
On the nonlinear threshold versus

distance in long-haul highly-dispersive

coherent systems

A. Bononi,∗ N. Rossi, and P. Serena

Dip. Ing. informazione, Università degli Studi di Parma, Parma, Italy

∗alberto.bononi@unipr.it

Abstract: We show that the accumulation rate of nonlinearity in highly-

dispersive long-haul coherent links can also be measured from the nonlinear

threshold decrease rate, and provide simulations of such rates for both

single- and cross-channel effects. We then show how the estimated rate can

be used for the overall system design.

© 2012 Optical Society of America

OCIS codes: (060.1660) Coherent communications; (060.4370) Nonlinear optics, fibers.

References and links

1. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. S. Pak, R. Noe, I. Shpantzer, and V. Karagodsky,

“Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links, ” Opt. Express

16(20), 4228–4236, (2008).

2. X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced

coherent optical OFDM systems,” Opt. Express 18(18), 19039–19054 (2010).

3. G. Bosco, A. Carena, R. Cigliutti, V. Curri, P. Poggiolini, and F. Forghieri, “Performance prediction for WDM

PM-QPSK transmission over uncompensated links,” in Proc. OFC 2011 (Los Angeles, CA, 2011). Paper OThO7.

4. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of non-linear propagation in

uncompensated optical transmission links,” IEEE Photon. Technol. Lett. 23(11), 742–744 (2011).

5. E. Grellier, and A. Bononi, “Quality parameter for coherent transmissions with Gaussian-distributed nonlinear

noise,” Opt. Express 19(13), 12781–12788 (2011).

6. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of non-Linear propagation

effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. 30(10), 1524–1539 (2012).

7. A. Bononi, P. Serena, N. Rossi, E. Grellier, and F. Vacondio, “Modeling nonlinearity in coherent transmissions

with dominant intrachannel-four-wave-mixing,” Opt. Express 20(7), 7777–7791 (2012).

8. F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J.-C. Antona, and S. Bigo, “On nonlinear

distortions of highly dispersive optical coherent systems,” Opt. Express 20(2), 1022–1032 (2012).

9. A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. Tapia Taiba, and F. Forghieri, “Statistical characterization of

PM-QPSK signals after propagation in uncompensated fiber links,” in Proc. ECOC 2010 (Turin, Italy, 2010).

Paper P4.07.

10. A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK

coherent transmissions?,” in Proc. ECOC 2010 (Turin, Italy, 2010). Paper Th10E1.

11. O. V. Sinkin, J.-X. Cai, D. G. Foursa, H. Zhang, A. N. Pilipetskii, G. Mohs, and Neal S. Bergano, “Scaling of

nonlinear impairments in dispersion-uncompensated long-Haul transmission,” in Proc. OFC 2012 (Los Angeles,

CA, 2012). Paper OTu1A.

12. A. Bononi N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC 2011 (Los

Angeles, CA, 2011). Paper OWO7.

13. O. Rival, and K. Mheidly, “Accumulation rate of inter and intra-channel nonlinear distortions in uncompensated

100G PDM-QPSK systems,” in Proc. OFC 2012 (Los Angeles, CA, 2012). Paper JW2A.52.

14. A. Bononi, N. Rossi, and P. Serena, “Nonlinear threshold decrease with distance in 112 Gb/s PDM-QPSK coher-

ent systems,” in Proc. ECOC 2012 (Amsterdam, The Netherlands, 2012). Paper We.2.C.4.

15. J. C. Antona and S. Bigo, “Physical design and performance estimation of heterogeneous optical transmission

systems,” C. R. Physique 9, 963–984 (2008).

#176068 - $15.00 USD Received 26 Sep 2012; revised 6 Nov 2012; accepted 6 Nov 2012; published 29 Nov 2012
(C) 2012 OSA 10 December 2012 / Vol. 20,  No. 26 / OPTICS EXPRESS  B204



16. Y. Frignac, J.-C. Antona, and S. Bigo, “Enhanced analytical engineering rule for fast optimization of dispersion

map in 40 Gbit/s-based transmission systems,” in Proc. OFC 2004 (Los Angeles, CA, 2004). Paper TuN3.

17. A. Bononi, P. Serena, and A. Orlandini, “A unified design framework for single-channel dispersion-managed

terrestrial systems,” J. Lightwave Technol. 26(22), 3617–3631 (2008).

18. A. Bononi, P. Serena, and N. Rossi, “Nonlinear signal-noise interactions in dispersion-managed links with various

modulation formats,” Opt. Fiber Technol. 16(2), 73–85 (2010).

19. M. Winter, C.-A. Bunge, D. Setti, and K. Petermann, “A statistical treatment of cross-polarization modulation in

DWDM systems,” J. Lightwave Technol. 27(17), 3739–3751 (2009).

