On the Nonrelativistic Limit of the Dirac Theory

W. Hunziker

Institut für Theoretische Physik der ETH, Zürich, Switzerland

Received October 15, 1974

Abstract. The relation between a "nonrelativistic" Hamiltonian of the form $H^{\infty} = (A + B)^2 + C$ and a corresponding family of "Dirac-Hamiltonians" H(c) in the limit $c \to \infty$ is investigated. It is shown that the resolvent $(z - H(c))^{-1}$ and the relativistic perturbation of isolated eigenvalues of H^{∞} are analytic in 1/c for sufficiently large |c|.

1. Introduction

The Hamiltonian of a Dirac-electron of charge e = 1 and mass m = 1/2 may be written as

$$H(c) = c\alpha(p - A(x)) + \frac{1}{2}\beta c^2 + \varphi(x),$$
 (1)

where p = -id/dx and with the 4 × 4-matrices

$$\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

whose elements are the 2×2 -matrices 1 and $\sigma = (\sigma_1, \sigma_2, \sigma_3) = \text{set of Pauli spin-matrices.}$ A(x) and $\varphi(x)$ are the potentials of the static electromagnetic field. The usual factor 1/c in front of A(x) is omitted on purpose since it must be kept fixed in the nonrelativistic limit $c \to \infty$. H(c) acts on the Hilbertspace $C^4 \otimes L^2(R^3)$ of square-integrable 4-component wave functions.

On a formal level, it is well understood that the nonrelativistic limit $c \to \infty$ is described by the Pauli-Hamiltonian

$$H^{\infty} = (\sigma(p - A(x))^{2}) + \varphi(x)$$
 (2)

on the smaller Hilbertspace $C^2 \otimes L^2(R^3)$, and there exists a sytematic scheme for obtaining corrections to H^{∞} in the form of a power series in 1/c [1]. However, these "relativistic perturbations" of H^{∞} are given by more and more singular operators which are by no means small with respect to H^{∞} . One might therefore suspect that perturbation expansions in powers of 1/c are at best asymptotic.

Nevertheless, Titchmarsh [2] has proved analyticity in 1/c of eigenvalues and eigenfunctions for the spherically symmetric case without magnetic field: $\varphi = \varphi(r)$, A = 0; and Veselić [3] has extended this result to the case without spherical symmetry: $\varphi = \varphi(x)$, A = 0.

In this note we investigate the general case $A \neq 0$ which poses essentially new problems-already in the nonrelativistic limit. One of the points we wish to make is that it is profitable to treat a general Hamiltonian of type $H^{\infty} = (A + B)^2 + C$ as a nonrelativistic limit of a corresponding Dirac-Hamiltonian H(c).

In order to keep the conditions on A and φ fairly general, we here restrict ourselves to the discrete spectrum of H. The analyticity properties of the resolvent in 1/c will of course also be needed in the discussion of the continuum. However, additional assumptions for the electromagnetic field (like dilatation-analyticity or sufficiently rapid fall-off at infinity) are then necessary and the arguments become more technical [4].

2. The Hamiltonian and Its Spectrum

We summarize some (but not all!) known results on the selfadjointness and on the spectrum of H(c). This is intended only as a background for the more general set-up introduced in Section 3.

H is of the form $H_0 + V$ with $H_0 = c\alpha p + \frac{1}{2}c^2\beta$, $V(x) = \varphi(x) - c\alpha A(x)$. V(x) is a 4×4 -matrix valued function on $R^3 \cdot L^p$ -norms of V may be defined with respect to any matrix-norm.

Theorem 1. Let $V \in L^p + L^{\infty}$ for some p > 3. Then V is H_0 -bounded with arbitrarily small relative bound. Therefore, $H = H_0 + V$ is selfadjoint with domain $D(H_0)$.

Theorem 2. Suppose that $V \in L^p + \varepsilon L^\infty$ (p > 3), i.e. that the L^∞ -part of V can be chosen arbitrarily small in L^∞ -norm. Then the spectrum $\sigma(H)$ of H consists of the continuum $\sigma(H_0) = \{z \in R : |z| \ge \frac{1}{2}c^2\}$ and, in the complement of $\sigma(H_0)$, of isolated eigenvalues with finite multiplicities with can accumulate only at $+\frac{1}{2}c^2$.

