1 − 696ω2

1 + 81)

144(1− 2ω2
1)

2(1− 5ω2
1)

, c110 = − ω1ω2(64ω
2
1ω

2
2 + 43)

6(1− 5ω2
1)(1− 2ω2

1)(1− 5ω2
2)(1− 2ω2

2)
,

c101 = − 8ω1ω
2
2

3(1− 2ω2
1)(4− ω2

1)
, c020 =

ω2
1(124ω

4
1 + 448ω2

1 − 491)

144(1− 2ω2
1)

2(1− 5ω2
2)

,

c011 =
8ω2ω

2
1

3(1− 2ω2
2)(4− ω2

2)
, c002 = − ω2

1ω
2
2

3(4− ω2
1)(4− ω2

2)
.

If we discard possible higher-order resonances, odd terms in the normal form Hamiltonian, say
H3, H5, . . ., are zero. Coefficients c200, c110, c020 were already calculated in [10] in the context of
the planar case.

Taking into consideration (1.4), there are only two resonant cases where the above normal form
does not apply. Specifically,

(i) ω1 =
2√
5
, ω2 =

1√
5
thus, ω1/ω2 = 2 and

µ = µ(1,2,0) =
1

2

(

1−
√
1833

45

)

. (1.9)

(ii) ω1 =
3√
10
, ω2 =

1√
10

thus, ω1/ω2 = 3 and

µ = µ(1,3,0) =
1

2

(

1−
√
213

15

)

. (1.10)

For these two sets of values some denominators of the generating function vanish and, as a
consequence, the generic normal form Hamiltonian already calculated is not valid. Thus, in these
cases we should compute specific normal forms that we shall show below. Notice that, apart from
these two cases, H4 does not contain any resonant terms under conditions (1.4).
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2. ON LIE STABILITY

In this section we review the main concepts and results related to Lie stability with the aim of
applying them in section 3. We start by recalling the notion of resonance.

Definition 1. The system related with Hamiltonian (1.7) presents a resonance relation if there
exists an integer vector k = (k1, k2, k3) 6= 0 such that

k1ω1 − k2ω2 + k3ω3 = 0.

The 1-norm of vector k, |k|1 = |k1|+ |k2|+ |k3|, is called the order of the resonance, while k is
known as the resonance vector and ω = (ω1, ω2, ω3) stands for the frequency vector.

For instance, resonance vectors corresponding to

(ω1, ω2, ω3) =
(

2√
5
, 1√

5
, 1
)

and
(

3√
10
, 1√

10
, 1
)

,

which are associated to (1.9) and (1.10), are (k1, k2, k3) = (1, 2, 0) and (1, 3, 0), respectively.

Notation 1. The notation µ(k1,k2,k3) means taking the value of µ ∈ (0, µR) associated to the

resonance vector k = (k1, k2, k3). In fact, along the paper we will use the same notation for the
µi and µ(k1,k2,k3) as in reference [3].

Definition 2. Consider the frequency vector ω = (m/n,
√
n2 −m2/n, 1), with m,n ∈ Z+, 0 < m <

n and m/n irreducible. Vector (m,
√
n2 −m2, n) is a Pythagorean triple if n2 −m2 is a perfect

square or, equivalently, ω2 ∈ Q. In this case we say that vector ω is associated with a Pythagorean
triple.

We will notice that the previous concept is crucial to decide on Lie stability.

Definition 3. We say that the origin of R6 in (1.2) is Lie stable if there exists m > 2 such that
the truncated Hamiltonian system in Birkhoff normal form associated to Hj is stable in the sense
of Liapunov for any (arbitrary) j ≥ m.

Definition 4. We say that the origin of R6 in (1.2) is formally stable if there exists a real formal
power series G(x), possibly divergent, which is an integral of H in the formal sense, and is positive
definite near x = 0.

Remark 1. The generalisation to n degrees of freedom of the definitions of Lie and formal stability
is straightforward [11]. Lie stability is a type of formal stability, see for instance [12]. As the normal
form transformation is carried out only to a finite order, checking Lie stability for the system in
normal form is equivalent to checking Lie stability for any system previous to the normal form
calculations.

Statement 1. Suppose {k1, . . . ,ks} is a basis of the Z-module Mω associated to the possible
resonances of H2, where 0 ≤ s ≤ 2. The null space of Mω is a vector subspace of R3 spanned
by the vectors {a1, . . . ,ad} with d = 3− s that satisfy ai · kj = 0, see details in [11], [12]. By
setting Fl = al · I with l = 1, . . . , d, we get the independent (formal) first integrals of the normalised
Hamiltonian (1.7).

Definition 5. We define the set

S =
{

I
∣

∣ F1(I) = . . . = Fd(I) = 0
}

,

which was first introduced in [11].

The set S contains the essential vectors to evaluate the Hamiltonian and decide on the Lie stability
of the system. We note that 0 ≤ dimS ≤ s.
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Statement 2. The quadratic part of H in terms of the formal first integrals Fk assumes the form

H2(I) =
d
∑

k=1

σkFk(I), (2.1)

where σk are linear combinations of ωj, see for instance [13]. The coefficients σk are rationally
independent.

Definition 6. It is said that vector σ = (σ1, . . . , σd) satisfies a Diophantine condition when there
are fixed constants c > 0 and ν ≥ d− 1 such that

∀k ∈ Zd \ {0} , |k · σ| ≥ c|k|−ν
1 . (2.2)

The symbol | | stands for the Euclidean norm.
At this point we recall two results that will be applied in the present paper in order to analyse

the nonlinear stability of L4 and give time estimates in the stable cases. We start with the theorem
on Lie stability, as stated in [6, 7], that will be applied in section 3.