20. “Optilux Toolbox,” [Online]. Available http://www.optilux.sourceforge.net

21. J.-C. Antona, E. Grellier, A. Bononi, S. Petitreaud, and S. Bigo, “Revisiting binary sequence length requirements

for the accurate emulation of highly dispersive transmission systems,” in Proc. ECOC 2008 (Brussels, Belgium,

2008). Paper We.1.E.3.

22. E. Grellier, J.-C. Antona, A. Bononi, and S. Bigo, “Revisiting binary sequence length requirements to accurately

emulate optical transmission systems in highly dispersive regime,” SPIE 7136, 713613 (2008).

23. Y. Ye, L. N. Binh, E. Zhou, T. Wu, S. Zhang, and X. Xu, “A simple criterion for performance estimation of

112Gb/s PDM-QPSK WDM system over uncompensated links,” in Proc. OFC 2012 (Los Angeles, CA, 2012).

Paper JW2A.45.

24. V. A. J. M. Sleiffer, M. S. Alfiad, D. van den Borne, S. L. Jansen, M. Kuschnerov, S. Adhikari, and H. De

Waardt, “A comparison of 43-Gb/s POLMUX-RZ-DPSK and POLMUX-RZ-DQPSK modulation for long-haul

transmission systems,” in Proc. ECOC 2010 (Turin, Italy, 2010). Paper Mo.2.C.4.

25. M. Salsi, C. Koebele, P. Tran, H. Mardoyan, S. Bigo, and G. Charlet, “80×100-Gbit/s transmission over 9,000km

using erbium-doped fibre repeaters only,” in Proc. ECOC 2010 (Turin, Italy, 2010). Paper We.7.C.3.

26. E. Grellier, J.-C. Antona, and S. Bigo, “Revisiting the evaluation of non-linear propagation impairments in highly

dispersive systems,” in Proc. ECOC 2009 (Vienna, Austria, 2009). Paper 10.4.2.

27. V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance evaluation of long-haul 100 Gb/s

PM-QPSK transmission over different fiber types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010).

28. P. Poggiolini, “The GN model of non-Linear propagation in uncompensated coherent optical systems,” J. Light-

wave Technol. (2012), Early Access.

1. Introduction

A Gaussian nonlinear model (GNM) was recently introduced to justify the performance of dis-

persion uncompensated (DU) coherent links with orthogonal frequency division multiplexing

signals [1,2] and with single-carrier signals [3–5]. According to that model, the nonlinear inter-

ference (NLI) is a signal-independent circular Gaussian noise, like the amplified spontaneous

emission (ASE) noise. Thus performance just depends on the nonlinear signal to noise ratio

(SNR)

S =
P

NA +aNLP3
(1)

where P is the power per channel, NA is the ASE power, and NNLI = Var[ fNLI ] = aNLP3 is the

variance of the NLI field fNLI , which scales cubically with P through the NLI coefficient aNL. In

a system with N spans, the ASE power scales linearly with N, while the NLI field fNLI =∑N
k=1 fk

is the sum of N random variables (RV) contributed by each span. The accumulation law of

NNLI with distance N was shown by a frequency-domain analytical model for a Nyquist-spaced

wavelength division multiplexed (WDM) system (channel spacing ∆ f equal to the symbol rate

R) to be approximately NNLI ∝ N(1+αlogN) with α a system parameter [6], while a single-

channel time-domain analytical model yielded a scaling law NNLI ∝ Nlog(kN) with k a system

parameter [7]. Since the variance NNLI of the NLI field scales as N1 if the span contributions

fk are uncorrelated equal-variance RVs, or as N2 if the span contributions are the same RV, a

pragmatic approximation to the distance scaling law assumes [8]

aNL = αNLN1+ε (2)

with ε a system factor, whose value reasonably is between 0 and 1, and αNL is a constant.

The exponent was measured from experimental bit error rate (BER) measures as 1+ ε ∼= 1.37
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in 50 GHz spaced, 28 Gbaud polarization division multiplexed quadrature phase shift keying

(PDM-QPSK) channels over standard single mode fiber (SMF) DU links with 100 km spans

and 80 WDM channels, and the fit was over the range 5 < N < 30 [8]. For the same system,

a value 1 + ε ∼= 1.25 over the larger 5 < N < 50 can be read off the simulation results in

