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On the nonlocal Cauchy problem for semilinear fractional order evolution equations

1. Introduction

The nonlocal condition has a better effect on the solution and is more precise for physical measurements than theclassical condition alone. For the contribution to the nonlocal Cauchy problem for nonlinear evolution equations werefer the reader to Byszewski [5, 6], Jackson [14], Deng [8], Liang et al. [17], Ntouyas and Tsamatos [25] and other papers(see for instance [4, 7, 11–13, 18, 30, 35] and references therein).Boucherif and Precup [2] explored a new approach and conditions to study existence of solutions to the following initialvalue problem for first order differential equations with nonlocal conditions:
x ′(t) = F (t, x(t)), for a.e. t ∈ J = [0, 1],
x(0) + m∑

k=1 akx(tk ) = 0, k = 1, 2, . . . , m,
where F : J×R→ R is a given function and ak are real numbers with ∑m

k=1 ak 6= −1 and tk , k = 1, 2, . . . , m, are givenpoints satisfying 0 < t1 ≤ t2 ≤ . . . ≤ tm < 1. The idea was to put less restrictive conditions on F by splitting the growthcondition on F into two parts, one for t ∈ [0, tm] and the other for t ∈ [tm, 1].In [3] Boucherif and Precup adopted the idea of [2] via fixed point methods and presented existence results for mildsolutions to the following nonlocal Cauchy problem for first order evolution equations:
x ′(t) + Ax(t) = f(t, x(t)), t ∈ J,

x(0) + m∑
k=1 akx(tk ) = 0, k = 1, 2, . . . , m,

where A : D(A) ⊆ X → X is the generator of a C0-semigroup {T (t) : t ≥ 0} on a Banach space X and f : J×X → X isa given function.In [23, 24] Nica and Precup developed further the approach and techniques of [2] and applied them in order to study thenonlocal Cauchy problem for first order nonlinear differential systems.Recently, fractional order differential equations found application in studies related with viscoelasticity, electrical cir-cuits, nonlinear oscillation of earthquake and etc. There appeared a number monographs which provide with the maintheoretical tools for the qualitative analysis of fractional order differential equations, and at the same time show theinterconnection as well as the contrast between integer order differential models and fractional order differential models[1, 9, 15, 16, 19, 20, 27, 29].A pioneering work on existence of solutions to the following initial value problem for fractional order differential equationswith nonlocal conditions:
CDα0,tx(t) = f(t, x(t)), α ∈ (0, 1), t ∈ J,
x(0) + G(u) = x0, x0 ∈ X,

where the symbol CDα0,t denotes the Caputo fractional derivative of order α with the lower limit zero, f : J×X → X andthe nonlocal term G : C (J, X )→ X , is due to N’Guérékata [21]. In [22] N’Guérékata noted that the results from [21] holdonly in finite dimensional spaces. Dong et al. [10] revisited the above problem and presented some new existence resultsunder certain suitable conditions, extending the results of [21] to infinite dimensional spaces.Zhou and Jiao [36] studied the following nonlocal Cauchy problem for fractional order evolution equations:
CDα0,tx(t) = Ax(t) + f(t, x(t)), α ∈ (0, 1), t ∈ J,
x(0) + G(x) = x0, x0 ∈ X.
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They gave a suitable definition of a mild solution associated with characteristic solution operators of this problem andestablished existence results in the case when f and G satisfy Lipschitz continuous and growth conditions on J viaBanach and Krasnoselskii fixed point theorems.Motivated by [2, 3, 33, 34, 36] we investigate existence of mild solutions to the following Cauchy problem for fractionalorder evolution equations with nonlocal conditions:
CDα0,tx(t) = Ax(t) + f(t, x(t)), α ∈ (0, 1), t ∈ J,

x(0) = m∑
k=1 akx(tk ), k = 1, 2, . . . , m. (1)

We develop the approach and techniques from the above papers and establish two new existence results under generaland weak assumptions on f by utilizing fractional calculus and Schaefer and O’Regan fixed point theorems. We give asuitable definition of a mild solution to equation (1) by introducing a bounded operator B = [I −∑m
k=1 akT(tk )]−1. Ourfirst existence result relies on a growth condition on J and the second one relies on a growth condition involving twoparts, one for [0, tm], and the other for [tm, 1]. Our assumptions on f are more general and less restrictive than thoseimposed in [34, 36].