Assume that Hamiltonian (1.1) is expressed as H in (1.2) after sufficient manipulations and also
that its normal form, up to an order p high enough, is given in (1.6). Then, the following result
applies.

Theorem 1. (A) Suppose there is an integer j ≥ 3 with Hj(I, φ1, . . . , φs) 6= 0 for all I ∈ S \ {0},
{φ1, . . . , φs} ∈ Ts, φi = ki · θ such that for all i with 3 ≤ i < j, Hi(I, φ1, . . . , φs) does not change
sign for I ∈ S \ {0}, {φ1, . . . , φs} ∈ Ts, where |I| is small enough. Then, the origin of R6 is Lie
stable for the Hamiltonian system (1.2).

(B) Suppose there is an integer i ≥ 3 such that Hi(I, φ1, . . . , φs) changes sign for some I ∈
S \ {0}, {φ1, . . . , φs} ∈ Ts, where |I| is small enough. Then, there is no index j > i such that
Hj(I, φ1, . . . , φs) 6= 0 for I ∈ S \ {0}, {φ1, . . . , φs} ∈ Ts with |I| sufficiently small.

According to the previous theorem, the Lie stability analysis consists in calculating the set
S introduced above, which is a linear subspace of R6 that is contained into the orthogonal space
related to the frequency vector ω. The Hamiltonian in normal form is computed only up to a suitable
order, checking whether its truncation vanishes only at the origin of S. When it so happens, then
Lie stability is obtained.

Remark 2. When S = {0} there is always Lie stability, see details in [12], [7].

For the Lie stable equilibria we will give an estimate of the solution’s evolution according to the
following theorem [6, 7]. Assume that x(t,x0) is a solution of the Hamiltonian system associated
to H in (1.2) with initial condition x0. The following result holds.

Theorem 2. If the real analytic Hamiltonian (1.2) has the origin of R6 as a formally stable
equilibrium according to hypotheses (A) of Theorem 1, while the frequency vector σ satisfies the
Diophantine condition (2.2), then there exist C > 0, E > 0, a > 1 and ε0 > 0 such that for all
ε ∈ (0, ε0), and for all x0 with |x0| < ε we have

|x(t,x0)| < aε2/j for all t with 0 ≤ t ≤ T = C exp

(

E

ε1/(ν+1)

)

.

The proofs of theorems 1 and 2 appear in [6, 7].

3. LIE STABILITY OF L4

Let us start by analysing the cases where the normal form (1.8) does not apply. Recall from

section 1 that (1.8) is not valid valid for ω1 = 2/
√
5, i.e. µ = µ(1,2,0), nor for ω1 = 3/

√
10, that is,

µ = µ(1,3,0). A specific normal form is calculated for each of these values concluding instability in

both cases, as it is also inferred from the planar problem [19, 20].
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Case µ(1,2,0) : For ω1 = 2/
√
5 the normal form up to degree 3 is

H3(I, φ1) =
1√
5
(2I1 − I2) + I3 +

1

53/4 · 3312
√
109

√

I1I2

(

3401
√
5 cosφ1 − 3155

√
611 sinφ1

)

,

where φ1 = θ1 + 2θ2. Notice that S = {(I1, 2I1, 0) | I1 ≥ 0}. Then, we take I in S and get

H3(I, φ1) =
1

53/4 · 1656
√
109

I
3/2
1

(

3401
√
5 cosφ1 − 3155

√
611 sinφ1

)

.

As the coefficient of I
3/2
1 has a simple zero then, by Theorem 3.1 in [11], the equilibrium is unstable.

Case µ(1,3,0) : For ω1 = 3/
√
10 the normal form up to terms of degree four is

H4(I, φ1) = 1√
10

(3I1 − I2) + I3 +
309
2240I

2
1 + 79

320I
2
2 − 1

403I
2
3 − 1219

560 I1I2 +
√
10
31 I1I3 +

√
10
13 I2I3

− 1
32560

√
28083

√
I1I

3/2
2

(

24146471 cosφ1 + 143827
√
710 sinφ1

)

,

with φ1 = θ1 + 3θ2. On this occasion S = {(I1, 3I1, 0) | I1 ≥ 0}. Evaluating H4 in S we get

H4(I, φ1) =
−3

4267118240I
2
1

(

5932056339 + 338050594
√
9361 cosφ1 + 2013578

√
6646310 sinφ1

)

.

Then, the coefficient of I21 in H4(I, φ1) has a simple zero and then, by Theorem 3.1 in [11], we
achieve instability.

Now we study the rest of the cases starting with the determination of the set S. This passes
through the construction of the formal integrals Fi associated to H2. We can have one, two or three
linearly independent integrals. The basic relations to be taken into account are written as

ω1I1 − ω2I2 + I3 = 0, k1ω1 − k2ω2 + k3 = 0,

with k1, k2, k3 ∈ Z and I1, I2, I3 ≥ 0. The following situations are in order:

(a1) If ω1, ω2 ∈ Q, then the frequency vector is associated to a Pythagorean triple. We get
F1 = ω1I1 − ω2I2 + I3, d = 1, s = 2 and

S =

{(

I1,
1

ω2
(ω1I1 + I3) , I3

) ∣

∣

∣

∣

I1, I3 ≥ 0

}

.