[9]. The decrease of ε in such systems when the range of N is extended is confirmed by the

single-channel analysis and simulations in [7]. Such WDM DU systems have a bandwidth fill-

factor η = R
∆ f

= 0.56 and the dominant nonlinear effect is single channel self-phase modulation

[10]. Recent experiments [11] performed on ultra-long DU SMF links with ∼50 km spans at

variable η confirm that when η � 0.6 the NLI accumulation exponent is 1+ ε ∼= 1.2÷ 1.6
(since single-channel nonlinear effects are dominant [12]), while at larger η (where cross-

nonlinearity starts to dominate) the exponent decreases to 1+ ε ∼= 1.05. A recent simulation

study on 28 Gbaud PDM-QPSK transmission over an Nx100 km SMF DU link [13] found that

the NLI coefficient aNL can be approximated as the sum of single and cross-channel effects as

aNL = αSPMN1.34 +αXPMN1.1 in the range 8 < N < 30, where αXPM increases for decreasing

channel spacing ∆ f and eventually gives the dominant contribution as a unity fill-factor and thus

the smallest spacing ∆ f = R is approached, thus indirectly confirming the above experimental

findings.

In this paper, which is an extended version of [14], we want to add to the debate by taking

a correlated but different point of view. We already showed by simulation how the nonlinear

threshold (NLT) at 1dB of SNR penalty P̂1 (i.e., the channel power at which a target bit error

rate BER0 = 10−3 is obtained with 1 dB extra SNR with respect to linear propagation [15])

scales with symbol rate R at fixed bandwidth fill-factor η and at fixed distance N [10, 12]. We

now wish to check by simulation how P̂1 scales with distance N at a fixed symbol rate and fixed

η . The reason is that, as we will see, the GNM theory for DU systems predicts that the plot of

NLT versus N in a log-log scale decreases with slope −(1+ ε)/2 dB/dB. We wish to estimate

the slope factor ε from our NLT simulations, and relate it to the ultimate system performance.

The paper is organized as follows. Sections 2-3 report on simulations of P̂1 versus distance

(i.e., versus spans N) at a fixed symbol rate R = 28 Gbaud and ∆ f =50 GHz (η = 0.56) for a

homogeneous WDM PDM-QPSK system over a Nx50 km SMF DU link, and we compare it

to the one obtained with standard in-line dispersion management (DM). We use the nonlinear

effects separation procedure [10] to estimate the slope at which the NLT due to individual self-

and cross-nonlinear effects decreases at increasing N in both DU and DM systems. Section 4

finally provides a comprehensive view of the system implications of the 1dB NLT P̂1 and of the

slope parameter ε .

2. Simulated DU and DM systems

Fig. 1. Block diagrams of DU and DM simulated systems. TX block represents 19 WDM

channels spaced by ∆ f = 50GHz, and NRZ-PDM-QPSK modulated at R = 28 Gbaud.

In DM we use a residual dispersion per span of 30 ps/nm and distance-dependent pre-

compensation (3). Propagation uses the SSFM with Manakov nonlinear step.

Figure 1 shows the block diagram of the simulated DU and DM links. The transmitter con-
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sisted of 19 WDM non-return to zero (NRZ) 28 Gbaud PDM-QPSK channels, with ∆ f =50

GHz. All channels were modulated with 210 and 214 independent random symbols in the DM

and DU cases, respectively. Each channel was filtered by a supergaussian filter of order 2 with

bandwidth 0.9R. The state of polarization (SOP) of each carrier was randomized on the Poincaré

sphere. The transmission line consisted of N spans of 50km of SMF (D =17 ps/nm/km, α =0.2

dB/km, γ =1.3 W−1km−1). Propagation used the vector split-step Fourier method (SSFM) with

zero polarization mode dispersion and Manakov nonlinear step [10]. In the DM case, an in-

line residual dispersion per span (RDPS) of 30 ps/nm and a straight-line rule precompensa-

tion [16, 17]

Dpre =−
D

α
−

N −1

2
RDPS (3)

were used. In the coherent receiver we neglected laser phase noise and frequency offset. The

standard digital signal processor consisted of a chromatic dispersion compensation block, of a

data-aided polarization demultiplexer, and a 27 taps Viterbi and Viterbi phase estimator.

The objective of the simulations was to estimate the 1 dB NLT P̂1 versus distance when

nonlinearities (NL) are selectively activated [10]. The NLT P̂1 is obtained from a series of BER

Monte Carlo estimations (averaged over input polarization states) at increasing amplifiers noise

figure until the target BER0 is obtained, as detailed in [18]. In the DU case, noise was all

loaded at the receiver since it is known that signal-noise nonlinear interactions are negligible

at 28 Gbaud [18]. In the DM case we calculated the NLT both with distributed noise and with

noise loading. Using nonlinearity decoupling, we studied the following four cases: 1) single

channel (label “SPM” in the following figures); 2) WDM with only scalar XPM [19] active

(label “XPM”); 3) WDM with only cross-polarization modulation [19] (label “XPolM”) active;

4) WDM with all nonlinearities active (label “WDM”).

