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Abstract

We consider the Fisher-KPP equation with a non-local interaction term. We establish
a condition on the interaction that allows for existence of non-constant periodic solutions,
and prove uniform upper bounds for the solutions of the Cauchy problem, as well as upper
and lower bounds on the spreading rate of the solutions with compactly supported initial
data.

1 Introduction and main results

Reaction-diffusions equations of the form

ut = uxx + µu (1− φ ∗ u), t > 0, x ∈ R (1.1)

model the non-local interaction and competition between species. Here, u(t, x) is a population
density, and the independent variable x may be either a spatial location, a trait, or a mutation of
the species. This equation is a generalization of the classical (local) Fisher-KPP (for Kolmogorov-
Petrovsky-Piskunov) [10, 15] equation

ut = uxx + µu(1− u). (1.2)

The parameter µ > 0 in both cases denotes the strength of the competition. The nonnegative
convolution kernel φ ∈ L1(R) in (1.1) models the species interaction. We assume that it satisfies
the following properties:

φ(x) ≥ 0 for all x ∈ R, ess inf
(−σ,σ)

φ > 0 for some σ > 0, and

∫
R
φ = 1. (1.3)

This equation arises, in particular, in ecology, and adaptive dynamics [11, 12, 13], but also in
essentially any area where the local Fisher-KPP equation (1.2) appears, as interactions are rarely
fully local, and often occur on scales that are comparable to the diffusion scale, making the
non-local equation a more realistic model.
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Qualitative behavior of traveling waves and numerical solutions

While the behavior of the solutions of the local equation (1.2) has been very extensively studied,
much less is known about solutions of (1.1). Numerical simulations [6, 12, 13] indicate the following
behavior of solutions: first, for small µ solutions of the non-local equation behave “exactly like
solutions of the local equation”. More precisely, numerics shows that when µ is small, the only
non-negative bounded steady states for (1.1) are u ≡ 0 and u ≡ 1, and this equation admits
monotonic traveling waves of the form

u(t, x) = U(x− ct), U(−∞) = 1, U(+∞) = 0, U is decreasing,

that are asymptotically stable for the solutions of the Cauchy problem with front-like initial data.
On the other hand, when µ is sufficiently large, the qualitative behavior of numerical solutions
for (1.1) and (1.2) is very different: first, non-constant bounded steady solutions of (1.1) may
exist. As far as traveling waves are concerned, when µ is large, numerical computations show that
non-monotonic traveling waves connecting 1 to 0 may exist, as well as non-monotonic pulsating
waves

u(t, x) = U(x− ct, x), U(−∞, x) > 0, U(+∞, x) = 0, U is periodic in x,

connecting non-constant steady states to u ≡ 0. Moreover, the long time limit of the solutions of
the Cauchy problem may be either non-monotonic traveling waves, pulsating waves or wave-trains

u(t, x) = U(x− ct), U is periodic,

and not the monotonic traveling waves (see [6, 12, 13], and also [2] for a related model). To the
best of our knowledge, so far, these numerical observations have not been proved rigorously.

When µ is sufficiently large or when φ is sufficiently far from a Dirac mass at 0, the steady solu-
tion u ≡ 1 becomes unstable with respect to some spatially periodic perturbations, provided that
the Fourier transform φ̂(ξ) is not non-negative everywhere. This, heuristically, leads to existence
of the non-constant periodic steady states or wave trains that were observed numerically [12, 13]
(see also [8, 14] for a bifurcation analysis and numerics on a related equation). Quite surprisingly,
it was shown numerically in [16] that even when the state u ≡ 1 is unstable, there exist traveling
wave solutions (which are themselves not stable) that connect u ≡ 1 to u ≡ 0. It has been proved

in [6] that when φ̂(ξ) ≥ 0 for all ξ ∈ R, so that u ≡ 1 is stable, and µ is sufficiently large, mono-
tonic traveling waves connecting u ≡ 0 and u ≡ 1 do not exist, but there exists a non-monotonic
traveling wave connecting these two states. We also point out that explicit examples of various
wave-trains have been recently constructed in [17].

As far as monotone traveling waves for (1.1) are concerned, Fang and Zhao [9] have proved
that for all c ≥ 2, there exists µc > 0, so that (1.1) admits a monotonic traveling wave if and
only if µ ∈ (0, µc) – see also [13, 18]. It has been also shown in [1] that traveling waves with large
speeds necessarily converge to 1 as x− ct→ −∞.

Essentially nothing is known about the long time behavior of solutions of the Cauchy prob-
lem for (1.1), in particular, whether the aforementioned traveling waves are stable. The main
mathematical difficulty in studying this question is that unlike for (1.2), solutions of (1.1) do not
obey the maximum principle or the comparison principle, making the use of many technical tools
impossible.
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Non-trivial steady states

We study here existence of nonnegative steady bounded solutions u = u(x) of (1.1):

u′′(x) + µu(x) (1− (φ ∗ u)(x)) = 0, x ∈ R. (1.4)

Solutions are understood in the classical sense C2(R). Notice that, for any such solution u, (1.4)
can be written as

u′′ + cu = 0 in R,

where c = µ (1 − φ ∗ u) is continuous and bounded in R. Hence, for any nonnegative bounded
solution u of (1.4), either u = 0 in R or u > 0 in R, from the strong maximum principle.
The constant functions u = 0 and u = 1 solve (1.4) and they are the only constant functions
solving (1.4), for every µ > 0. The following theorem gives a sufficient condition for other non-

trivial periodic steady states to exist when µ is sufficiently large. We denote by φ̂ the Fourier
transform of the function φ:

φ̂(ξ) =

∫
R
φ(x)e−2iπξxdx for all ξ ∈ R.

Theorem 1.1 Assume that φ is even and that there are L ∈ (0,+∞) and k0 ∈ N such that

φ̂
(k0

L

)
< 0 and φ̂

( k
L

)
≥ 0 for all k ∈ N\{k0}. (1.5)

Then there is µ∗ > 0 such that, for every µ > µ∗, the problem (1.4) has a non-constant positive
L-periodic solution u.

A sufficient condition for (1.5) is that there exists ξ∗ > 0 such that φ̂ ≥ 0 on [ξ∗,+∞) and φ̂ < 0
in a left neighborhood of ξ∗. In that case, we can take L > 0 such that 1/L < ξ∗ < 2/L and

φ̂(1/L) < 0, that is (1.5) holds with k0 = 1. For instance, consider β > 1 large enough so that

cβ := 1− 1/
√
β + 1/β > 0,

and define

φβ(x) =
1

cβ
√
π

(
e−x

2 − e−βx2

+ e−β
2x2)

.