Considering I ∈ S \ {0}, taking into account (1.4) to express ω2 as a function of ω1, and
replacing everything in (1.8) we arrive at

H4(I) = β1I
2
1 + β2I1I3 + β3I

2
3 , (3.1)

with

β1 =
644ω8

1 − 1288ω6
1 + 1185ω4

1 − 541ω2
1 + 36

16(1− ω2
1)(1− 2ω2

1)
2(1− 5ω2

1)(4− 5ω2
1)
,

β2 =
ω1

(

18580ω12
1 − 67928ω10

1 + 70827ω8
1 + 30890ω6

1 − 62113ω4
1 + 22128ω2

1 − 8496
)

72(1− ω2
1)
(

1− 2ω2
1

)2 (
1− 5ω2

1

) (

3 + ω2
1

) (

4− ω2
1

) (

4− 5ω2
1

)
,

β3 =
ω2
1

(

960ω10
1 − 7364ω8

1 + 29940ω6
1 − 48219ω4

1 + 24155ω2
1 − 444

)

144(1− ω2
1)
(

1− 2ω2
1

)2
(3 + ω2

1)(4− ω2
1)(4− 5ω2

1)
.

(3.2)
We have to determine when there is no sign-change in H4(I), keeping in mind that I1, I3
should be non-negative. First, notice that there is only one solution of β1 = 0 in the interval

(1/
√
2, 1).
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Notation 2. We denote

ω∗
1 =

1

2

√

2 +

√

2

161
(−219 +

√
199945) ≈ 0.959622914235418

the only solution of β1 = 0 in the interval (1/
√
2, 1). From (1.5) the corresponding value of

µ is

µ1 =
1

2

(

1− 1

3

√

1

483
(3265 + 2

√
199945)

)

,

following the notation in [3].

Second, notice that β3 = 0 has only one solution in the interval (1/
√
2, 1).

Notation 3. We denote ω♯
1 the only solution of β3 = 0 in the interval (1/

√
2, 1). It is the

square root of a root of the fifth-degree polynomial 960x5 − 7364x4 + 29940x3 − 48219x2 +
24155x− 444 lying in the interval (1/

√
2, 1). An approximation of it is

ω♯
1 ≈ 0.935871439168618.

From (1.5) the corresponding value of µ is

µ2 ≈ 0.016376755355816,

following the notation in reference [3].

Using Mathematica version 12, in particular applying the specific routines of solving
equations and inequalities and eliminating quantifiers, we have proved that H4 keeps the
same sign for all ω1 ∈ D ∩Q, where

D =

(

1√
2
, 1

)

\
({

2√
5

}

∪ [ω♯
1, ω∗

1]

)

. (3.3)

It is stressed that H4(I) with I ∈ S \ {0} does not change sign for ω1 ∈ D regardless of
whether ω1 is rational or not.

At this point it is rather convenient to introduce the rational root test [25]: Given a polynomial
in the variable x of degree n, say, r(x) = anx

n + an−1x
n−1 + · · ·+ a1x

1 + a0 = 0, where a0,
a1, . . ., an are integers, the rational root test says that for the polynomial r(x) to have a
rational solution of the form p/q (irreducible fraction), q must divide an and p must divide
a0.

Applying the criterion given above we have proved that ω♯
1, ω

♯
2 = (1−ω♯2

1 )1/2 belong to R \Q.

Moreover, we have checked that there is no integer vector k 6= 0 such that k · (ω♯
1,−ω♯

2, 1) = 0.
So this case will be tackled in (b1).

Regarding ω∗
1 we have also checked that it is irrational and so is the corresponding

ω∗
2 = (1−ω∗2

1 )1/2. Additionally there is no integer vector k 6= 0 such that k · (ω∗
1,−ω∗

2, 1) = 0.
Therefore, this case has to be analysed in (b1) too.

Thence, by virtue of Theorem 1 the equilibrium L4 is Lie stable for ω1 ∈ D ∩Q and ω2 ∈ Q
related to a Pythagorean triple.

An example lying in this class is for instance ω1 = 4/5, ω2 = 3/5, which yields Lie stability.

However, choosing ω1 = 35/37, ω2 = 12/37, as ω1 ∈ [ω♯
1, ω

∗
1], one has that H4 changes sign

in S and then we cannot decide on its stability. This corresponds to a Pythagorean triple
and it is associated to a resonance of order eight, say (k1, k2, k3) = (1, 6, 1). It is indeed the

lowest order for a resonance corresponding to a Pythagorean triple in the interval (ω♯
1, ω

∗
1).
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(a2) If ω1 ∈ Q and ω2 ∈ R \Q, then the frequency vector is not associated to a Pythagorean triple,
and one gets F1 = ω1I1 + I3, F2 = I2. Thus d = 2, s = 1 and

S = {(I1, I2, I3) | ω1I1 + I3 = 0, I2 = 0, I1, I3 ≥ 0} = {0}.
Then, by applying Theorem 1 we conclude that L4 is Lie stable.

An example in (a2) is ω1 = 6/7 and ω2 =
√
13/7.

(b1) If ω1, ω2 ∈ R \Q and there is no integer vector k = (k1, k2, k3) 6= (0, 0, 0) such that k ·
(ω1,−ω2, 1) = 0 then there are no resonances among the main frequencies. Hence, Fj = Ij
for j = 1, 2, 3, d = 3, s = 0 and S = {0}. So Lie stability holds.

As we have seen in (a1), the values ω♯
1, ω

∗
1, correspondingly µ2, µ1, belong to this case, so

both of them lead to Lie stability.

Two more examples are ω1 = 6/
√
41, ω2 =

√

5/41 and ω1 = 2/e, ω2 =
√
e2 − 4/e.