Remarks. Theorem 1 is proved in [5] and follows from the fact that an operator of the form

$$f(x)(1+p^2)^{-1/2} (3)$$

on $L^2(\mathbb{R}^3)$ is bounded if $f \in L^p$, p > 3. The condition p > 3 excludes Coulomb-like singularities. However, $f(x) = |x|^{-1}$ is still relatively bounded with respect to |p| [6].

Theorem 2 can be proved like its analogue for Schrödinger Hamiltonians [7]. The main point is that (3) is a compact operator if $f \in L^p + \varepsilon L^{\infty}$, i.e. V is relatively compact with respect to H_0 .

3. The Nonrelativistic Limit

We now pose the problem in a generalized form. Let A, B, C be symmetric operators on a Hilbertspace \mathcal{H} . On $C^2 \otimes \mathcal{H}$ we define the "Dirac-Hamiltonian"

$$H(c) = c\alpha \otimes (A+B) + \frac{c^2}{2}\beta \otimes \mathbb{1} + \mathbb{1} \otimes C,$$

where

$$\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

We want to show that the limit $c \to \infty$ is described by the "Pauli-Hamiltonian"

$$H^{\infty} = (A+B)^2 + C$$
 on \mathscr{H} .

Corresponding to the hypothesis of Theorem 1 we assume:

$$A = A^*$$
; B and C are A-bounded, in particular
B has relative bound < 1 with respect to A. (4)

It follows easily that H(c) is selfadjoint with domain D(A) for c real and sufficiently large. For H^{∞} we have

Lemma 1. H^{∞} is selfadjoint with domain $D((A+B)^2)$ and bounded below.

Proof. By (4), A + B is selfadjoint with domain D(A) and A is (A + B)-bounded. Hence C is (A + B)-bounded and has therefore arbitrarily small relative bound with respect to $(A + B)^2$.

Remark. For H^{∞} , the splitting

$$H^{\infty} = A^2 + (AB + BA + B^2 + C)$$

into unperturbed part plus perturbation is artificial and raises unneccessary domain questions. These will be avoided automatically by treating H^{∞} as a limit of H(c).

We first discuss the unperturbed resolvent $(z - H_0(c))^{-1}$ for

$$H_0(c) = c\alpha A + \frac{1}{2}c^2\beta,$$

where we have dropped the tensor-product notation. From $\alpha^2 = \beta^2 = 1$ and $\alpha\beta + \beta\alpha = 0$ it follows that

$$H_0^2(c) = c^2 A^2 + \frac{1}{4}c^4$$

which shows that $\sigma(H_0)$ has at least the gap $(-\frac{1}{2}c^2, +\frac{1}{2}c^2)$. For $z \notin \sigma(H_0)$ we have

$$(z = H_0)^{-1} = (z + H_0) (z^2 - H_0^2)^{-1}$$

= $(z + c\alpha A + \frac{1}{2}c^2\beta) (z^2 - \frac{1}{4}c^4 - c^2A^2)^{-1}$.

Before taking the nonrelativistic limit $c\to\infty$ we must subtract from $H_0(c)$ or H(c) the rest energy $\frac{1}{2}c^2$ or, equivalently, replace in the resolvents z by $z+\frac{1}{2}c^2$. This will always be assumed in the following. It is also convenient to use 2-component notation: $u=\begin{pmatrix} u^1\\u_2 \end{pmatrix},\ u_k\in\mathcal{H},$ for vectors $u\in C^2\otimes\mathcal{H}$ and the corresponding 2×2 -matrix notation for operators on $C^2\otimes\mathcal{H}$. The unperturbed resolvent then takes the form

$$G_0(z,c) = (z - H_0(c))^{-1}$$

$$= \begin{pmatrix} 1 + \frac{z}{c^2} & \frac{A}{c} \\ & \\ \frac{A}{c} & \frac{z}{c^2} \end{pmatrix} \left(z + \frac{z^2}{c^2} - A^2 \right)^{-1},$$

which shows explicitly that, for $z \notin \sigma(A^2)$, $G_0(z, c)$ is analytic in 1/c in a z-dependent neighbourhood of 1/c = 0. To construct the full resolvent $G(z, c) = (z - H(c))^{-1}$ we

start from the resolvent equation

$$G(z, c) = G_0(z, c) + K(z, c) G(z, c)$$
,

where

$$K(z, c) = G_0(z, c) (H(c) - H_0(c))$$

$$= \left(z + \frac{z^2}{c^2} - A^2\right)^{-1} \left(\left(1 + \frac{z}{c^2}\right)C + AB \qquad \left(1 + \frac{z}{c^2}\right)cB + \frac{AC}{c} \right) \cdot \frac{1}{c} (AC + zB) \qquad AB + \frac{zC}{c^2} \right).$$