The function φβ is positive in R and its L1(R) norm is equal to 1. Furthermore, the function φ̂β
is such that

φ̂β(
√
β) =

1

cβ

(
e−βπ

2 − e−π
2

√
β

+
e−π

2/β

β

)
∼ −e

−π2

√
β
< 0 as β → +∞,

while φ̂β(ξ) ∼ (cββ)−1e−π
2ξ2/β2

> 0 as ξ → +∞ for every fixed β > 1 such that cβ > 0. As a
consequence, the function φβ satisfies the assumptions of Theorem 1.1 for β > 1 large enough.
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Bounds for the solutions of the Cauchy problem

We also consider solutions of the Cauchy problem{
ut = uxx + µu (1− φ ∗ u), t > 0, x ∈ R,
u(0, ·) = u0,

(1.6)

with a non-negative initial condition u0 ∈ L∞(R), u0 ≥ 0. Solutions of the corresponding Cauchy
problem for the local Fisher-KPP equation (1.2) satisfy a trivial upper bound

u(t, x) ≤ max(1, ‖u0‖L∞).

However, as the maximum principle does not hold for (1.6), such bound needs not hold for the
non-local problem. We prove here the following result.

Theorem 1.2 For every µ > 0 and for every nonnegative initial condition u0 ∈ L∞(R), the
solution u of (1.6) exists and is globally bounded in time, that is there exists M > 0 such that

0 ≤ u(t, x) ≤M for all t > 0 and x ∈ R.

In Theorem 1.2, the condition that φ ≥ 0 belongs to L1(R) with unit mass could likely be replaced
by the assumption that φ is a nonnegative Radon probability measure. On the other hand, the
condition

ess inf(−σ,σ)φ > 0

for some σ > 0 plays a crucial role in Theorem 1.2. Without it, the conclusion fails in general.
Let us illustrate this with the following example. Let µ and L be two positive real numbers such
that µ > π2/L2 and consider (1.6) with

φ =
1

2

(
δ−L + δL

)
,

where δ±L denote the Dirac masses at the points ±L. Assume that the initial data u0 is 2L-
periodic. By uniqueness, the function u(t, ·) is 2L-periodic for every t > 0 and it obeys

ut(t, x) = uxx(t, x) + µu(t, x)
(

1− u(t, x− L) + u(t, x+ L)

2

)
= uxx(t, x) + µu(t, x) (1− u(t, x+ L)),

for every (t, x) ∈ (0,+∞) × R. Set v(t, x) = u(t, x + L) and w(t, x) = u(t, x) − v(t, x). The
functions u, v and w satisfy

ut = uxx + µu (1− v),

vt = vxx + µ v (1− u),

wt = wxx + µw,

in (0,+∞)× R. Therefore, if for instance one chooses

u0(x) = 1 + ρ cos
(πx
L

)
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for some 0 < ρ < 1, then w(0, x) = 2 ρ cos(πx/L) and

w(t, x) = 2 ρ cos
(πx
L

)
e(µ−π

2/L2)t,

for every t > 0 and x ∈ R. Since µ > π2/L2, one gets

‖w(t, ·)‖L∞(R) → +∞ as t→ +∞.

However, we have
‖u(t, ·)‖L∞(R) = ‖v(t, ·)‖L∞(R),

and
‖w(t, ·)‖L∞(R) ≤ ‖u(t, ·)‖L∞(R) + ‖v(t, ·)‖L∞(R) = 2‖u(t, ·)‖L∞(R),

for every t > 0. Finally, one concludes that ‖u(t, ·)‖L∞(R) → +∞ as t→ +∞.

Spreading rate for compactly supported initial conditions

Finally, we establish the following result for the spreading rate for solutions of the Cauchy problem
with compactly supported initial data.

Theorem 1.3 Let u be the solution of the Cauchy problem (1.6) with a nonnegative initial con-
dition u0 ∈ L∞(R) such that u0 6≡ 0. Then

lim inf
t→+∞

(
min
|x|≤ct

u(t, x)
)
> 0 for all 0 ≤ c < 2

√
µ. (1.7)

Furthermore, if u0 is compactly supported, then

lim
t→+∞

(
max
|x|≥ct

u(t, x)
)

= 0 for all c > 2
√
µ. (1.8)

Similar bounds for the spreading rate for the solutions of the local Fisher-KPP equation (1.2) are
well known [3]. And, indeed, the upper bound (1.8) on the spreading rate follows immediately
from the comparison of the solutions of (1.6) and the solutions of the linear problem

vt = vxx + µv. (1.9)

On the other hand, the lack of the maximum principle for (1.6) makes the proof of the lower
bound (1.7) very different from that for the local equation (1.2). The idea is, roughly, as follows.
If u(t, x) is small behind the location x(t) = 2

√
µt then it should be small on a sufficiently

large region to make also the convolution φ ∗ u small. In that case, however, u(t, x) behaves,
approximately, as a solution of the linearized equation (1.9). These solutions, however, propagate
with the speed c∗ = 2

√
µ, leading to a contradiction.

The paper is organized as follows. Section 2 contains the proof of Theorem 1.1, while Theo-
rems 1.2 and 1.3 are proved in Sections 3 and 4, respectively.
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2 Existence of non-constant periodic steady states

This section contains the proof of Theorem 1.1. The general strategy is to apply a topological
degree argument. We first prove that, if µ > 0 is small enough, the constant solution u ≡ 1 is
linearly stable and is the only bounded positive solution of (1.4). Next, we show that, under the
assumptions of the theorem, if µ > 0 is large enough, the constant u ≡ 1 is an isolated (in the
L∞-sense) unstable steady solution with one unstable direction in the class of L-periodic even
functions. Together with some a priori uniform estimates, this will allow us conclude that u ≡ 1
is not the only positive solution of (1.4) for large values of the parameter µ. Throughout this
section, we assume that the convolution kernel φ is a nonnegative L1(R) function satisfying (1.3).
The additional assumption (1.5) and the evenness of φ will be used only in some steps of the
proof.

Uniform bounds for solutions

We first establish uniform pointwise upper and lower bounds for all positive bounded solutions
of (1.4), when the parameter µ ranges between two fixed positive constants.