(b2) If ω1, ω2 ∈ R \Q and there is an integer vector k = (k1, k2, k3) 6= (0, 0, 0) such that k ·
(ω1,−ω2, 1) = 0, then

ω1 =
k2
k1

ω2 −
k3
k1

, (3.4)

with k1 6= 0. Notice that k1 = 0 would imply −ω2k2 + k3 = 0 and then, either k2 = 0, in which
case k1 = k2 = k3 = 0, that is impossible, or ω2 = k3/k2 ∈ Q, contradicting the hypotheses of
(b2). Analogously k2 6= 0 because k2 = 0 would lead to ω1 = −k3/k1 ∈ Q, that is not feasible.
However, k3 = 0 is possible and this implies k1ω1 = k2ω2. We have to exclude the particular
value ω1 = 3/

√
10, as it leads to instability.

Using (3.4) we get

H2 =

(

k2
k1

I1 − I2

)

ω2 −
k3
k1

I1 + I3,

from where we deduce that F1 = k2I1/k1 − I2, F2 = −k3I1/k1 + I3, d = 2 and s = 1.

Consider the set

K =
{

(k1, k2, k3) ∈ Z3 | k1 6= 0, k2/k1 > 0, k3/k1 ≥ 0
}

.

If k ∈ K then one has dimS = 1 with

S =

{(

I1,
k2
k1

I1,
k3
k1

I1

) ∣

∣

∣

∣

I1 ≥ 0

}

.

Taking I ∈ S and using (1.4) and (3.4) we get

H4(I) =

(

β1 + β2
k3
k1

+ β3
k23
k21

)

I21 ,

where β1, β2 and β3 are given in (3.2). In factH4(I) can be obtained by replacing I3 = k3I1/k1
in (3.1). Due to the form acquired by H4, we notice this is a particular situation of H4 in
(a1) and we can conclude that H4(I) does not change sign in S \ {0} when ω1 ∈ D ∩ (R \Q)
with D given in (3.3) and ω2 ∈ R \Q. Therefore, Lie stability is accomplished when k ∈ K.

As in (a1), we have verified with Mathematica that in the interval [ω♯
1, ω

∗
1] there is no

k ∈ K such that H4(I) vanishes for I in S \ {0}, so for the study of this interval we go back
to (b1), concluding Lie stability.

Finally when k /∈ K then, from the first integrals F1, F2 given a few lines above one deduces
that S = {0}, concluding Lie stability.
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An example of the previous situation is µ(3,3,−2) that will be mentioned in the forthcoming
sections. In this case

ω1 =
1
6(2 +

√
14), ω2 =

1
6(−2 +

√
14),

which are irrational although resonant, the resonance vector being k = (3, 3,−2) /∈ K. Then,
Lie stability holds.

(b3) If ω1 ∈ R \Q and ω2 ∈ Q, then we take F1 = I1, F2 = −ω2I2 + I3, from where we get d = 2,
s = 1 and

S =

{(

0,
1

ω2
I3, I3

) ∣

∣

∣

∣

I3 ≥ 0

}

.

We consider I ∈ S \ {0}, write ω2 = (1− ω2
1)

1/2 and replace it in (1.8), ending up with
H4(I) = β3I

2
3 , with β3 given in (3.2). Notice that we arrive at the same expression replacing

I1 = 0 in (3.1). The domain where the normal form is properly defined and where β3 6= 0

is
(

1/
√
2, 1
)

\ {2/
√
5, ω♯

1, 3/
√
10}. Since the values of ω1 that we are discarding are in

correspondence with irrational values of ω2, we do not care about them. Therefore, applying
Theorem 1, the equilibrium L4 is Lie stable whenever ω1 ∈

(

1/
√
2, 1
)

with ω1 ∈ R \Q and
ω2 ∈ Q.

An example borrowed from reference [3] is µ(0,3,1). On this occasion ω1 = 2
√
2/3 ∈ R \Q,

ω2 = 1/3 ∈ Q, concluding Lie stability.

In Table 1 we have put the resonant cases corresponding to dimS = 0 until the eighth-order of
resonance whereas in Table 2 we have written the resonant cases corresponding to dimS = 1 also
to order 8. Note that σ is always a Diophantine vector. Both tables appear in the Appendix.

Taking into account Notation 2, Notation 3 and µ(1,2,0), µ(1,3,0) introduced respectively in (1.9)

and (1.10), we summarise our main result on the Lie stability of L4 in the spatial case of the
restricted circular three body problem as follows.

Theorem 3. For 0 < µ < µR the equilibrium point L4 is Lie stable for the Hamiltonian system
related to (1.1), excepting the unstable situations µ(1,2,0), µ(1,3,0) and the values µ ∈ (µ1, µ2) leading
to a Pythagorean triple.

4. ASYMPTOTIC ESTIMATES

In this section we apply Theorem 2 to bound the solutions of the restricted circular three-body
problem near the equilibrium (in case it is Lie stable) over exponentially long times.

First we have to take into account the order j in the normal form (1.7) that determines the Lie
stability. When S = {0}, then j = 2 and in the rest of situations j = 4. Second, we have to consider
the number of independent first integrals, that is d, which ranges from 1 to 3 in the problem at
hand.

In our study the solution is expressed as I(t), that is a function of the order of |x|2. So, |x(0)| < ε
implies |I(0)| < ε2. Introducing ǫ = ε2 and setting I0 = I(0), then the thesis of Theorem 2 will read
as

|I(t)| < α ǫ2/j for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/(2(ν+1))

)

,

where α, C, E are obtained respectively from a, C and E.

Usually for the estimates in terms of action-angle coordinates, the norm used to bound the
actions is the 1-norm, but here we use the Euclidean norm as both are equivalent.