This expression for K must be understood in the following sense: a term like $\left(z+\frac{z^2}{c^2}-A^2\right)^{-1}AB$ is defined on D(B) as the product of the bounded operator $A\left(z+\frac{z^2}{c^2}-A^2\right)^{-1}$ with B. As a consequence of (4), K is therefore defined on D(A) and bounded. In the following we denote with K the unique bounded extension of this operator to all of $C^2\otimes \mathscr{H}$. For $B\neq 0$ we see that K diverges as $c\to\infty$. To control this divergence we set

$$S(c) = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}$$

and introduce

$$\tilde{G}_{0}(z,c) = SG_{0}S^{-1} = \left(z + \frac{z^{2}}{c^{2}} - A^{2}\right)^{-1} \begin{pmatrix} 1 + \frac{z}{c^{2}} & \frac{A}{c^{2}} \\ A & \frac{z}{c^{2}} \end{pmatrix}$$

$$= (z - A^{2})^{-1} \begin{pmatrix} 1 & 0 \\ A & 0 \end{pmatrix} \text{ for } c = \infty.$$

$$\tilde{K}(z,c) = SKS^{-1} = \left(z + \frac{z^{2}}{c^{2}} - A^{2}\right)^{-1} \begin{pmatrix} \left(1 + \frac{z}{c^{2}}\right)C + AB & \left(1 + \frac{z}{c^{2}}\right)B + \frac{AC}{c^{2}} \\ AC + zB & AB + \frac{zC}{c^{2}} \end{pmatrix}$$

$$= (z - A^{2})^{-1} \begin{pmatrix} C + AB & B \\ AC + zB & AB \end{pmatrix} \text{ for } c = \infty.$$
(6)

We notice that for $z \notin \sigma(A^2)$, $\tilde{G}_0(z, c)$ and $\tilde{K}(z, c)$ are analytic in $(1/c)^2$ in a neighbourhood of zero. The resolvent equation transforms into

$$\tilde{G}(z,c) = \tilde{G}_0(z,c) + \tilde{K}(z,c)\tilde{G}(z,c)$$
(7)

for $\tilde{G} = SGS^{-1}$. Our next task is to connect this equation for $c = \infty$ with the Pauli Hamiltonian H^{∞} .

Theorem 3. Let A, B, C satisfy (4) and let $z \notin \sigma(A^2)$. Then the two equations

$$(z - H^{\infty})u = v \tag{8}$$

and

are equivalent in the following sense: (8) implies (9) $for \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} u \\ (A+B)u \end{pmatrix}$, (9) implies $u_1 \in D((A+B)^2)$, $u_2 = (A+B)u_1$ and (8) for $u = u_1$.

The straightforward but somewhat lengthy proof is given in Section 5. As a corollary we note that for $z \notin \sigma(A^2)$, $z \notin \sigma(H^{\infty})$, $G^{\infty}(z) = (z - H^{\infty})^{-1}$ satisfies

$$\begin{pmatrix} G^{\infty}(z) & 0 \\ (A+B)G^{\infty}(z) & 0 \end{pmatrix} = \begin{pmatrix} (z-A^2)^{-1} & 0 \\ A(z-A^2)^{-1} & 0 \end{pmatrix} + \tilde{K}(z,\infty) \begin{pmatrix} G^{\infty}(z) & 0 \\ (A+B)G^{\infty}(z) & 0 \end{pmatrix}. \quad (10)$$

Conversely, if $z \notin \sigma(A^2)$ and if $(1 - \tilde{K}(z, \infty))^{-1}$ exists and is bounded, it follows that $z \notin \sigma(H^{\infty})$ and that

$$\begin{pmatrix} G^{\infty}(z) & 0 \\ (A+B)G^{\infty}(z) & 0 \end{pmatrix}$$

is the unique solution of (10) in $L(C^2 \otimes \mathcal{H})$. Therefore, (10) is a suitable resolvent equation for H^{∞} which may also be used, incidentally, as a starting point for time-independent scattering theory [4]. Corresponding to the hypothesis of theorem 2 we now assume in addition to (4) that

B and C are relatively compact with respect to
$$A$$
. (11)

As in Theorem 2 it then follows that H(c) can only have isolated eigenvalues of finite multiplicities in the complement of $\sigma(H_0(c))$, in particular in the gap $(-c^2, 0)$ (rest energy subtracted). Since $\tilde{K}(z, \infty)$ is compact for $z \notin \sigma(A^2)$ we obtain a similar result for H^{∞} :

Lemma 2. In the complement of $\sigma(A^2)$, $\sigma(H^{\infty})$ consists only of isolated eigenvalues of finite multiplicities which are bounded below.