Simulations were run using the open-source software Optilux [20]. Obtaining the curves

presented in each subplot of the following Fig. 2 took approximately 3 weeks by running full

time on an 8-core Dell workstation.

3. Results

250 500 1000 2000 4000 8000 16000

−10

−6

−2

2

6

10

Distance [km]

N
L

T
 [

d
B

m
]

 

 

DU

SPM

WDM
XPM

XPolM

250 500 1000 2000 4000 8000 16000

−10

−6

−2

2

6

10

Distance [km]

N
L

T
 [

d
B

m
]

 

 

DM

SPM

WDM

XPM

XPolM

Fig. 2. 1 dB NLT P̂1 at reference BER0 = 10−3 vs distance for 19-channel homogeneous

28 Gbaud NRZ PDM-QPSK system with ∆ f = 50 GHz over an Nx50 km SMF link. No

PMD. (a) DU; (b) DM with 30 ps/nm RDPS and distance-dependent SLR precompensation

(3); Solid lines: ASE noise loading at RX. Dashed lines: distributed ASE.

DU system. Figure 2(a) shows the corresponding NLT P̂1 versus distance, with span

number N ranging from 5 to 320. We first remark that at all distances single-channel effects
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(SPM) dominate at this η = 0.56 bandwidth fill-factor [12]. The effect of the comparable-size

cross-nonlinearities XPM and XPolM on the overall NLT (WDM) is felt only at distances

below 2000 km. The reason is that single-channel nonlinearity accumulates at a faster rate than

cross-channel nonlinearity so that at longer distances it becomes largely dominant. Equation

(18) predicts on this log-log plot a NLT decrease with a slope −(1+ ε)/2 dB/dB. From Fig. 2

(a) on the narrow-range up to 2000 km (40 spans) by least mean-square fitting data with straight

lines we find εSPM
∼= 0.32, εXPM

∼= 0.22, εXPolM
∼= −0.08 and εWDM

∼= 0.16, while fitting on

the wide-range (up to 320 spans) we measure εSPM
∼= 0.28, εXPM

∼= 0.08, εXPolM
∼=−0.08 and

εWDM
∼= 0.22. We first note that the wide-range εWDM value is consistent with measurements

in [11] at similar η , while the narrow-range εSPM is in agreement with [13]. However, the most

novel piece of information we learn from Fig. 2 is that the smaller slope of cross-nonlinearity

observed in [13] is indeed an average of the XPolM and scalar XPM slopes, where scalar XPM

seems to accumulate at a slightly faster rate. However, in DU links the rate difference is small.

The negative measured εXPolM is ascribed to an insufficient pattern length, as discussed below.

DM system. It is instructive to also take a look at the NLT curves when the DU link is

changed into a legacy DM link. Figure 2(b) shows both the unrealistic case of noise loading

(solid lines) and the realistic case of ASE distributed at each amplifier, where nonlinear signal-

ASE interactions are fully accounted for (dashed lines). We remark that pre-compensation is

here changed at each value of N according to (3), hence the measured NLTs do not truly portray

the noise accumulation with N in the same line. Figure 2(b) confirms that [12]:

i) scalar XPM plays a minor role in the PDM-QPSK constant intensity format, and is quite

sensitive to signal-noise interactions, here manifested as nonlinear phase noise (NLPN);

ii) single channel (SPM) effects also play a minor role up to about 4000 km, and in that range

are also quite sensitive to NLPN;

iii) the dominant nonlinearity is XPolM up to about 4000 km, but eventually SPM effects

become dominant as they accumulate at a faster rate. XPolM is not impacted by signal-ASE

interactions.

We note that the slope of SPM in the first 2000 km gives about εSPM
∼= 1, but such a slope

decreases at larger distances, since the RDPS starts contributing enough cumulated dispersion

to make the DM system look more similar to a DU system. Within the first ∼2000 km we also

measure (with NLPN) εXPM
∼= 0.73 and εWDM

∼= 0.66. The fact that XPolM is less “resonant”

than scalar XPM is seen in the lowering of the local XPolM slope after 2000 km. The intuitive

reason of XPolM’s smaller slope is easily understood in a truly resonant DM map (i.e., with

RDPS=0). In such a case the walkoff completely realigns the interfering pattern intensities,

hence scalar XPM is identical at each span, i.e., it is truly resonant. Instead, the rotations

induced by XPolM never bring back the final SOP to the same starting SOP at each span,

hence XPolM is never truly resonant.