The following considerations are in order:
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1. If S = {0}, then either d = 2 (cases (a2) and (b2) for k /∈ K) or d = 3 (case (b1)). Thus, the
parameter ν involved in the Diophantine condition satisfies ν ≥ 1 or ν ≥ 2, respectively.

When the vector σ = (σ1, σ2) or σ = (σ1, σ2, σ3) respectively, satisfies (2.2), there exist α > 1,
C > 0, E > 0 and ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0) with |I(0)| < ǫ we get

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

, (4.1)

in (a2) and (b2) with k /∈ K or

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/6

)

, (4.2)

in the situation (b1).

2. If S 6= {0}, then j = 4.

• When d = 2, ν ≥ 1 (cases (b2) with k ∈ K and (b3)). Thence, if the frequency vector
σ = (σ1, σ2) satisfies (2.2), there exist α > 1, C > 0, E > 0 and ǫ0 > 0 such that for all
ǫ ∈ (0, ǫ0) and |I(0)| < ǫ, the following estimate holds

|I(t)| < α ǫ1/2 for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

. (4.3)

• If d = 1 (case (a1)), then ν ≥ 0 and since there is only one first formal integral no
Diophantine condition is needed. There exist α > 1, C > 0, E > 0 and ǫ0 > 0 such that
for all ǫ ∈ (0, ǫ0) and |I(0)| < ǫ we get

|I(t)| < α ǫ1/2 for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/2

)

. (4.4)

Notice that the constants α, C and E are independent of ǫ and are supposed to be obtained using
bounds on the normal-form terms.

In summary, we have the following results.

Theorem 4. For the Hamiltonian system associated with (1.1) we have the subsequent asymptotic
estimates around the equilibrium point L4 in case it is Lie stable:

1. When the vector ω is associated to a Pythagorean triple in D, then there exist α > 1, C > 0,
E > 0 and ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0) with |I(0)| < ǫ:

|I(t)| < α ǫ1/2 for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/2

)

.

2. When σ is Diophantine, then there exist α > 1, C > 0, E > 0 and ǫ0 > 0 such that for all
ǫ ∈ (0, ǫ0) with |I(0)| < ǫ:

(a) If either ω1 ∈ Q and ω2 ∈ R \Q or ω1, ω2 ∈ R \Q and there is k /∈ K such that
k · (ω1,−ω2, 1) = 0, then

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

.

(b) If ω1, ω2 ∈ R \Q and there are no resonances among the main frequencies, then

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/6

)

.
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(c) If ω1 ∈ R \Q and either ω2 ∈ Q or ω2 ∈ R \Q and there is k ∈ K such that k ·
(ω1,−ω2, 1) = 0, then

|I(t)| < α ǫ1/2 for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

.

We specify the results obtained by our approach for some values handled in previous studies.

Corollary 1. Given ǫ ∈ (0, ǫ0) and |I(0)| < ǫ, the following estimates around the equilibrium point
L4 are satisfied.

For µ = µ1, µ2 we obtain

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/6

)

.

For µ = µ(3,3,−2) we achieve

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

.

For µ = µ(0,3,1) we arrive at

|I(t)| < α ǫ1/2 for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/4

)

.

For µ = µ3 ≈ 0.014780913055964 we get

|I(t)| < α ǫ for all t with 0 ≤ t ≤ T = C exp

( E
ǫ1/6

)

.

The case µ3 will be tackled in section 5.

5. COMPARISON WITH PREVIOUS RESULTS

Regarding related approaches to the nonlinear stability of L4, we mention that in 1971
Markeev [20] proved the stability of L4 in µ ∈ (0, µR) \ {µ(1,2,0), µ(1,3,0)} for most initial conditions,
in the sense of the Lebesgue measure. In other words, he proved the existence of KAM 3-
tori around L4. In 1973, see [21], the same author proved the formal stability of L4 for µ ∈
(0, µ1)∪ (µ2, µ(1,2,0))∪ (µ(1,2,0), µR). This corresponds to the domainD that we have defined in (3.3).

The formal stability analysis made in (µ1, µ2) is not complete as double resonances are not
considered for orders higher than 6.

Remark 3. Theorem 3 recovers the formal stability achievements already obtained in the set
D and extends them to µ1, µ2 and the values µ ∈ (µ1, µ2) not leading to a Pythagorean triple.
Moreover our proof of Lie stability uses different arguments from the one of Markeev in [21].
Indeed, our approach is straightforward since we only need that H4 restricted to the set S be
sign-definite, while Markeev introduced a formal first integral in each specific case.

In 1989, Giorgilli et al. [14], applying normal form techniques with floating-point arithmetic,
proved that L4 was Nekhoroshev stable for µ ∈ (0, µR), excepting a few values of µ that led to
resonances. Furthermore the vector ω should satisfy a Diophantine condition. In 1991, Celletti and
Giorgilli [8], along the same line, refined the preceding achievements.

In 1998 Benettin et al. [3] extended previous results with the idea of determining Nekhoroshev
stability without imposing any Diophantine condition. On the one hand, the requirement of quasi-
convexity was relaxed by introducing the concept of directional quasi-convexity, that is specific for
elliptic equilibria. On the other hand, they enlarged the directional quasi-convexity requirement by
proposing a steepness condition on the 3-jet of the sixth order normal form, following the original
ideas of Nekhoroshev. They applied their results using normal forms with floating-point arithmetic
to establish that H4(I) was directionally quasi-convex, and then concluding that L4 is Nekhoroshev
stable in the domain D.
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Remark 4. It is worth mentioning that the estimates claimed in Theorem 2 of [3] have not been
proved so far, and only very recently bounds for steep elliptic equilibria have appeared [4]. As
these estimates depend on the steepness indices, it is not immediate to apply them in our problem,
therefore we have preferred to use the ones of [3] in our comparisons.