Proof. Suppose that for some $z \notin \sigma(A^2)$, the homogeneous equation

$$\tilde{K}(z,\infty)u = u \tag{12}$$

has a nontrivial solution. Then $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ satisfies (9) with v = 0. By Theorem 3, it follows that $u_1 \in D((A+B)^2)$, $u_2 = (A+B)u_1$ and

$$(z - H^{\infty})u_1 = 0. (13)$$

We conclude that $u_1 \neq 0$ and that $z \in \sigma(H^{\infty})$. By the Fredholm alternative, therefore, $(1 - \tilde{K}(z, \infty))^{-1}$ exists for $z \notin \sigma(H^{\infty})$. Since $\tilde{K}(z, \infty)$ is analytic in $z \notin \sigma(A^2)$,

 $(1-\tilde{K}(z,\infty))^{-1}$ and therefore $G^{\infty}(z)$ are meromorphic in $z \notin \sigma(A^2)$. Conversely, (13) implies (12) for $u = \begin{pmatrix} u_1 \\ (A+B)u_1 \end{pmatrix}$, hence the eigenvalues of H^{∞} in the complement of $\sigma(A^2)$ are of finite multiplicity. Boundedness below is obvious from Lemma 1. This concludes the proof.

We are now prepared to discuss the analyticity properties in 1/c of G(z,c). Let $z \notin \sigma(A^2) \cup \sigma(H^{\infty})$. Then $(1-\tilde{K}(z,\infty))^{-1}$ exists. Since $\tilde{K}(z,c)$ is analytic in $(1/c)^2$ it follows that $(1-\tilde{K}(z,c))^{-1}$ exists and is analytic in $(1/c)^2$ for |c| sufficiently large. The same is true for $\tilde{G}_0(z,c)$ and therefore, by (7), for $\tilde{G}(z,c)$. From (5) and (10) we see that the power series of $\tilde{G}(z,c)$ in $(1/c)^2$ begins with

$$\widetilde{G}(z,c) = \begin{pmatrix} G^{\infty}(z) & 0 \\ (A+B)G^{\infty}(z) & 0 \end{pmatrix} + 0\left(\frac{1}{c^2}\right).$$

Due to the particular form of the leading term, $G(z, c) = S^{-1}(c) \tilde{G}(z, c) S(c)$ is still analytic in 1/c with an expansion

$$G(z,c) = \begin{pmatrix} G^{\infty}(z) & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{c} \begin{pmatrix} 0 & (A+B)G^{\infty}(z) \\ (A+B)G^{\infty}(z) & 0 \end{pmatrix} + 0 \left(\frac{1}{c^2}\right).$$

In general, the diagonal elements of G(z,c) are even in 1/c, the off-diagonal elements are odd. These analyticity properties of the resolvent are the basis from which the analyticity properties of eigenvalues and eigenfunctions follow in the usual way [6]. As has been remarked by Veselić, the fact that $G(z,\infty)$ is a pseudoresolvent rather than a resolvent is thereby no obstacle. We only give the final result:

Theorem 4. Let A, B, C satisfy (4) and (11). Let z be an eigenvalue of H^{∞} in the complement of $\sigma(A^2)$ and m its (finite) multiplicity. Then z is the limit for $c \to \infty$ of eigenvalues $z_k(c)$ of H(c) (with rest-energy subtracted) of total multiplicity m. The functions $z_k(c)$ are analytic in $(1/c)^2$ for |c| sufficiently large. An orthonormal set of corresponding eigenvectors of H(c) can be chosen such that each eigenvector is of the form $\begin{pmatrix} u_1(c) \\ u_2(c) \end{pmatrix}$ where $u_1(c)$ and $c^{-1}u_2(c)$ are analytic in $(1/c)^2$ and where $u_1(\infty)$ is an eigenvector of H^{∞} with eigenvalue z.