XPolM pattern dependence. The choice of the modulating pattern sequence length is of

great importance in establishing the XPolM NLT. Note that in this study we did not use pseudo-

random patterns, but completely random patterns which – at equal accuracy – allow the use

of shorter pattern lengths and are thus more appropriate in simulations of DU systems [21,

22]. Figure 3 reports on the pattern length sensitivity of the XPolM NLT P̂1 vs. distance for

the same DU and DM systems analyzed in Fig. 2. If the sequence length is too short, the

XPolM P̂1 slope erroneously decreases at increasing distance. We found that a length of 210

symbols was sufficient for our DM systems, while for DU systems we used the longest 214

sequence length that allowed us to obtain the 1dB NLT curves in a feasible time, although still

longer sequences may probably be needed in order to precisely estimate the XPolM NLT slope.
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as in Fig. 2, for several values of the number of random symbols in the SSFM.
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Fig. 4. Qualitative example of 2-dimensional SNR surface [dB] versus both power P [dBm]

and number of spans N (logarithmic scale).

Although the distinction between XPM and XPolM is fundamental in practice for DM systems,

for DU systems it tends to get blurred, and since XPM and XPolM are correlated, in the end

what matters is their joint variance, as recently studied in [6].

4. System implications of slope parameter and NLT

According to the GNM, the nonlinear SNR Eq.(1) uniquely determines the value of bit error

rate or equivalently of Q-factor [5]. Hence the surface of SNR versus power and spans contains

all the needed information about global system performance. Figure 4 provides an example of

the SNR surface in dB, SdB, versus power PdB and number of spans NdB (for any variable x,

we will denote xdB = 10Log(x)). It is the objective of this section to summarize the analytical

properties of such a surface and explain how the exponent ε and the P̂1 vs. N curves fit into

such a global view. Section 4.1 describes the properties of the “vertical cuts” S vs. P at a fixed

distance N, known as the “bell curves”. Section 4.2 describes the properties of the “horizontal

cuts” P vs. N at a desired level S0, tackling the issue of maximum transmission distance. Note

that according to the models in [6,7] the NLI coefficient aNL depends on the modulation format

only through its symbol rate. Hence, by varying S0, one finds the performance of any zero-mean

format at a given symbol rate.
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4.1. Vertical cuts: the bell curves

We wish to summarize here the behavior of S versus P at a fixed distance N. More information

can be found in [3,5]. We first notice from Eq. (1) two asymptotes, one at small power SL �
P

NA

which is the linear SNR, and one at large power SR � 1
aNLP2 . The two asymptotes cross at the

break-point power PB =
(

NA
aNL

)
1
3

where ASE power equals nonlinear noise power. The linear

asymptote has slope 1 dB/dB, while the nonlinear asymptote has slope −2 dB/dB. Figure 5

shows SNR versus P for fixed values of ASE power NA and nonlinearity aNL where the two

asymptotes are indicated by dashed lines. Equation (1) can be rearranged as

SP =
SL

S
= 1+

aNLP3

NA

(4)

where SP is the sensitivity penalty in linear units, and in dB it is the distance of the SNR curve

from the linear asymptote SL, as seen in Fig. 5.

4.1.1. Unconstrained nonlinear threshold

The unconstrained nonlinear threshold (NLT) is defined as the power PNLT that maximizes the

bell curve. By setting dS
dP

= 0 we see that the NLT satisfies NA = 2(aNLP3), i.e., at the optimal

power ASE noise is twice the nonlinear noise, and the SP is ( 3
2
)dB ∼ 1.76 dB [3–5] and this is

true for all GNM systems. Explicitly,

PNLT =

(

NA

2aNL

)
1
3

(5)

and this is exactly 1 dB below the break-point PB. The corresponding maximum SNR is:

SNLT =

(

33aNL(
NA

2
)2

)− 1
3

≡
PNLT

3
2
NA

. (6)

Since at NLT the penalty is 1.76 dB, it is interesting to ask at which power Py we reach

a penalty of ydB. The answer is found by imposing SP = 10ydB/10 and rearranging Eq. (4):

Py = PNLT · [2(10ydB/10−1)]1/3. For instance, PdB
1 is 0.95 dB below PdB

NLT , as also marked in Fig.