For µ ∈ D, |I(0)| ≤ ǫ and ǫ sufficiently small, two estimates were obtained in [3], namely,

|I(t)| ≤ ǫ1/3 for 0 < t ≤ exp(ǫ−1/3) (5.1)

and

|I(t)| ≤ ǫ1/2 for 0 < t ≤ exp(ǫ−1/6). (5.2)

Several comparisons between our approach and that of [3], when ω1 is in the domain D, are in
order:

(i) According to Theorem 4, when ω is associated to a Pythagorean triple in D, our confinement

bound for |I(t)| is of the same order ǫ1/2 but our time estimate is longer, indeed of the order

of exp(ǫ−1/2), whereas in (5.2) is exp(ǫ−1/6).

(ii) When the vector σ satisfies the Diophantine condition (2.2) and S = {0} the bounds obtained
using Theorem 4 are sharper than the ones of (5.2). Observe that in cases 2.(a) and 2.(b) of

Theorem 4 the confinement is of order ǫ, whereas in (5.1) and (5.2) it is either of order ǫ1/2

or ǫ1/3. In fact, the order ǫ is stated in the context of Nekhoroshev estimates only when the
3-jet is computed.

(iii) Under the usual Diophantine condition, in case 2.(c) of Theorem 4, the time estimate is better

than it is in (5.2), say exp(ǫ−1/4) versus exp(ǫ−1/6), for the same confinement of the solution,

that is ǫ1/2, using only the normal form H4, that is, without calculating higher-order terms.

When µ ∈ [µ1, µ2], Benettin et al. [3] calculated the normal form term H6(I) (with numerical
coefficients) as directional quasi-convexity does not hold in this interval. It was also checked
that the normal form of order eight could be computed excepting the values µ(1,3,0), µ(0,3,1) and

µ(3,3,−2). They also proved that H6(I) was steep except at µ3. More specifically, they determined

when H6 was non-degenerate, in other words, under which conditions the unique solution of
H2(I) = H4(I) = H6(I) = 0 was I = 0. To simplify the calculations, it was also required in [3] that
the restriction of the Hessian matrix of H4, say A, to the plane orthogonal to ω is nonsingular, in
other words if ω · I = 0, A I = 0 then I = 0. Then, excluding the aforementioned values, steepness
(and Nekhoroshev stability) was concluded in [µ1, µ2] and the estimates were as follows.

For µ ∈ [µ1, µ2] \ {µ(3,3,−2), µ(1,3,0), µ3, µ(0,3,1)}, |I(0)| ≤ ǫ and ǫ small enough:

|I(t)| < ǫ for 0 < t < exp(ǫ−1/20). (5.3)

The cases µ(3,3,−2), µ(0,3,1) were excluded from the estimates (5.3) because, although for both cases
H6 depends only on the actions, the corresponding H8 contains resonant terms, and the above
bounds require that H8 depend only on I.

In the interval [µ1, µ2] we stress the following points of our approach:

(i) For µ ∈ [µ1, µ2] \ {µ(3,3,−2), µ(1,3,0), µ3, µ(0,3,1)}, when σ satisfies (2.2), and such that the
frequencies leading to Pythagorean triples are excluded, the time estimates of Theorem 4
obtained through H4 are better than the ones in (5.3) deduced from H6. Nevertheless, the
confinement of the actions obtained in [3] is sharper, excepting when S = {0}, as then both
are of the same order.
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(ii) The case of the Pythagorean triples for µ ∈ (µ1, µ2) is a pending issue in our analysis. What
happens is that H4 changes sign in S and then, we cannot conclude Lie stability. According
to (B) in Theorem 1, computing higher-order terms in the normal form would not lead to a
sign-definite formal integral. From [3] (and from our own analysis) we know that H6 is steep
for all Pythagorean triples, thus bounds for the solution are provided. Although steepness
does not imply stability, if instability holds, the diffusion mechanism would be very slow.

(iii) Case µ(3,3,−2) is Lie stable, as it belongs to (b2) in section 3. Case µ(0,3,1) is also Lie stable, as

it belongs to (b3) in section 3. Corollary 1 gives asymptotic estimates in both cases. However
they cannot be studied from the point of view of Nekhoroshev theory.

(iv) Cases µ(1,3,0) and µ(1,2,0) do not satisfy the necessary conditions leading to Nekhoroshev
stability, but they are already known to be unstable.

The case µ3 corresponds to a degenerate 3-jet. So, when applying Nekhoroshev techniques, one
needs to pursue the calculations to get the 4-jet, that is, H8(I). Moreover, one has to take into
account that for r-jets with r > 3 additional conditions apart from the non-degeneracy of the jet are
needed to ensure steepness. This case was studied by Schirinzi and Guzzo in 2015 [27], establishing
Nekhoroshev stability for µ = µ3. It should be noticed that their normal form calculations were
performed using floating-point arithmetic. However, the related asymptotic estimates have not been
determined so far.

Trying to get the value µ3 from our normal form H6 we notice that the corresponding 3-jet
becomes zero for µ3 but then the associated I3 < 0. More precisely, in our analysis µ3 does not
appear as a special value and Lie stability is accomplished without the need of analysing H6. The
value µ3 ≈ 0.014780913055963 is in correspondence through (1.3) with the value ω1 lying in the

interval (ω♯
1, ω

∗
1) obtained as the square root of a root of the polynomial of degree 52 given by

∑52
i=0 cix

i whose coefficients are given in Table 3 of the Appendix. By applying the rational root
test we have proved that the value of ω1 related to µ3 is irrational and the same is true with the
corresponding ω2. Therefore this situation is a specific example of (b1) in section 3.