Lemma 2.1 For every 0 < a ≤ b < +∞, there is a positive constant m which depends on φ, a
and b and there is a positive constant M which depends on φ and b, such that, for every µ ∈ [a, b]
and every positive bounded solution u of (1.4), there holds

0 < m ≤ u(x) ≤M for all x ∈ R. (2.1)

Proof. Similar lower and upper bounds were proved for a fixed value of µ > 0 in Lemma 2.1
and Proposition 2.3 of [6], under the additional assumption that the convolution kernel φ is of
class C1 and has a bounded second moment. Lemma 2.1 of the present paper can be viewed as
an extension of the aforementioned results. Furthermore, the proof of the upper bound is slightly
different from that of Proposition 2.3 of [6].

We begin with the proof of the upper bound, that is the existence of a constant M in (2.1),
independently of µ ∈ [a, b] and of u > 0 solving (1.4). Let σ > 0 be as in (1.3), and δ be any
fixed real number such that

0 < δ < min
( π

2
√
b
, σ
)
. (2.2)

Finally, let η > 0 be such that

φ(x) ≥ η > 0 for almost every x ∈ (−δ, δ). (2.3)
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From the choice of δ, we know that the lowest eigenvalue of the operator

ϕ 7→ −ϕ′′ − bϕ (2.4)

in (−δ, δ) with the Dirichlet boundary condition at ±δ, which is equal to π2/(4δ2)− b, is positive.
Therefore, the weak maximum principle for this operator holds in the interval (−δ, δ) (see [7]) and
in any subinterval, and there is a unique C2([−δ, δ]) solution u of the boundary value problem

u′′ + bu = 0 in [−δ, δ] and u(±δ) =
1

δη
. (2.5)

Furthermore, since the constant 1/(δη) is a subsolution for the above equation, the weak maximum
principle yields

u ≥ 1

δη
in [−δ, δ]. (2.6)

Notice that δ depends only on φ and b, that η depends only on φ and δ and that u depends only
on b, δ and η, that is u depends only on φ and b.

Let now µ be any real number in [a, b], u be any positive bounded solution of (1.4) and set

ρu = sup
R
u > 0.

Since (1.4) implies that u′′ is bounded, we know that u′ is also bounded. By differentiating (1.4),
we see that the kth-order derivative u(k) of u exists and is bounded, for every k ∈ N. Furthermore,
there is a sequence (xn)n∈N of real numbers such that

u(xn)→ ρu as n→ +∞.

Consider the translates
un(x) = u(x+ xn) for n ∈ N and x ∈ R.

Up to extraction of a subsequence, the functions un converge in (at least) C2
loc(R) to a C∞(R)

solution u∞ of (1.4) such that 0 ≤ u∞ ≤ ρu in R and u∞(0) = ρu > 0. Therefore, we have
u′′∞(0) ≤ 0, whence ∫

R
φ(y)u∞(−y) dy = (φ ∗ u∞)(0) ≤ 1.

Since both φ and u∞ are nonnegative, one gets that∫ 0

−δ
φ(y)u∞(−y) dy ≤ 1 and

∫ δ

0

φ(y)u∞(−y) dy ≤ 1.

Here, δ is defined in (2.2). On the other hand, φ ≥ η > 0 almost everywhere in (−δ, δ), due
to (2.3). One infers the existence of some real numbers y± such that

−δ ≤ y− < 0 < y+ ≤ δ and u∞(y±) ≤ 1

δη
. (2.7)

On the other hand, the nonnegative function u∞ satisfies

0 = u′′∞ + µu∞ (1− φ ∗ u∞) ≤ u′′∞ + µu∞ ≤ u′′∞ + b u∞ in R.
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That is, u∞ is a sub-solution to the equation (2.5) satisfied by the function u. Therefore, the
lower bound (2.6) on u, and the upper bound (2.7) for u∞ at y = y±, together with the maximum
principle for the operator (2.4), imply that

u∞ ≤ u in [y−, y+],

whence ρu = u∞(0) ≤ u(0). Since u(0) depends only on φ and b and does not depend on µ nor
on u, the upper bound in Lemma 2.1 is thereby proved.

We now turn to the proof of the lower bound in Lemma 2.1, that is, the existence of a positive
constant m, independent of µ ∈ [a, b] so that any bounded solution u > 0 of (1.4) is bounded
from below by m. Assume that there is no such constant m > 0. Then, there exist a sequence
(µn)n∈N of real numbers in the interval [a, b], a sequence (un)n∈N of positive bounded solutions
of (1.4) with µ = µn, and a sequence (xn)n∈N of real numbers such that

un(xn)→ 0 as n→ +∞.
Each function un is positive, and, from the already proved part of the present lemma, there is a
constant M > 0 such that un ≤M in R for all n ∈ N. As a consequence, the sequence (u′′n)n∈N is

bounded in L∞(R), as are (u′n)n∈N and (u
(k)
n )n∈N for every k ∈ N by immediate induction. Again,

we consider the shifts
vn(x) = un(x+ xn).

Up to extraction of a subsequence, one can assume that µn → µ ∈ [a, b] as n → +∞ and that
the sequence (vn)n∈N converges as n→ +∞ in (at least) C2

loc(R) to a C∞(R) solution v∞ of (1.4)
such that 0 ≤ v∞ ≤M in R and v∞(0) = 0. The function v∞ satisfies

v′′∞ + cv∞ = 0 in R,

where
c = µ (1− φ ∗ v∞)

is a bounded continuous function. The strong maximum principle implies that v∞ ≡ 0 in R, that
is vn → 0 as n→ +∞ (at least) locally uniformly in R. Since φ is a nonnegative L1(R) function,
and all functions vn satisfy 0 < vn ≤M in R, it follows that

φ ∗ vn → 0 as n→ +∞ locally uniformly in R.
In particular, for every R > 0, there is N ∈ N such that φ ∗ vn ≤ 1/2 in [−R,R] for every n ≥ N ,
whence

0 = v′′n + µn vn (1− φ ∗ vn) ≥ v′′n +
µnvn

2
≥ v′′n +

avn
2

in [−R,R]

for every n ≥ N . In other words, all functions vn (for n ≥ N) are supersolutions of the elliptic
operator

ϕ 7→ −ϕ′′ − (a/2)ϕ in [−R,R].

Since the functions vn are all positive in [−R,R], it follows from [7] that the lowest eigenvalue of
this operator with Dirichlet boundary condition at the points ±R is positive, that is

π2

4R2
− a

2
> 0.