5.
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4.1.2. Constrained NLT

Given a desired SNR level S0, it was shown in ( [7] Appendix 1 and Fig. 3) that the bell curve

reaches its top level at value S0 when ASE power is N̂A = 2

(3S0)
3/2a

1/2
NL

and signal power is

P̂NLT =
3

2
S0N̂A =

1
√

3S0aNL

(7)

which we call the constrained NLT at S0. When NA < N̂A, the SNR S exceeds S0 over the whole

range Pm < P < PM , where

PM = 3S0N̂A cos(arcos(−NA/N̂A)
3

)

Pm = 3S0N̂A cos( 2π−arcos(−NA/N̂A)
3

).
(8)

When instead NA > N̂A, the target S0 is unachievable. The penalty corresponding to the ex-

tremes Pm,PM is found as SPm,M =
Pm,M

NAS0
, since S0NA is the required minimal power to achieve

S0 in the linear regime. Figure 3(b) in [7] shows a plot of SPm,M versus power. When Pm ≡ PM

we know the SP with respect to S0 is 1.76 dB. For any other SP value ydB, it is also interesting to

find the power P̂y (i.e., either Pm when ydB < 1.76, or PM when ydB > 1.76.) achieving SP = ydB.

We call P̂y the constrained NLT at ydB of penalty. Defining

c(ydB)� P̂NLT/P̂y (9)

we already showed in [7] that c(1) = 1.27, hence the constrained 1dB NLT P̂1 is 1.04 dB below

P̂NLT (while we have seen that the unconstrained P1 is 0.95 dB below the unconstrained PNLT ).

The whole c(ydB) curve can be obtained as follows. Let SP= 10ydB/10 and x=NA/N̂A ∈ [0,1],

and look for the solution of the nonlinear equation SP = 3
x

cos( 2π−arcos(−x)
3

) when ydB ≤ 1.76,

and of SP = 3
x

cos(arcos(−x)
3

) when ydB > 1.76. Once x is found, calculate c(ydB) = 3/(2x ·
10ydB/10). The result is plotted in Fig. 6. In blue we show the dB value of the curve c(ydB),
which is zero at ydB = 1.76, while in green we show the curve x(ydB).

4.2. Horizontal cuts

ASE in dual polarization systems accumulates as NA = βN, where β = hνFGBRX depends

on photon energy hν at signal frequency ν , amplifiers noise figure F , gain G, and two-sided
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Fig. 7. Set of horizontal cuts of SNR surface S(N,P) at levels S0 = [10.12 : 1 : 15.12]
dB, for a DU Nx50km SMF link at 28Gbaud. Parameters: αNL = 3.95 · 10−4 [mW−2],

ε = 0.22, F = 13 dB, BRX = 32.5 GHz. Locus of maxima (P0,N0) for varying S0 shown as

dash-dotted magenta line with slope −ε/3 ∼=−0.07 dB/dB.

receiver noise bandwidth BRX . We now assume for aNL a simplified distance scaling law as in

Eq. (2) and want to check the impact of the exponent factor ε .

Figure 7 shows a set of horizontal cuts of the SNR surface S(N,P) at levels S0 spaced by 1

dB. In the figure we assumed ε = 0.22. The analytical shape of each contour is obtained from

S0 =
P

βN +αNLN1+ε P3
(10)

which yields the explicit contour equation P versus N. The two solutions of the cubic Eq. (10)

are the powers PM (top branch up to the red circle) and Pm (bottom branch) whose analytical

expression is given in Eq. (8). Each contour level has two asymptotes, obtained by suppressing

either ASE or NLI in Eq. (10):

i) a lower (or linear) asymptote which in dB is a straight line with positive slope 1dB/dB:

PL = LT1 ·N (11)

where we defined the “linear threshold”

LT1 = βS0 (12)

as the power achieving S0 at 1 span in the linear regime;

ii) a higher asymptote:

PH = (S0aNL)
−1/2 (13)

which, in the simplifying assumption Eq. (2), in dB is a straight line with negative slope −(1+
ε)/2. Only the asymptotes for the lowest contour level are marked in Fig. 7.

4.2.1. Unconstrained NLT

Consider the magenta-line locus of points of maximum reach (N0,P0) at each S0 level, marked

with red circles in Fig. 7. Information on how (N0,P0) change with S0 is useful to understand the

effect of the modulation format: at a given symbol rate, in general different formats will require

different SNR S0 to reach a desired target Q-factor Q0 or BER value BER0. It is thus important

to understand by how much maximum distance and optimal power change as the modulation
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format is changed. The points (N0,P0) are such that Pm ≡ PM , i.e., they correspond to a distance

N0 where power P0 coincides with P̂NLT , the constrained NLT at S0. Therefore each red circle

corresponds to the top of the “vertical cut” at N0. In other words, the magenta-line is the “crest”

of the S surface, or equivalently the locus of the unconstrained NLT PNLT as N varies. As such,

given N0, we have from Eq. (5), Eq. (6):

P0 =

(

β

2αNLNε
0

)
1
3

; S0 =

(

33αNLN3+ε
0 (

β

2
)2

)− 1
3

≡
P0

3
2
βN0

. (14)

The first equation in Eq. (14) shows that the magenta line has a slope of − ε
3

dB/dB [11]. With

the value for SPM-dominated DU systems of ε = 0.22 found by simulations in Fig. 2(a), this

slope is −0.07 dB/dB, which is hardly noticeable in lab experiments, so that common wisdom

has that in DU systems the unconstrained NLT does not depend on distance, as experimentally

verified by many authors, see e.g. [11, 24].