Remark. In general there will be other eigenvalues of H(c) which for $c \to \infty$ will not converge to an eigenvalue of H^{∞} in the complement of $\sigma(A^2)$. However, these eigenvalues will leave any compact not intersecting $\sigma(A^2)$, i.e. they will either join $\sigma(A^2)$ or disappear to $\pm \infty$. In fact it is equally possible to study the limit $c \to \infty$ of $-H(c) - \frac{1}{2}c^2$ which leads to a Pauli Hamiltonian $(A+B)^2 - C$.

4. Proof of Theorem 3

 $(8) \rightarrow (9)$: We define $u_1 = u$ and $u_2 \in D(A)$ by

$$(A+B)u_1 - u_2 = 0. (14)$$

Then (8) takes the form

$$(z - C)u_1 - (A + B)u_2 - v = 0, (15)$$

and the combination $A(z-A^2)^{-1}(14)-(z-A^2)^{-1}(15)$ gives the upper component of (9)

$$u_1 = (z - A^2)^{-1}v + A(z - A^2)^{-1}Bu_1 + (z - A^2)^{-1}Cu_1 + (z - A^2)^{-1}Bu_2$$
. (16)

All terms in (16) are in D(A). The combination A(16) + (14) leads to the lower component of (9):

$$u_2 = A(z - A^2)^{-1}v + z(z - A^2)^{-1}Bu_1 + A(z - A^2)^{-1}Cu_1 + A(z - A^2)^{-1}Bu_2.$$
 (17)

 $(9) \to (8)$:

(9) is equivalent to the set (16) (17) with two important modifications. First, all operator products must be replaced by their bounded extensions to \mathcal{H} . To indicate this extension we write, for example, $[A(z-A^2)^{-1}B]$ for the extension of $A(z-A^2)^{-1}B$. Secondly, we start only with the information that u_1 and u_2 are in \mathcal{H} . The combination $A(z-A^2)^{-1}(16) + (z-A^2)^{-1}(17)$ gives

$$[(z-A^2)^{-1}(A+B)]u_1 = (z-A^2)^{-1}u_2, (18)$$

where we have used identities like

$$A(z-A^2)^{-1}[(z-A^2)^{-1}C] = (z-A^2)^{-1}[A(z-A^2)^{-1}C],$$

which hold trivially on D(A) and extend by continuity to all of \mathcal{H} . We now take the scalar product of (18) with an arbitrary $f \in \mathcal{H}$ and set $g = (\bar{z} - A^2)^{-1} f$. Using $\lceil (z - A^2)^{-1} (A + B) \rceil^* = (A + B) (\bar{z} - A^2)^{-1}$ we find

$$((A+B)g, u_1) = (g, u_2)$$
 (19)

for all $g \in D(A^2)$. Since A is the closure of its restriction to $D(A^2)$ and since B is A-bounded, this extends by continuity to all $g \in D(A)$. Since A + B is selfadjoint with domain D(A), it follows that

$$u_1 \in D(A+B)$$
 and $u_2 = (A+B)u_1$. (20)

Writing (20) in the form

$$u_1 = z(z - A^2)^{-1} u_1 + A(z - A^2)^{-1} B u_1 - A(z - A^2)^{-1} u_2$$

and subtracting this from (16) we get

$$(z-A^2)^{-1}(z-C)u_1 = (z-A^2)^{-1}v + [(z-A^2)^{-1}(A+B)]u_2$$
.

In the same way as before we conclude that

$$((A+B)q, u_2) = (q_1(z-C)u_1-v)$$

for all $g \in D(A)$. It follows that $u_2 \in D(A+B)$ and $(A+B)u_2 = (z-C)u_1 - v$. Combined with (20) this is the desired result:

$$u_1 \in D((A+B)^2)$$
, $u_2 = (A+B)u_1$ and $(z-H^{\infty})u_1 = v$.

References

- 1. See for instance Bjorken, J. D., Drell, S. D.: Relativistic Quantum Mechanics. New York: Mc Graw Hill Inc. 1964
- 2. Titchmarsh, E. C.: Proc. Roy. Soc. 266 A, 33 (1962)
- 3. Veselić, K.: Commun. math. Phys. 22, 27 (1971)
- 4. Hunziker, W.: unpublished report, available from the Institute of theoretical physics of the ETH
- 5. Prosser, R. T.: J. Math. Phys. 4, 1048 (1964)
- 6. Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
- 7. Hunziker, W.: Helv. Phys. Acta 39, 452 (1966)

Communicated by K. Hepp

W. Hunziker Institut für Theoretische Physik der E. T. H. CH-8049 Zürich, Switzerland