Since this holds for every R > 0, one gets a contradiction as R → +∞. Hence, the sequences
(µn)n∈N, (un)n∈N and (xn)n∈N as above can not exist. That yields the existence of m in (2.1) and
completes the proof of Lemma 2.1. �
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Non-existence of non-trivial solutions for small µ

We proceed with the proof of Theorem 1.1. Let now L > 0 and k0 ∈ N be as in the assump-
tion (1.5) of Theorem 1.1. We also assume from now on that the convolution kernel φ is even.
Let α be any fixed real number in the interval (0, 1), and let X be the Banach space of even
L-periodic functions of class C0,α(R), equipped with the norm

‖u‖X = ‖u‖L∞(R) + sup
x 6=y∈R

|u(x)− u(y)|
|x− y|α

.

For every µ > 0, let Tµ : X → X be an operator defined as follows: for every u ∈ X,
v := Tµ(u) ∈ X is the unique classical solution of

−v′′ + v = u+ µu (1− φ ∗ u) in R.

From the Lax-Milgram theorem and the standard interior elliptic estimates, Tµ(u) is well defined
and belongs to X ∩C2,α(R) for every u ∈ X. The operator Tµ is continuous, and compact in the
sense that it maps bounded subsets of X into subsets of X with compact closure. Furthermore,
again from the elliptic estimates, the map µ 7→ Tµ is continuous locally uniformly in X, in the
sense that, for every µ > 0, every sequence (µn)n∈N converging to µ and every bounded subset B
of X, one has

supu∈B ‖Tµn(u)− Tµ(u)‖X → 0 as n→ +∞.

Notice also that the constant function 1 ∈ X is a fixed point of Tµ, that is, Tµ(1) = 1, for
every µ > 0. In order to get the conclusion of Theorem 1.1, our goal is to show that, when µ > 0 is
large enough, there are non-constant positive fixed points of Tµ in X, that is, positive non-constant
solutions u ∈ X of

u− Tµ(u) = 0.

We will do so by evaluating the Leray-Schauder topological degree of the map I − Tµ at the
point 0 in some suitable open subsets of X and by using a homotopy argument from small values
of the parameter µ to large values of µ. Here, I denotes the identity map.

The first step is to show that the constant function u ≡ 1 is the only positive fixed point of Tµ
in X when µ > 0 is small enough.

Lemma 2.2 There is µ > 0 such that, for every µ ∈ (0, µ), the constant function u ≡ 1 is the
only positive fixed point of Tµ in X, that is the only positive solution of (1.4) in X.

Proof. In Theorem 1.1 of [6], the stronger conclusion that the constant function 1 is the only
positive bounded solution of (1.4) for small µ > 0 was proved, under some slightly stronger
smoothness assumptions on φ. In the present Lemma 2.2, uniqueness holds with slightly different
assumptions on φ, but is shown here only in the space X, so the proof is shorter. It is presented
for the sake of completeness.

Assume that the conclusion is not true. Then there is a sequence (µn)n∈N of positive real
numbers such that µn → 0 as n → +∞, and a sequence (un)n∈N in X of solutions of (1.4) with
µ = µn, such that 0 < un in R and un 6≡ 1. From Lemma 2.1, there is a constant M such that

0 < un ≤M in R,
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for every n ∈ N. If maxR un ≤ 1, then φ ∗ un ≤ 1 and u′′n ≤ 0 in R, implying that un is a positive
constant, which would then have to be equal to 1 by (1.4). Therefore,

max
R

un > 1 for every n ∈ N. (2.8)

As done in the proof of Lemma 2.1, it follows from (1.4) that the L-periodic functions un are
bounded in Ck(R) for every k ∈ N, and therefore converge, as n → +∞, up to extraction of a
subsequence, to a C∞(R) solution u∞ of

u′′∞ = 0,

such that 0 ≤ u∞ ≤M in R. As a consequence, the function u∞ is constant and this constant is
such that 1 ≤ u∞ ≤ M due to (2.8). If u∞ > 1, then, as all un are L-periodic, we have un > 1
in R for n large enough, whence φ∗un > 1 and u′′n > 0 in R for n large enough, which is impossible
since all un are bounded. We conclude that

u∞ ≡ 1.

Next, write un = 1 + vn and wn = vn/‖vn‖L∞(R). Since maxR un > 1, one has maxR vn > 0 and
wn is well defined, for every n ∈ N. Furthermore, vn → 0 as n→ +∞ in Ck(R) for every k ∈ N.
The functions wn are L-periodic, with maxRwn > 0 and ‖wn‖L∞(R) = 1. They obey

w′′n − µn un (φ ∗ wn) = 0 in R.

From the standard elliptic estimates, we know that the functions wn converge as n→ +∞, up to
extraction of a subsequence, in Ck(R) for every k ∈ N, to a C∞(R) solution w∞ of

w′′∞ = 0,

such that maxRw∞ ≥ 0 and ‖w∞‖L∞(R) = 1. It follows that w∞ ≡ 1. For n large enough, one
gets that wn > 0 in R, once again since wn are L-periodic, whence

un = 1 + ‖vn‖L∞(R)wn > 1 in R.

Finally, it follows that φ ∗ un > 1 and u′′n > 0 in R for n large enough, which is impossible since
un is bounded. One has then reached a contradiction and the proof of Lemma 2.2 is thereby
complete. �

Stability of the fixed points

Let us now study the stability of the fixed point 1 of Tµ when µ > 0 is small or large. It follows
from elementary calculations and standard elliptic estimates that Tµ is Fréchet-differentiable
everywhere in X and that the Fréchet-derivative DTµ(1) at the point 1 is given as follows: for
every u ∈ X, w = DTµ(1)(u) is the unique solution of

−w′′ + w = u− µφ ∗ u in R.

Notice that the linear operator DTµ(1) : X → X is compact.
The next two lemmas are concerned with the stability of the fixed point 1 of Tµ when µ > 0

is small and when µ > 0 is large.
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Lemma 2.3 (Small µ) There is µ > 0 such that, for every µ ∈ (0, µ), all eigenvalues λ of DTµ(1)

satisfy |λ| < 1.

Proof. Let µ be given by

µ = min
(4π2

L2
,
1

2

)
,

and let us check that the conclusion holds with this value µ. To this end, let µ ∈ (0, µ) and let u

be an eigenvector of DTµ(1) with the eigenvalue λ. The function u ∈ X solves

−(λu)′′ + λu = u− µφ ∗ u in R. (2.9)

Let (ak)k∈N be the Fourier coefficients of u, defined by

ak =
2

L

∫ L

0

u(x) cos
(2πkx

L

)
dx, k ∈ N. (2.10)

The Fourier coefficients bk of φ ∗ u are given by

bk =
2

L

∫ L

0

(φ ∗ u)(x) cos
(2πkx

L

)
dx = φ̂

( k
L

)
ak, k ∈ N,

since φ is even and real-valued.
Since u is even, L-periodic and does not vanish identically, there is m0 ∈ N such that am0 6= 0.