We do the following considerations regarding µ3:

(i) For µ3 the equilibrium is Lie stable and time estimates are given in Corollary 1. This
conclusion is obtained just from the analysis of H4.

(ii) The calculations we have performed in order to achieve Lie stability use symbolic arithmetic.
We have carried out the computations up to order 4, that is, determining H6(I), although
for our analysis only order 2 is required, excepting for the explicit calculation of µ3. The
computations are valid disregarding the resonances that appear in the generating functions
and that we have treated separately.

It is not straightforward to compare our asymptotic estimates with those obtained in [3] and
other references, but in general our bounds are sharper than those accomplished with the use of
Nekhoroshev theory with low order normal forms. For instance, using H4 in the Lie stable cases

where dimS = 2 our time estimate is of the order exp(Eǫ−1/2), which is not obtained applying
Nekhoroshev theory. Moreover, the exponent of ǫ−1 in the time estimates never exceeds 1/6, while
in [3] it can be 1/20, as we have seen before. Sharper bounds could be obtained in the setting of
Nekhoroshev theory by computing higher-order normal forms, see for instance [3, 26], and references
therein.

Finally we point out a couple of considerations related to our estimates:
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(i) It would be desirable to drop, or at least to relax, the Diophantine condition in Theorem 2,
but so far it is not possible since it is an essential requirement for estimating the bounds for
formal integrals in [9]. Sometimes given a non-resonant vector σ it is not straightforward to
deduce whether it is Diophantine or Liouville, although it is a well-known fact that for a fixed
ν the Lebesgue measure of the set of vectors σ ∈ Rd that does not satisfy the Diophantine
condition for any c > 0 is zero. In cases of Liouville vectors σ we make use of Benettin et al.’s
bounds given in (5.1) and (5.2). In this context, perhaps we could apply Lochak’s method
of averaging [18] by analysing the neighbourhoods of periodic solutions of the unperturbed
system, see reference [26], dropping therefore the need of using condition (2.2).

(ii) In case (b1) it could happen that the frequency vector σ = (σ1, σ2, σ3) be Diophantine. If this
occurs the best time estimates are of doubly exponential character, see [5].

In Fig. 1 we adapt Fig. 1 from [3] to collect known results about the stability of L4.

Fig. 1. Type of stability of the Lagrangian points depending on µ in the spatial case.

6. KAM TORI

In this section we prove the existence of 3-dimensional KAM tori and quasi-periodic motions
encasing the equilibrium point L4 of the Hamiltonian system related to (1.1) at each energy
level. This is indeed Markeev’s analysis performed in [20]. For our purpose we apply the classical
theorem by Kolmogorov, Arnold and Moser in its isoenergetic version, see, for instance [1]. Thus,
an isoenergetic nondegeneracy condition has to be satisfied. More precisely, we get

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∂2H4

∂I2
∂H4

∂I

∂H4

∂I
0

∣

∣

∣

∣

∣

∣

∣

∣

=
ω2
1

(

ω2
1 − 1

)

d4

559872
(

1− 2ω2
1

)6 (
ω2
1 − 4

)3 (
ω2
1 + 3

)3 (
5ω2

1 − 4
)3 (

5ω2
1 − 1

)3 ,

where

d4 = −856968120000ω32
1 + 6855744960000ω30

1 − 12012443413200ω28
1 − 35888432907600ω26

1

+156438442275660ω24
1 − 160144630175160ω22

1 + 31637715760125ω20
1

−362513394226125ω18
1 + 1355837182686882ω16

1 − 2073003173172738ω14
1

+1782670403156769ω12
1 − 952761177324729ω10

1 + 327497353333812ω8
1

−74195783114400ω6
1 + 11875034325888ω4

1 − 1435874045184ω2
1 + 95785141248.
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Fig. 2. Graph of the curve d4(ω1).

Note that the function d4 = d4(ω1) is null only when ω1 = 2/
√
5, i.e., µ = µ(1,2,0), see Fig. 2.

Thus, D4 does not vanish for ω1 ∈ (1/
√
2, 1) \ {2/

√
5}. Even in the situations where we do not

know if Lie stability holds, that is, the ones corresponding with Pythagorean triples such that
µ ∈ (µ1, µ2), D4 is different from zero.

We establish the following result.

Theorem 5. For µ ∈ (0, µR) \ {µ(1,2,0), µ(1,3,0)}, most of the invariant 3-tori corresponding to the

term H4 derived from the Hamiltonian system related to (1.1) will persist slightly deformed for any
sufficiently small perturbation of them, that is, for the full system. Moreover, the Lebesgue measure
of the complement of the set of tori tends to zero when the perturbation is small. More precisely,
the invariant tori form a majority on each energy-level manifold. The measure of the complement

of the invariant tori that remain is of the order O(ε1/4) and can be refined to O(ε(l−3)/4) when the
frequency vector ω does not satisfy resonance relations of order l with l ≤ 4.

Remark 5. We have also applied Han-Li-Yi’s Theorem [15] dropping the isoenergetic condition.
In this way we have obtained invariant 3-tori and quasiperiodic motions for the full Hamiltonian of
the spatial circular restricted three body problem (1.1) in the situations where it can be expressed
as H2(I) + ε2H4(I) +O(ε4). Around L4, this is possible after introducing a stretching of coordinates
as we have done in the course of the paper, discarding the two unstable cases, for a sufficiently small
ε > 0. Specifically there are families of invariant 3-tori enclosing the equilibrium point L4. These
invariant tori form a majority in the sense that the measure of the complement of their union is of
the order O(εδ) with a fixed value of δ such that 0 < δ < 1/5. The invariant tori are organised in
Cantor families that depend on the parameter µ.