2. Preliminaries

Let C (J, X ) be the Banach space of all X-valued continuous functions from J into X endowed with the norm ‖x‖C (J,X ) =supt∈J ‖x(t)‖. For brevity, we denote ‖x‖C = ‖x‖C (J,X ).
Definition 2.1 ([15]).The fractional integral of order γ with the lower limit a ∈ R for a function f : [a,∞)→ R is

Iγa,tf(t) = 1Γ(γ)
∫ t

a

f(s)(t − s)1−γ ds, t > a, γ > 0,
provided that the righthand side is point-wise defined on [a,∞), where Γ( · ) is the gamma function. The Riemann–Liouville derivative of order γ with the lower limit zero for a function f : [0,∞)→ R is

LDγ0,tf(t) = 1Γ(n− γ) dn
dtn

∫ t

0
f(s)(t − s)γ+1−n ds, t > 0, n− 1 < γ < n.

The Caputo derivative of order γ for a function f : [0,∞)→ R is
CDγ0,tf(t) = LDγ0,t

(
f(t)− n−1∑

k=0
tk
k! f (k)(0)), t > 0, n− 1 < γ < n.

Remark 2.2.If f is an abstract function with values in X , then the integrals in the definition are understood in Bochner’s sense.
Suppose M = sup

t≥0 ‖T (t)‖ and define
T(t) = ∫ ∞0 ξα (θ)T (tαθ)dθ, S(t) = α

∫ ∞
0 θξα (θ)T (tαθ)dθ, t ≥ 0,

ξα (θ) = 1
α θ

−1−1/απα (θ−1/α ) ≥ 0,
πα (θ) = 1

π

∞∑
n=1 (−1)n−1θ−nα−1 Γ(nα+1)

n! sin(nπα), θ ∈ (0,∞),
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where ξα is a probability density function defined on (0,∞), that is
ξα (θ) ≥ 0, θ ∈ (0,∞), ∫ ∞

0 ξα (θ)dθ = 1.
In a recent paper, Zhou and Jiao [37] gave some basic properties of T and S which will play an important role in thesequel.
Lemma 2.3 ([37, Lemmas 3.2–3.4]).(i) For any fixed t ≥ 0 and any x ∈ X , ‖T(t)x‖ ≤ M‖x‖ and ‖S(t)x‖ ≤ M‖x‖/Γ(α).(ii) {T(t) : t ≥ 0} and {S(t) : t ≥ 0} are strongly continuous.(iii) For each t > 0, T(t) and S(t) are compact operators if T (t) is compact.

Further properties of T and S were explored by Wang and Zhou [31, 32].Suppose that there exists the bounded operator B : X → X given by
B = [I − m∑

k=1 akT(tk )]−1
. (2)

Applying [33, Theorem 3.3, Remark 3.4] we can give two sufficient conditions for the existence and boundedness of theoperator B.
Lemma 2.4.
The operator B defined in (2) exists and is bounded if one of the following two conditions holds:(C1) there are real numbers ak such that

M
m∑
k=1 |ak | < 1; (3)

(C2) T (t) is compact for each t > 0 and the homogeneous linear nonlocal problem

CDα0,tx(t) = Ax(t), α ∈ (0, 1), t ∈ J, x(0) = m∑
k=1 akx(tk ), (4)

has no non-trivial mild solutions.

Proof. Under assumption (C1), from Lemma 2.3 (i) and (3) we have∥∥∥∥∥ m∑
k=1 akT(tk )∥∥∥∥∥ ≤ M m∑

k=1 |ak | < 1.
Thus by the Neumann theorem, B exists and it is bounded. Under assumption (C2), it is obvious that mild solutionsto (4) have the form x(t) = T(t)x(0), hence

x(0) = m∑
k=1 akx(tk ) = m∑

k=1 akT(tk )x(0).
By Lemma 2.3 (iii), T(tk ) is compact for each tk > 0, k = 1, 2, . . . , m. Thus∑m

k=1 akT(tk ) is also compact. Since problem (4)has no non-trivial mild solutions, one obtains the desired result applying the Fredholm alternative theorem.
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Similarly to [36], one can introduce the following definition of mild solutions to (1).
Definition 2.5.A function x ∈ C (J, X ) is called a mild solution to (1) if it satisfies the following equation:

x(t) = T(t) m∑
k=1 akB(g(tk )) + g(t), t ∈ J, (5)

where
g(tk ) = ∫ tk

0 (tk − s)α−1S(tk − s)f(s, x(s))ds, (6)
g(t) = ∫ t

0 (t − s)α−1S(t − s)f(s, x(s))ds, t ∈ J. (7)
Remark 2.6.Due to [36] a mild solution to fractional evolution equation (1) with the initial condition is x(t) = T(t)x(0) + g(t), sotaking into account our nonlocal condition, we get

x(0) = m∑
k=1 akT(tk )x(0) + m∑

k=1 akg(tk ).
So x(0) =∑m

k=1 akB(g(tk )) and hence x(t) = T(t)∑m
k=1 akB(g(tk )) + g(t), it is exactly (5).

3. First existence result

Our first existence result is based on the well-known Schaefer fixed point theorem [28].
Theorem 3.1.
Let F : X → X be a continuous mapping of X into X which is compact on each bounded subset of X . Then either(i) the equation x = λFx has a solution for λ = 1, or(ii) the set {x ∈ X : x = λFx for some λ ∈ (0, 1)} is unbounded.

In this section, we will study our problem under the following assumptions:(H1) f : J×X → X satisfies the Carathéodory conditions.(H2) There is a function h such that Iα0,th(t) exists for all t ∈ J and Iα0,·h(·) ∈ C ((0, 1],R+) with limt→0+ Iα0,th(t) = 0 anda nondecreasing continuous function Ω: R+ → R+ such that
‖f(t, x)‖ ≤ h(t)Ω(‖x‖)

for all x ∈ X and for almost every t ∈ J.
Remark 3.2.In our previous works [34, 36], we assumed that there exists a function h ∈ L1/α1 (J,R+), α1 ∈ [0, α), where Lp(J,R+)denotes the Banach space of all Lebesgue measurable functions h : J → R+ with the norm of h given by

‖h‖Lp(J,R+) =

(∫

J
|h(t)|1/pdt)p, 1 < p <∞,inf

µ(J)=0 sup
t∈J−J
|h(t)|, p =∞,
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where µ(J) is the Lebesgue measure on J. However, it is not difficult to verify that the old (strong) condition h ∈
L1/α1 (J,R+), α1 ∈ [0, α), implies a new (weak) condition Iα0,·h( · ) ∈ C ((0, 1],R+) with lim

t→0+ Iα0,th(t) = 0.
(H3) The inequality lim sup

ρ→∞
ρ
(
M2BΩ(ρ) m∑

k=1 |ak |I
α0,tkh(tk ) +MΩ(ρ) sup

t∈J
Iα0,th(t))−1

> 1 holds.
(H4) T (t) is compact for each t > 0.
We consider the following problem:

CDα0,tx(t) = Ax(t) + λf(t, x(t)), α ∈ (0, 1], λ, t ∈ J, x(0) = m∑
k=1 akx(tk ). (8)

Define an operator F : C (J, X )→ C (J, X ) as follows:
(Fx)(t) = (F1x)(t) + (F2x)(t), t ∈ J,

where Fi : C (J, X )→ C (J, X ), i = 1, 2, are given by the formulas
(F1x)(t) = T(t) m∑

k=1 akB(g(tk )), (F2x)(t) = g(t),
where B is the operator defined in (2), g(tk ) is defined in (6) and g(t) is defined in (7). Obviously, a mild solution toequation (8) is a solution to the operator equation

x = λFx (9)
and conversely. Thus, we can apply the Schaefer fixed point theorem to derive the existence of solutions to equation (1).
Lemma 3.3.
There exists a constant R∗ > 0 independent of the parameter λ ∈ J such that ‖x‖C ≤ R∗ for every solution x to
equation (9).
Proof. Denote R0 = ‖x‖C . Taking into account our conditions and Lemma 2.4 (C1), (C2), it follows from (5) that

‖x(t)‖ ≤ ‖(F1x)(t)‖+ ‖(F2x)(t)‖ ≤ M m∑
k=1 |ak |‖B‖‖g(tk )‖+ ‖g(t)‖, t ∈ J. (10)