If λ were equal to 0, then, in particular, the m0-th Fourier coefficient of the right-hand side of (2.9)
would vanish, that is

am0 − µ φ̂
(m0

L

)
am0 = 0,

whence
1− µ φ̂(m0/L) = 0,

as am0 6= 0. Thus, we would have

1 = µ φ̂(m0/L) ≤ µ‖φ‖L1(R) = µ ≤ 1/2,

which is impossible. As a consequence, λ 6= 0. It follows then from (2.9) that the function u is
actually of class C∞(R) and that(4π2k2

L2
+ 1
)
λ ak = ak − µ φ̂

( k
L

)
ak for all k ∈ N.

In particular, since am0 6= 0, one gets that

λ
(4π2m2

0

L2
+ 1
)

= 1− µ φ̂
(m0

L

)
.

If m0 = 0, then λ = 1− µ, whence λ ∈ (1− µ, 1) ⊂ (1/2, 1). If m0 ≥ 1, then

|λ|
(4π2m2

0

L2
+ 1
)

=
∣∣∣1− µ φ̂(m0

L

)∣∣∣ < 1 + µ ≤ 1 +
4π2

L2
,

whence |λ| < 1. The proof of Lemma 2.3 is thereby complete. �

11



Lemma 2.4 (Large µ) There is µ∗ > 0 such that, for every µ > µ∗, the operator DTµ(1) has
an eigenvalue λµ > 1, with dim ker(DTµ(1) − λµI)n = 1 for all n ≥ 1. Moreover, all other
eigenvalues λ of DTµ(1) satisfy λ < 1.

Proof. Recall that we assume that there exists k0 ∈ N such that φ̂(k0/L) < 0 and φ̂(k/L) ≥ 0

for all k ∈ N\{k0}. As φ̂(0) = 1, we have k0 ≥ 1. Let µ∗ > 0 be defined by

µ∗ =
4π2k2

0

L2
× 1∣∣∣φ̂(k0

L

)∣∣∣ > 0 (2.11)

and let us show that the conclusion of Lemma 2.4 holds with this choice of µ∗. Let µ be any real
number such that µ > µ∗, and set

λµ =
1− µ φ̂

(k0

L

)
4π2k2

0

L2
+ 1

> 1, (2.12)

by (2.11). The function uµ ∈ X given by

uµ(x) = cos
(2πk0x

L

)
for every x ∈ R,

solves

−λµu′′µ + λµuµ =
(

1− µ φ̂
(k0

L

))
uµ = uµ − µφ ∗ uµ in R.

In other words, DTµ(1)(uµ) = λµuµ, that is uµ is an eigenvector of DTµ(1) with the eigen-
value λµ > 1.

Moreover, if u ∈ X satisfies DTµ(1)(u) = λµu, that is

−λµu′′ + λµu = u− µφ ∗ u in R, (2.13)

then, since λµ 6= 0, the function u is actually of class C∞(R) and its Fourier coefficients ak given
by (2.10) satisfy (4π2k2

L2
+ 1
)
λµ ak =

(
1− µ φ̂

( k
L

))
ak (2.14)

for every k ∈ N. For every k ∈ N\{k0}, there holds(4π2k2

L2
+ 1
)
λµ ≥ λµ > 1 ≥ 1− µ φ̂

( k
L

)
by the assumption (1.5). Therefore, ak = 0 for every k ∈ N\{k0}. Since u is even, it is then a
multiple of the function uµ(x) = cos(2πk0x/L).

Next, let u ∈ X be such that

(DTµ(1)− λµI)2(u) = 0,

12



that is v = DTµ(1)u− λµu is in the eigenspace of DTµ(1) with eigenvalue λµ. From the previous
paragraph, one knows that v = γuµ for some γ ∈ R. In other words,

DTµ(1)(u) = λµu+ γuµ.

In particular, the function u is of class C∞(R) and solves

−(λµu+ γuµ)′′ + (λµu+ γuµ) = u− µφ ∗ u.

Therefore, the Fourier coefficients ak of u, given by (2.10), satisfy (2.14) for every k ∈ N\{k0}.
As in the previous paragraph, it follows that ak = 0 for every k ∈ N\{k0}, hence, u is a multiple
of the function uµ.

As a consequence, dim ker(DTµ(1) − λµI)n = 1 for every n ≥ 1, and the algebraic and
geometric multiplicity of the eigenvalue λµ of DTµ(1) is equal to 1.

It only remains to show that the other eigenvalues of DTµ(1) are all less than 1. To do so, let λ
be any real number such that λ 6= λµ and λ ≥ 1, and let u ∈ X be such that DTµ(1)(u) = λu. One
has to prove that u is necessarily equal to 0. The function u is of class C∞(R), it solves (2.13) with
the parameter λ and its Fourier coefficients ak given by (2.10) satisfy (2.14) with the parameter λ,
that is, (4π2k2

L2
+ 1
)
λ ak =

(
1− µ φ̂

( k
L

))
ak for every k ∈ N.

Given the definition (2.12) of λµ, and given that λ 6= λµ, it follows that ak0 = 0. Furthermore,

for k = 0, one has λ ≥ 1 > 1 − µ = 1 − µφ̂(0), whence a0 = 0. Lastly, for every k ∈ N\{0, k0},
there holds (4π2k2

L2
+ 1
)
λ > λ ≥ 1 ≥ 1− µφ̂

( k
L

)
,

whence ak = 0. As a consequence, ak = 0 for every k ∈ N, that is λ cannot be an eigenvalue
of DTµ(1). That completes the proof of Lemma 2.4. �

Remark 2.5 The fact thatX only contains even L-periodic functions forces the operatorDTµ(1),
for large µ, to have only one eigendirection associated to an eigenvalue larger than 1. That will
yield the explicit value, namely −1, of the index of the map I − Tµ at 0 in a small neighborhood
around the point u = 1 and will finally lead to the existence of other (than u = 1) fixed points
of Tµ in X for large µ.

End of the proof of Theorem 1.1

Let µ > 0 and µ > 0 be as in Lemmas 2.2 and 2.3, and set

µ∗ = min
(
µ, µ

)
> 0.