The second equation in Eq. (14) shows that the “crest” of surface SdB versus N0 is a straight

line with slope − 3+ε
3

∼−1 dB/dB as for linear systems, as experimentally verified in [25].

The crest is obtained when ASE power is 2 times the NLI power. However, one can similarly

prove that the locus of points where ASE power is k times the NLI power at coordinate Nk

satisfies

Pk =

(

β

2αNLNε
k

)
1
3

; S =
Pk

k+1
k

NA

=

(

(k+1)3αNLN3+ε
k (

β

k
)2

)− 1
3

(15)

which proves that the whole SdB surface sketched in Fig. 4 is composed of parallel straight-

lines.

4.2.2. Constrained NLT

Using Eq. (2) in Eq. (7) we have

P̂NLT = NLT1 ·N− 1+ε
2 (16)

where we defined the effective 1-span constrained NLT power as

NLT1 � (3S0αNL)
− 1

2 . (17)

Since the higher asymptote Eq. (13) can be also expressed as PH =
√

3NLT1 ·N− 1+ε
2 , then

it is clear that the dB-dB plot of P̂NLT versus N is a straight line parallel to PH but lowered by√
3 ∼ 2.38 dB, as shown by the magenta dash-dotted line in Fig. 8. Similarly, from Eq. (9) and

using Eq. (16) we also have

P̂y =
NLT1

c(ydB)
N− 1+ε

2 (18)

where c(ydB) is shown in Fig. 6. A similar scaling law was already reported in [23] for DU

systems with ε = 0. Hence for instance P̂1 is a straight line parallel to P̂NLT but lowered by

∼ 1.04 dB as reported in blue solid line in Fig. 8. The parameters NLT1 and ε used in the figure

were obtained by straight-line fitting the simulated P̂1 vs. N “WDM” curve in Fig. 2(a).

Note that Eq. (16) can be rearranged as

NP̂NLT (N) = NLT1 ·N
1−ε

2 . (19)
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Fig. 8. Horizontal cut of SNR surface S(N,P) at level S0 = 10.12 dB (BER0=10−3 for the

PDM-QPSK receiver used in simulations) for DU Nx50km SMF link at 28 Gbaud, for 2

values of ASE factor β spaced by 3dB. Parameters: αNL = 3.95 ·10−4 [mW−2], ε = 0.22

chosen such that the blue line P̂1 is the least-mean-squares fit of the simulated “WDM”

1dB NLT (at the same S0 = 10.12 dB) in Fig. 2(a). Other parameters F = [13, 16] dB,

BRX = 32.5 GHz. Upper and lower asymptotes PH and PL shown as dashed black lines.

Locus of maxima (P0,N0) for varying β (i.e. P̂NLT ) shown as dash-dotted magenta line

parallel to PH , shifted downwards by 10Log
√

3=2.38 dB (cfr Eq. (17)). The 1dB NLT P̂1

(blue, solid) is parallel to P̂NLT , and located c =1.04 dB below (c values at other penalties

are found in Fig. 6). Maxima are 10Log(3/2) = 1.76 dB from lower asymptote (green

arrows). At N = 1, have PL ≡ LT1 and P̂NLT ≡ NLT1.

The left-hand side is often called the integrated NLT, and its slope versus N was measured in

( [26], Fig. 1) to be ∼0.31 dB/dB for a 50 GHz spaced 28 Gbaud PDM-QPSK system over an

Nx100 km DU SMF link, consistently with the experimentally estimated value ε ∼ 0.37 [8].

Figure 8 shows that the magenta dash-dotted line is also the locus of maximum-reach points

of coordinates (P0,N0) as the β factor (i.e., amplifiers noise figure for instance) is varied. This

was already proven in [5], and it makes sense, since the P̂1 is obtained in simulations by varying

the received ASE until 1 dB of penalty is measured. Similarly, the locus of maximum distance

points (P0,N0) as the αNL factor is varied with β held constant is a straight line parallel to the

linear asymptote and 1.76 dB above it, since from Eq. (14) we have P0 =
3
2
βS0N0 ≡ 3

2
PL. Figure

4 in [27] confirms this fact. The explicit expression of the constrained maximum distance N0 is

obtained from the two relations in Eq. (14) as

N0 =

(

(3S0)
3αNL(

β

2
)2

)
−1

3+ε

≡

(

NLT1

3
2
LT1

)
2

3+ε

(20)

and its associated “optimal” power as

P0 =

(

β

2

)
1+ε
3+ε

(3S0)
ε

3+ε α
− 1

3+ε
NL ≡ (NLT1)