Note that
‖g(tk )‖ ≤ ∫ tk

0 (tk − s)α−1‖S(tk − s)‖‖f(s, x(s))‖ds ≤ MΓ(α)
∫ tk

0 (tk − s)α−1h(s)Ω(‖x‖C )ds
≤ MΩ(R0)Γ(α)

∫ tk

0 (tk − s)α−1h(s)ds = MΩ(R0)Iα0,tkh(tk ), k = 1, 2, . . . , m,
and

‖g(t)‖ ≤ MΩ(R0)Γ(α)
∫ t

0 (t − s)α−1h(s)ds = MΩ(R0) sup
t∈J

Iα0,th(t), t ∈ J. (11)
From (10)–(11), one has

R0 = ‖x‖C ≤ M2‖B‖Ω(R0) m∑
k=1 |ak |I

α0,tkh(tk ) +MΩ(R0) sup
t∈J

Iα0,th(t), t ∈ J,
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which implies
R0
(
M2‖B‖Ω(R0) m∑

k=1 |ak |I
α0,tkh(tk ) +MΩ(R0) sup

t∈J
Iα0,th(t))−1

≤ 1. (12)
However, according to (H3), there exists R∗ > 0 such that for all R > R∗ we have

R
(
M2‖B‖Ω(R) m∑

k=1 |ak |I
α0,tkh(tk ) +MΩ(R) sup

t∈J
Iα0,th(t))−1

> 1. (13)
Now, comparing (12) and (13), we deduce that R0 ≤ R∗. As a result, we find that ‖x‖C ≤ R∗. This completes theproof.
Let BR∗ = {x ∈ C (J, X ) : ‖x‖C ≤ R∗}. Then BR∗ is a bounded closed and convex subset in C (J, X ). By Lemma 3.3, wecan derive the following result.
Lemma 3.4.
The operator F maps BR∗ into itself.

Lemma 3.5.
The operator F : BR∗ → BR∗ is completely continuous.

Proof. For our purpose, we only need to check that Fi : BR∗ → BR∗ , i = 1, 2, is completely continuous. Firstly,by repeating the procedure of our previous work (see Step III in the proof of [36, Theorem 3.1]), one can obtain that
F2 : BR∗ → BR∗ is completely continuous. We only emphasize that the main difference is that the condition h ∈
L1/α1 (J,R+), α1 ∈ [0, α), is replaced by the new condition Iα0,·h( · ) ∈ C ((0, 1],R+) with lim

t→0+ Iα0,th(t) = 0.
Secondly, one can check that F1 : BR∗ → BR∗ is continuous (by (H1), (H2) and Lemma 2.3 (i)) and F1 : BR∗ → BR∗ iscompact since T(t) is compact for each t > 0 (by (H4) and Lemma 2.3 (iii)).
Now, we can state the main result of this section.
Theorem 3.6.
Assume that (H1)–(H4) hold and condition (C1) (or (C2)) is satisfied. Then equation (1) has at least one solution u ∈
C (J, X ) and the set of solutions to equation (1) is bounded in C (J, X ).
Proof. Obviously, the set {x ∈ C (J, X ) : x = λFx, 0 < λ < 1} is bounded due to Lemma 3.4. Now we can applyTheorem 3.1 to derive that F has a fixed point in BR∗ which is just the mild solution to equation (1).
4. Second existence result

Our second existence result is based on the O’Regan fixed point theorem [26].
Theorem 4.1.
Let U be an open set in a closed, convex set C of X . Assume 0 ∈ U , T (U) is bounded and T : U → C is given
by T = T1 + T2 where T1 : U → X is completely continuous, and T2 : U → X is a nonlinear contraction. Then either(i) T has a fixed point in U , or(ii) there is a point x ∈ ∂U and λ ∈ (0, 1) with x = λT (x).
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In addition to (H1), (H4) and (C1) (or (C2)), motivated by Boucherif and Precup [2, 3], we introduce the following twoassumptions:(H5) There exists a function h such that Iα0,th(t) exists for every t ∈ [0, tm] and Iα0,·h( · ) ∈ C ((0, tm],R+) withlimt→0+ Iα0,th(t) = 0 and a nondecreasing continuous function Ω: R+ → R+ such that ‖f(t, x)‖ ≤ h(t)Ω(‖x‖) forall x ∈ X and for a.e. t ∈ [0, tm], and for every t ∈ [tm, 1] there exists a function l such that Iαtm ,tl(t) exists and
Iαtm ,·l( · ) ∈ C ([tm, 1],R+) such that