Let µ∗ > 0 be as in Lemma 2.4. From Lemmas 2.3 and 2.4, it follows that µ∗ ≤ µ∗.
Let now µ0 and µ̃ be any two real numbers such that

0 < µ0 < µ∗ ≤ µ∗ < µ̃.
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From Lemma 2.1, there are two positive constants 0 < m ≤M such that every positive bounded
solution u of (1.4), with parameter µ ∈ [µ0, µ̃], satisfies

0 < m ≤ u(x) ≤M for all x ∈ R.

Notice that u ≡ 1 is a solution of (1.4) for every µ, whence 0 < m ≤ 1 ≤M .
Let Ω be the non-empty open bounded subset of X defined by

Ω =
{
u ∈ X, m

2
< min

R
u ≤ max

R
u < 2M

}
.

It follows from Lemma 2.1 and the choice of m and M that, for every µ ∈ [µ0, µ̃] and for
every u ∈ ∂Ω, there holds

u− Tµu 6= 0,

for otherwise u would be a positive solution of (1.4) with the value µ, whence m ≤ u ≤M in R and
u 6∈ ∂Ω. Therefore, for every µ ∈ [µ0, µ̃], the Leray-Schauder topological degree deg(I − Tµ,Ω, 0)
of the map I − Tµ in the set Ω at the point 0 is well defined. Furthermore, by the continuity of
Tµ with respect to µ in the local uniform sense in X, this degree does not depend on µ ∈ [µ0, µ̃].

Let us now compute the degree. Lemmas 2.2 and 2.3 imply that deg(I − Tµ0 ,Ω, 0) is equal to
the index ind(I − Tµ0 , 1, 0) of I − Tµ0 at the point u = 1, namely ind(I − Tµ0 , 1, 0) = 1. In other
words, deg(I − Tµ0 ,Ω, 0) = 1, whence

deg(I − Teµ,Ω, 0) = 1. (2.15)

On the other hand, it follows from Lemma 2.4 that the operator I − DTeµ(1) is one-to-one.
Since I − DTeµ(1) is a Fredholm operator of index 0, it is invertible and the point u = 1 is an
isolated zero of I−Teµ in X. Finally, ind(I−Teµ, 1, 0) = −1 since I−DTeµ(1) has only one direction
associated to a negative eigenvalue. In other words,

deg(I − Teµ, Bε(1), 0) = ind(I − Teµ, 1, 0) = −1 (2.16)

for ε > 0 small enough, where Bε(1) denotes the open ball of center 1 and radius ε in X. But

deg(I − Teµ,Ω, 0) = deg(I − Teµ, Bε(1), 0) + deg(I − Teµ,Ω\Bε(1), 0),

for ε > 0 small enough. Together with (2.15) and (2.16), one finally concludes that, for ε > 0
small enough,

deg(I − Teµ,Ω\Bε(1), 0) = 2.

For ε > 0 small enough, there exists then a solution u of u − Teµ(u) = 0 in Ω\Bε(1), that is a
non-constant positive bounded and L-periodic solution u of (1.4) with the parameter µ̃ (remember
that 1 is the only positive constant function solving (1.4)). The proof of Theorem 1.1 is thereby
complete. �
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3 Bounds for the solutions of the Cauchy problem

Here, we prove Theorem 1.2. We consider the Cauchy problem (1.6) with a parameter µ > 0
and a nonnegative initial condition u0 ∈ L∞(R). We point out that we do not assume that u0

is periodic. The maximum principle and standard parabolic estimates imply that the solution u
exists for all times t ∈ (0,+∞), is classical in (0,+∞) × R (and is even of class C∞ in this set)
and satisfies

0 ≤ u(t, x) ≤ eµt ‖u0‖L∞(R) for every t > 0 and x ∈ R. (3.1)

Our task is to improve (3.1) to a uniform in time estimate.
Let σ > 0 be as in (1.3) and define the local average on the scale σ:

v(t, x) =

∫ x+σ/2

x−σ/2
u(t, y) dy for (t, x) ∈ [0,+∞)× R.

The function v is of class C∞((0,+∞)×R), continuous in [0,+∞)×R and satisfies a version of
the upper bound (3.1):

0 ≤ v(t, x) ≤ σ eµt‖u0‖L∞(R) for every (t, x) ∈ [0,+∞)× R.

Furthermore, the function v obeys

vt(t, x)− vxx(t, x) = µ

∫ x+σ/2

x−σ/2
u(t, y) (1− (φ ∗ u)(t, y)) dy,

for every (t, x) ∈ (0,+∞) × R, and, since the right-hand side of the above equation belongs
to L∞((a, b)×R) for every 0 ≤ a < b < +∞, the function t 7→ ‖v(t, ·)‖L∞(R) is actually continuous
on [0,+∞).

Owing to (1.3), let now η > 0 be such that

φ ≥ η > 0 a.e. in (−σ, σ), (3.2)

and let M be any positive real number such that

M > max
(
σ ‖u0‖L∞(R),

1

η

)
. (3.3)

We will show that ‖v(t, ·)‖L∞(R) ≤ M for all t > 0, by contradiction. Assume that this is false.
Since t 7→ ‖v(t, ·)‖L∞(R) is continuous on [0,+∞), and

‖v(0, ·)‖L∞(R) ≤ σ‖u0‖L∞(R) < M,

there exists t0 > 0 such that ‖v(t0, ·)‖L∞(R) = M and ‖v(t, ·)‖L∞(R) < M for all t ∈ [0, t0). Since
v is nonnegative, there exists then a sequence of real numbers (xn)n∈N such that v(t0, xn) → M
as n→ +∞. As usual, we define the translates

un(t, x) = u(t, x+ xn) and vn(t, x) = v(t, x+ xn),
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for n ∈ N and (t, x) ∈ (0,+∞) × R. From standard parabolic estimates, the sequences (un)n∈N
and (vn)n∈N are bounded in Ck

loc((0,+∞)×R) for every k ∈ N and converge in these spaces, up to
extraction of a subsequence, to some nonnegative functions u∞ and v∞ of class C∞((0,+∞)×R),
such that

v∞(t, x) =

∫ x+σ/2

x−σ/2
u∞(t, y) dy,

and

(v∞)t(t, x) = (v∞)xx(t, x) + µ

∫ x+σ/2

x−σ/2
u∞(t, y) (1− (φ ∗ u∞)(t, y)) dy,

for every (t, x) ∈ (0,+∞) × R. The passage to the limit in the integral term is possible due to
the local uniform convergence of un to u∞ in (0,+∞)×R and to the local-in-time bounds (3.1).
Furthermore, we have

0 ≤ v∞(t, x) ≤M,

for every 0 < t ≤ t0 and x ∈ R, and v∞(t0, 0) = M . Therefore, we have

(v∞)t(t0, 0) ≥ 0 and (v∞)xx(t0, 0) ≤ 0,

whence, ∫ σ/2

−σ/2
u∞(t0, y) (1− (φ ∗ u∞)(t0, y)) dy ≥ 0.