2
3+ε (

3

2
LT1)

1+ε
3+ε . (21)

If we look instead at the coordinates (NA
0 ,P

A
0 ) of the point where the asymptotes cross, we

find NA
0 /N0 = (

√
3

2/3
)

2
3+ε and PA

0 /P0 = (2(2/3)ε)
1

3+ε . Hence if we judge the maximum distance
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from the asymptotes we over-estimate the true N0 by 2.76/(1+ ε/3) dB and the true P0 by

(3−1.76ε)/(3+ ε) dB, as seen in Fig. 8.

Equations (20),(21) have two important consequences:

i) Sensitivity. By differentiating Eq. (20), Eq. (21) we immediately get

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂NdB
0

∂SdB
0

=− 3
3+ε

∂ NdB
0

∂β dB =− 2
3+ε

∂NdB
0

∂αdB
NL

=− 1
3+ε

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂PdB
0

∂SdB
0

= ε
3+ε

∂PdB
0

∂β dB = 1+ε
3+ε

∂PdB
0

∂αdB
NL

=− 1
3+ε

(22)

i.e., the sensitivity to changes in S0 (e.g. modulation format or coding), β (e.g. amplifiers noise

figure) and αNL (e.g. fiber parameters such as nonlinearity and dispersion). Such changes need

not be small, since the surface is made of straight lines. For instance, from the top left relation

we see that if a more powerful code lowers the SNR S0 by 1dB (without appreciably increasing

the symbol rate), maximum distance is extended by 3
3+ε dB and the most beneficial case is

ε = 0. The top right relation tells us that P0 is very weakly dependent on SNR S0, hence on

modulation format. We can also use the middle relations Eq. (22) to conclude that in Fig. 8

when β is doubled (+3dB), the optimal power P0 is increased by 3+3ε
3+ε dB (1.13 dB in figure),

while maximum distance N0 is decreased by 6
3+ε dB (1.86 dB in figure). The relations in the

last line tell us that a 1dB increase in αNL brings about a modest decrease by less than 1/3 dB

in both N0 [28] and P0. It is the same decrease for both N0 and P0, since the optimal (N0,P0)
in this case slides along a 1 dB/dB straight line parallel to the lower asymptote, as we already

remarked.

ii) Power budget. It is simple to verify from the asymptotes that

NA
0

N
=

(

PH(N)

PL(N)

)
2

3+ε

. (23)

Hence the maximum extra distance NA
0 /N predicted from the asymptotes only depends on

the “power budget” PH(N)/PL(N), corresponding to the vertical dB spread of the contour at S0

between the asymptotes at N. Similarly, Eq. (20) tells us that maximum reach N0 at S0 only

depends on the power budget
NLT1
3
2 LT1

, i.e., the vertical spread of the contour at S0 at N = 1 span

from 1.76 dB above the lower linear asymptote PL(1) = LT1 up to the magenta dash-dotted line

P̂NLT (1) = NLT1. Also, by using the second form of Eq. (20) and Eq. (19) one can estimate the

extra distance ratio N0/N from the measured value of the constrained NLT P̂NLT (N) at S0 at

given distance N as

N0

N
=

(

P̂NLT (N)
3
2
PL(N)

)
2

3+ε

(24)

which only depends on the local power budget P̂NLT (N)/( 3
2
PL(N)).

Finally, by checking the constrained NLT ratio of two different formats A and B at a common

BER0 (hence at possibly different S0,A, S0,B) one can estimate by how much the best format

extends the maximum reach from:

N0,A

N0,B
=

(

(
P̂NLT,A(N)

P̂NLT,B(N)
)/(

LT1,A

LT1,B
)

)

2
3+ε

(25)

where
LT1,A

LT1,B
is the ratio of sensitivities (at BER0) of the two formats in the linear regime. Clearly,

a format A that has x dB larger NLT than B, but also x dB worse sensitivity than B, achieves

the same maximum distance.
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5. Conclusions

We have shown that in dispersion uncompensated systems where the nonlinear Gaussian as-

sumption holds, the nonlinear interference accumulation rate 1 + ε can also be measured

through the nonlinear threshold decrease rate with distance, and we have provided the accu-

mulation rates of the individual self- and cross-channel nonlinear effects, thus corroborating

and complementing recent simulation and lab results [8, 11, 13]. We have then shown how the

estimated value ε (when all nonlinear effects are taken into account) as well as the 1dB nonlin-

ear threshold can be used to predict the ultimate transmission performance.
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