‖f(t, x)‖ ≤ l(t), (14)for all x ∈ X and for a.e. t ∈ [tm, 1]. Moreover, Ω has the property
r > MΩ(r)( m∑

k=1 |ak |‖B‖+ 1) sup
t∈[0,tm ] Iα0,th(t) (15)

for all r > R∗1 > 0.(H6) There exists a function q such that Iαtm ,tq(t) exists for every t ∈ [tm, 1] and Iαtm,·q( · ) ∈ C ([tm, 1],R+) with
M sup

t∈[tm ,1] Iα0,tq(t) ≤ 1 and a nondecreasing continuous function Ψ: R+ → R+ with Ψ(r) < r for r > 0 such that
‖f(t, x)− f(t, y)‖ ≤ q(t)Ψ(‖x − y‖)

for a.e. t ∈ [tm, 1] and for all x, y ∈ X .
Consider equation (8) again and the equivalent equation

x = λTx, (16)
where T : C (J, X ) → C (J, X ) is defined by (Tx)(t) = (T1x)(t) + (T2x)(t), t ∈ J, Ti : C (J, X ) → C (J, X ), i = 1, 2, are givenby

(T1x)(t) =

T(t) m∑

k=1 akB(g(tk )) + g(t), t ∈ [0, tm),
T(t) m∑

k=1 akB(g(tk )) + ∫ tm

0 (t − s)α−1S(t − s)f(s, x(s))ds, t ∈ [tm, 1],
(T2x)(t) =


0, t ∈ [0, tm),∫ t

tm
(t − s)α−1S(t − s)f(s, x(s))ds, t ∈ [tm, 1].

We first prove that solutions to equation (16) are a priori bounded.
Lemma 4.2.
There exist R∗i > 0, i = 1, 2, independent of the parameter λ, such that ‖x‖C ([0,tm ],X ) ≤ R∗1 and ‖x‖C ([tm ,1],X ) ≤ R∗2 , that is
‖x‖C ≤ R∗ = max {R∗1 , R∗2} for every solution x of the equation (16).
Proof. Case 1. We prove that there exists R∗1 > 0 such that ‖x‖C ([0,tm ],X ) ≤ R∗1 . For t ∈ [0, tm] and λ ∈ J, denote
R[0,tm ] = ‖x‖C ([0,tm ],X ), we have

‖x(t)‖ ≤ λ‖(T1x)(t)‖+ ‖(T2x)(t)‖ ≤ M m∑
k=1 |ak |‖B‖‖g(tk )‖+ ‖g(t)‖

≤ M
m∑
k=1 |ak |‖B‖

MΓ(α)
∫ tk

0 (tk − s)α−1h(s)Ω(R[0,tm ])ds+ MΓ(α)
∫ t

0 (t − s)α−1h(s)Ω(R[0,tm ])ds
≤ MΩ(R[0,tm ])( m∑

k=1 |ak |‖B‖+ 1) sup
t∈[0,tm ] Iα0,th(t),
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which implies
R[0,tm ] ≤ MΩ(R[0,tm ])( m∑

k=1 |ak |‖B‖+ 1) sup
t∈[0,tm ]Iα0,th(t).

From (15) we find that there exists R∗1 ≥ R[0,tm ] > 0 such that ‖x‖C ([0,tm ],X ) ≤ R∗1 .
Case 2. We prove that there exists R∗2 > 0 such that ‖x‖C ([tm ,1],X ) ≤ R∗2 . For t ∈ [tm, 1] and λ ∈ J, keeping in mind ourassumptions, we find that

‖x(t)‖ ≤ M m∑
k=1 |ak |‖B‖

MΓ(α)
∫ tk

0 (tk − s)α−1h(s)Ω(R∗1 )ds
+ MΓ(α)

∫ tm

0 (t − s)α−1h(s)Ω(R∗1 )ds+ MΓ(α)
∫ t

tm
(t − s)α−1h(s)ds

≤ MΩ(R∗1 )( m∑
k=1 |ak |‖B‖+ 1) sup

t∈[0,tm ]Iα0,th(t) +M sup
t∈[tm ,1]Iαtm ,tl(t),

which implies ‖x‖C ([tm,1],X ) ≤ R∗2 , where
R∗2 = M

[Ω(R∗1 )( m∑
k=1 |ak |‖B‖+ 1) sup

t∈[0,tm ]Iα0,th(t) + sup
t∈[tm,1]Iαtm,tl(t)

]
.