If
(φ ∗ u∞)(t0, ·) > 1 everywhere in [−σ/2, σ/2], (3.4)

then the continuous function

U = u∞(t0, ·) (1− (φ ∗ u∞)(t0, ·))

would be nonpositive on [−σ/2, σ/2]. Since its integral over [−σ/2, σ/2] is nonnegative, the
function U would be identically equal to zero on [−σ/2, σ/2]. Moreover, it would then follow
from (3.4) that u∞(t0, ·) = 0 on [−σ/2, σ/2], whence v∞(t0, 0) = 0, contradicting the assumption
that v∞(t0, 0) = M > 0. Therefore, there is a real number y0 ∈ [−σ/2, σ/2] such that

(φ ∗ u∞)(t0, y0) ≤ 1.

Since both functions φ and u∞ are nonnegative, one gets from (3.2) that

1 ≥ (φ ∗ u∞)(t0, y0) ≥
∫ σ

−σ
φ(y)u∞(t0, y0 − y) dy

≥ η

∫ σ

−σ
u∞(t0, y0 − y) dy ≥ η

∫ σ/2

−σ/2
u∞(t0, y) dy = η v∞(t0, 0) = ηM.

This contradicts the definition (3.3) of the constant M .
We conclude that ‖v(t, ·)‖L∞(R) ≤M for all t ≥ 0. Since u is nonnegative, this means that

0 ≤
∫ x+σ/2

x−σ/2
u(t, y) dy ≤M (3.5)
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for every t ≥ 0 and x ∈ R. To get a global bound for u itself, we just fix an arbitrary time s ≥ 1
and infer from the maximum principle that

0 ≤ u(s, x) ≤ w(s, x) for every x ∈ R.

Here, w is the solution of the equation

wt = wxx + µw

with the initial condition at time s−1 given by w(s−1, ·) = u(s−1, ·). It follows then from (3.5)
that, for every x ∈ R,

0 ≤ u(s, x) ≤ eµ
∫ +∞

−∞

e−y
2/4

√
4π

u(s− 1, x− y) dy ≤ 2M eµ√
4π

∑
k∈N

e−k
2σ2/4 < +∞.

Together with the local-in-time bounds (3.1), this implies that u is globally bounded. The proof
of Theorem 1.2 is complete. �

4 Spreading speed for the Cauchy problem (1.6)

This section is devoted to the proof of Theorem 1.3 on the asymptotic spreading speed for the
solutions of the Cauchy problem (1.6). The proof of the upper bound (1.8) is immediate simply
by comparing the solution u of (1.6) to that of the (local) linear heat equation

vt = vxx + µ v. (4.1)

The proof of the lower bound (1.7) is more involved and, when compared to the proofs given
in [3, 4, 5] for the analogous local problems, it requires additional arguments due to the nonlocality
of (1.1), and the lack of comparison principle for the nonlocal equation (1.1). However, the
maximum principle can be applied when φ ∗ u is small and the equation (1.1) will then be
compared in some suitable bounded boxes to a local linear equation close to (4.1).

Proof of the upper bound

We assume here that u0 is compactly supported. Hence, there is R > 0 such that u0(x) = 0 for
a.e. |x| ≥ R. Since u(t, x) ≥ 0 for all t > 0 and x ∈ R, one has

µu(t, x) (1− (φ ∗ u)(t, x)) ≤ µu(t, x)

for all t > 0 and x ∈ R. Let v denote the solution of (4.1) for t > 0 with initial condition u0

at t = 0. It follows from the maximum principle that 0 ≤ u(t, x) ≤ v(t, x) for all t > 0 and x ∈ R,
whence

0 ≤ u(t, x) ≤ eµt√
4πt

∫ R

−R
e−(x−y)2/(4t) u0(y) dy. (4.2)

Let c be any arbitrary real number such that c > 2
√
µ. For all t ≥ R/c and for all |x| ≥ ct, one

has

0 ≤ u(t, x) ≤
eµt‖u0‖L∞(R)√

4πt

∫ R

−R
e−(ct−R)2/(4t)dy,
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which immediately yields (1.8) (notice that, for every t > 0, the maximum of u(t, ·) on the
set (−∞,−ct] ∪ [ct,+∞) is reached since u(t, ·) is continuous, nonnegative, and converges to 0
at ±∞ from (4.2)).

Proof of the lower bound

Assume for the sake of contradiction that the conclusion (1.7) does not hold. Then, since u is
nonnegative, there is c such that

0 ≤ c < 2
√
µ

and there are two sequences (tn)n∈N in (0,+∞) and (xn)n∈N in R such that{
|xn| ≤ c tn for all n ∈ N,
tn → +∞ and u(tn, xn)→ 0 as n→ +∞.

(4.3)

We set
cn =

xn
tn
∈ [−c, c]. (4.4)

Up to extraction of a subsequence, one can assume that cn → c∞ ∈ [−c, c] as n→ +∞.
Furthermore, for every n ∈ N and (t, x) ∈ (−tn,+∞)× R, we define the shifted functions

un(t, x) = u(t+ tn, x+ xn).

From Theorem 1.2, the sequence (‖un‖L∞((−tn,+∞)×R))n∈N is bounded. Therefore, the standard

parabolic estimates imply that the functions un converge in C1,2
loc (R × R), up to extraction of a

subsequence, to a classical bounded solution u∞ of

(u∞)t = (u∞)xx + µu∞ (1− φ ∗ u∞) in R× R,

such that u∞ ≥ 0 in R×R and u∞(0, 0) = 0. By viewing µ (1−φ∗u∞) as a coefficient in L∞(R×R),
it follows from the strong parabolic maximum principle and the uniqueness of the solutions of
the Cauchy problem that u∞(t, x) = 0 for all (t, x) ∈ R× R (the limit u∞ being unique, one can
then infer that the whole sequence (un)n∈N converges to 0 in C1,2

loc (R×R)). As a consequence, the
nonnegative functions vn defined in (−tn,+∞)× R by

vn(t, x) = un(t, x+ cnt) = u(t+ tn, x+ cn(t+ tn))

converge to 0 locally uniformly in R×R, due to the boundedness of the speeds cn defined in (4.4).
Hence the nonnegative functions φ ∗ vn also converge to 0 locally uniformly in R × R, since the
sequence (‖vn‖L∞((−tn,+∞)×R))n∈N is bounded.