Notice that the application of Han-Li-Yi’s Theorem for high-order proper degeneracy yields
similar results to the ones obtained through Thereom 5. Indeed, according to Han et al., the
measure of the tori that do not remain after the perturbation can be refined pushing the normal
form computation to higher orders in case that resonant terms are not encountered, analogously
as in Theorem 5.

APPENDIX

We include two tables containing the single resonant cases up to |k|1 = 8. Table 1 accounts for
the case of dimS = 0. For the case of dimS = 1, see Table 2.

In Table 3 we give the coefficients of the polynomial µ3 comes from as a root.
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k F1 F2 σ = (σ1, σ2) Case

(2, 2,−1) I2 − I1 I1 + 2I3

(

1−
√

7
4 , 1

2

)

(b2)

(3, 2,−1) 3I2 − 2I1 I1 + 3I3

(

2(1−3
√

3)
39 , 1

3

)

(b2)

(3, 1,−2) 3I2 − I1 2I1 + 3I3

(

2−3
√

6
30 , 1

3

)

(b2)

(2, 3,−1) 2I2 − 3I1 I1 + 2I3

(

3−4
√

3
26 , 1

2

)

(b2)

(1,−3,−2) 3I1 + I2 2I1 + I3

(

−6+
√

6
10 , 1

)

(b2)

(4, 0,−3) I2 3I1 + 4I3

(

−
√

7
4 , 1

4

)

(a2)

(3, 3,−1) I2 − I1 I1 + 3I3

(

1−
√

17
6 , 1

3

)

(b2)

(2, 4,−1) I2 − 2I1 I1 + 2I3

(

2−
√

19
10 , 1

2

)

(b2)

(1,−4,−2) 4I1 + I2 2I1 + I3

(

−8+
√

13
17 , 1

)

(b2)

(4, 3,−1) 4I2 − 3I1 I1 + 4I3

(

3−8
√

6
100 , 1

4

)

(b2)

(4, 1,−3) 4I2 − I1 3I1 + 4I3

(

3−8
√

2
68 , 1

4

)

(b2)

(3, 4,−1) 3I2 − 4I1 I1 + 3I3

(

2(2−3
√

6)
75 , 1

3

)

(b2)

(3, 3,−2) I1 − I2 2I1 + 3I3

(

−2+
√

14
6 , 1

3

)

(b2)

(2, 5,−1) 2I2 − 5I1 I1 + 2I3

(

5−4
√

7
58 , 1

2

)

(b2)

(1,−4,−3) 4I1 + I2 3I1 + I3

(

2(−6+
√

2)
17 , 1

)

(b2)

(1,−5,−2) 5I1 + I2 2I1 + I3

(

−10+
√

22
26 , 1

)

(b2)

Table 1. Resonance vector, first integrals and vector σ in cases of dimS = 0. Hamiltonian H2 =
σ1F1 + σ2F2. In the situation (b2), k /∈ K.
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k F1 F2 σ = (σ1, σ2) Case

(0, 2, 1) I1 I2 − 2I3

(√

3
2 ,− 1

2

)

(b3)

(0, 3, 1) I1 I2 − 3I3

(

2
√

2
3 ,− 1

3

)

(b3)

(2, 3, 0) 3I1 − 2I2 I3

(

1
√

13
, 1
)

(b2)

(0, 4, 1) I1 I2 − 4I3

(√

15
4 ,− 1

4

)

(b3)

(0, 3, 2) I1 2I2 − 3I3

(√

5
3 ,− 1

3

)

(b3)

(1, 5, 0) 5I1 − I2 I3

(

1
√

26
, 1
)

(b2)

(0, 5, 1) I1 I2 − 5I3

(

2
√

6
5 ,− 1

5

)

(b3)

(2, 5, 0) 5I1 − 2I2 I3

(

1
√

29
, 1
)

(b2)

(2, 4, 1) 2I1 − I2 I1 − 2I3

(

2+
√

19
10 ,− 1

2

)

(b2)

(1, 6, 0) 6I1 − I2 I3

(

1
√

37
, 1
)

(b2)

(1, 4, 2) 4I1 − I2 2I1 − I3

(√

13+8
√

17
17 ,−

√
17
)

(b2)

(0, 6, 1) I1 I2 − 6I3

(√

35
6 ,− 1

6

)

(b3)

(0, 5, 2) I1 2I2 − 5I3

(√

21
5 ,− 1

5

)

(b3)

(3, 5, 0) 5I1 − 3I2 I3

(

1
√

34
, 1
)

(b2)

(2, 5, 1) 5I1 − 2I2 I1 − 2I3

(

5+4
√

7
58 ,− 1

2

)

(b2)

(1, 7, 0) 7I1 − I2 I3

(

1
5
√

2
, 1
)

(b2)

(1, 5, 2) 5I1 − I2 2I1 − I3

(

10+
√

22
26 ,−1

)

(b2)

(0, 7, 1) I1 I2 − 7I3

(

4
√

3
7 ,− 1

7

)

(b3)

Table 2. Resonance vector, first integrals and vector σ in cases of dimS = 1. Hamiltonian H2 =
σ1F1 + σ2F2. In the situation corresponding to (b2), k ∈ K.
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6. Cárcamo-Dı́az, D., Stability and Estimates Near Elliptic Equilibrium Points in Hamiltonian Systems
and Applications, PhD Thesis, Universidad del B́ıo-B́ıo, Concepción, Chile, 2019.
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