Let R∗ = max {R∗1 , R∗2}. Then all solutions of the equation (16) satisfy ‖x‖C ≤ R∗, where R∗ is independent of theparameter λ.
Denote D = {x ∈ C (J, X ) : ‖x‖C < R∗+ 1}. We can proceed as in the proof of Lemma 4.2 to derive the following result.
Lemma 4.3.
T (D) is bounded.

One can proceed as in the proof of Lemma 3.5 to obtain the following result.
Lemma 4.4.
The operator T1 : D→ C (J, X ) is completely continuous.

Lemma 4.5.
The operator T2 : D→ C (J, X ) is a nonlinear contraction.

Proof. From the definition of T2 we only need to show that T2 : D→ C ([tm, 1], X ) is a nonlinear contraction. In fact,for any x, y ∈ D and t ∈ [tm, 1], we have
‖(T2x)(t)− (T2y)(t)‖ ≤ ∫ t

tm
(t − s)α−1∥∥S(t − s)[f(s, x(s))− f(s, y(s))]∥∥ds

≤ MΓ(α)
∫ t

tm
(t − s)α−1q(s)Ψ(‖x(s)− y(s)‖)ds

≤ MΨ(‖x − y‖C )Γ(α)
∫ t

tm
(t − s)α−1q(s)ds ≤ (M sup

t∈[tm,1]Iαtm,tq(t))Ψ(‖x − y‖C ),
which implies ‖T2x − T2y‖C ≤ Ψ(‖x − y‖C ).
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Now, we are ready to present the main result of this section.
Theorem 4.6.
Assume that (H1), (H4), (H5) and (H6) hold and condition (C1) (or (C1)) is satisfied. Then equation (1) has at least one
solution u ∈ C (J, X ).
Proof. By Lemma 4.2 we see that (ii) in Theorem 4.1 does not hold for U = D. Therefore, from Theorem 4.1, T hasa fixed point in D which is just the mild solution to the equation (1). This completes the proof.
Finally, we try to change the conditions (H5) and (H6) to the following parallel conditions:
(H5’) Condition (H5) is assumed without (14).(H6’) Denoting δ = lim

r→+∞ inf Ψ(r)/r ≤ 1, condition (H6) is assumed in addition with
Mδ sup

t∈[tm,1]Iα0,tq(t) < 1.
Corollary 4.7.
The existence result in Theorem 4.6 also holds even if (H5) and (H6) are replaced by the conditions (H5’) and (H6’)
respectively.

Proof. Indeed, we can modify Case 2 in the proof of Lemma 4.2 as follows:
‖x(t)‖ ≤ M m∑

k=1 |ak |‖B‖
MΓ(α)

∫ tk

0 (tk − s)α−1h(s)Ω(R∗1 )ds+ MΓ(α)
∫ tm

0 (t − s)α−1h(s)Ω(R∗1 )ds
+ MΓ(α)

∫ t

tm
(t − s)α−1‖f(s, 0)‖ds+ MΓ(α)

∫ t

tm
(t − s)α−1q(s)Ψ(‖x(s)‖)ds

≤ MΩ(R∗1 )( m∑
k=1 |ak |‖B‖+ 1) sup

t∈[0,tm ]Iα0,th(t) + M supt∈[tm ,t] ‖f(t, 0)‖(1− tm)αΓ(α+1)
+ MΓ(α)

∫ t

tm
(t − s)α−1q(s)(δ‖x(s)‖+ δ1)ds,

for some δ1 ≥ 0. Then we have
R∗2 = 11−Mδ supt∈[tm ,1]Iα0,tq(t)

{
MΩ(R∗1 )( m∑

k=1 |ak |‖B‖+ 1) sup
t∈[0,tm ]Iα0,th(t)

+ MΓ(α+1) sup
t∈[tm ,t] ‖f(t, 0)‖(1− tm)α +Mδ1 sup

t∈[tm ,1]Iα0,tq(t)} .
The rest proof is standard. So we omit it here.
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