Let us now fix some parameters which are independent of n. First, let δ > 0 be such that

µ (1− δ) ≥ c2

4
+ δ, (4.5)

and also let R > 0 be such that
π2

4R2
≤ δ. (4.6)
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Since u(1, ·) is continuous from parabolic regularity, and is positive in R from the strong parabolic
maximum principle, there is η > 0 such that

u(1, x) ≥ η > 0 for all |x| ≤ R + c. (4.7)

Without loss of generality, one can assume that tn > 1 for every n ∈ N. Since φ ∗ vn → 0
locally uniformly in R× R as n→ +∞, for n sufficiently large (n ≥ N) we may define

t∗n = inf
{
t ∈ [−tn + 1, 0]; (0 ≤)φ ∗ vn ≤ δ in [t, 0]× [−R,R]

}
, n ≥ N,

with δ and R as in (4.5) and (4.6), and we may assume that t∗n < 0. Furthermore, for every
n ≥ N , by continuity of φ ∗ vn in (−tn,+∞)× R, the infimum is a minimum in the definition of
t∗n and

0 ≤ φ ∗ vn ≤ δ in [t∗n, 0]× [−R,R]. (4.8)

On the other hand, we have

vn(−tn + 1, x) = u(1, x+ cn) ≥ η for all |x| ≤ R,

from (4.4) and (4.7), for all n ∈ N. Therefore, again by continuity of φ ∗ vn in (−tn,+∞)×R and
by minimality of t∗n, for each n ≥ N there is the following dichotomy:

either
(
t∗n>−tn+1 and max

[−R,R]
(φ ∗ vn)(t∗n, ·) = δ

)
or

(
t∗n=−tn+1 and min

[−R,R]
vn(t∗n, ·) ≥ η

)
.

(4.9)

Next, we claim that there exists ρ > 0 such that

min
[−R,R]

vn(t∗n, ·) ≥ ρ > 0 for all n ≥ N. (4.10)

Note that this claim would be immediate if the second assertion of (4.9) always holds, but there
is a priori no reason for the first assertion not to hold. Remember that min[−R,R] vn(t∗n, ·) > 0
for each fixed n ≥ N . So, if (4.10) were not true, then, up to extraction of a subsequence, there
would exist a sequence of points (yn)n≥N in [−R,R] such that

vn(t∗n, yn)→ 0 and yn → y∞ ∈ [−R,R] as n→ +∞.

We will use the translates
wn(t, x) = vn(t+ t∗n, x),

defined for all n ≥ N and (t, x) ∈ (−tn − t∗n,+∞)× R. Since the functions vn solve

(vn)t = (vn)xx + cn(vn)x + µ vn (1− φ ∗ vn) in (−tn,+∞)× R, (4.11)

the functions wn solve the same equation, in (−tn − t∗n,+∞)×R. Notice that −tn − t∗n ≤ −1 for
all n ≥ N , that cn → c∞ as n → +∞, that the functions wn are all nonnegative and that the
sequence (‖wn‖L∞((−tn−t∗n,+∞)×R))n≥N is bounded. Therefore, from standard parabolic estimates,
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the functions wn converge in C1,2
loc ((−1,+∞)×R), up to extraction of a subsequence, to a classical

bounded solution w∞ of

(w∞)t = (w∞)xx + c∞(w∞)x + µw∞ (1− φ ∗ w∞) in (−1,+∞)× R,

such that
w∞(t, x) ≥ 0 for all (t, x) ∈ (−1,+∞)× R and w∞(0, y∞) = 0.

It follows form the strong maximum principle and the uniqueness of the solutions of the Cauchy
problem that

w∞(t, x) = 0 for all (t, x) ∈ (−1,+∞)× R.

In other words, wn → 0 as n→ +∞ (at least) locally uniformly in (−1,+∞)× R, whence

φ ∗ wn → 0 as n→ +∞,

locally uniformly in (−1,+∞) × R by boundedness of the sequence (‖wn‖L∞((−1,+∞)×R))n≥N .
Therefore, we have

vn(t∗n, ·)→ 0 and (φ ∗ vn)(t∗n, ·)→ 0 locally uniformly in R as n→ +∞.

This is a contradiction to (4.9), since both δ and η are positive. Therefore, claim (4.10) is proved.
Now, (4.8), (4.10) and (4.11) imply that we have the following situation: for every n ≥ N ,

one has −tn + 1 ≤ t∗n < 0 and, in the box [t∗n, 0]× [−R,R], the nonnegative function vn satisfies
(vn)t = (vn)xx + cn(vn)x + µ vn (1− φ ∗ vn)

≥ (vn)xx + cn(vn)x + µ (1− δ) vn in [t∗n, 0]× [−R,R]

vn(t,±R) ≥ 0 for all t ∈ [t∗n, 0],

vn(t∗n, x) ≥ ρ for all x ∈ [−R,R].

(4.12)

On the other hand, for every n ≥ N , the function ψn defined in [−R,R] by

ψn(x) = ρ e−cnx/2−cR/2 cos
(πx

2R

)
satisfies 0 ≤ ψn ≤ ρ in [−R,R] from (4.4), ψn(±R) = 0 and

ψ′′n + cnψ
′
n + µ (1− δ)ψn =

(
µ (1− δ)− c2n

4
− π2

4R2

)
ψn ≥ 0 in [−R,R]

from our choice of δ and R: see (4.4), (4.5) and (4.6). In other words, the time-independent
function φn is a subsolution for the problem (4.12) satisfied by vn in [t∗n, 0]× [−R,R]. It follows
then from the parabolic maximum principle that

vn(t, x) ≥ φn(x) for all (t, x) ∈ [t∗n, 0]× [−R,R],

and for all n ≥ N . In particular,

u(tn, xn) = vn(0, 0) ≥ φn(0) = ρ e−cR/2 for all n ≥ N.

However, assumption (4.3) means that u(tn, xn) → 0 as n → +∞, while ρ e−cR/2 > 0 from the
positivity of ρ in (4.10). One has then reached a contradiction.

Therefore, (1.7) holds and the proof of Theorem 1.3 is complete. �
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