Pacific Journal of
Mathematics

ON THE NORMAL BUNDLE OF A MANIFOLD
Mark Mahowald

ON THE NORMAL BUNDLE OF A MANIFOLD

Mark Mahowald

In the Michigan lecture notes of 1940 [8] Whitney proved that any manifold in the cobordism class of P_{2} cannot be embedded in R^{4} with a normal field while non-orientable manifolds in the trivial cobordism class may or may not have a normal field. We will give a new proof of this result using some of the recent notions of differential topology. As one would expect, Whitney's theorem is a special case of a more general theorem and for the statement of this theorem we introduce some notation.

Let M^{n} be a compact smooth n-manifold. Let \bar{w}_{i} be the dual Stiefel Whitney classes of M^{n}.

Definition. Let $\sigma\left(M^{n}\right)=0$ if $\bar{w}_{1} \cdot \bar{w}_{n-1}=0$ and $\sigma\left(M^{n}\right)=1$ if $\bar{w}_{1} \cdot \bar{w}_{n-1} \neq 0$.

Clearly $\sigma\left(M^{n}\right)$ is just a Stiefel Whitney number [6]. Note also that by a result of Massey [5], $\sigma\left(M^{n}\right)=0$ unless $n=2^{j}$.

Theorem 1. For any embedding of M^{n} in $R^{2 n}$ the (twisted) Euler class is congruent to $2 \sigma \bmod 4$.

This result is a slight sharpening of the theorem of Massey [4]; the proof is given in $\S 4$ after some preliminary results in $\S \S 2$ and 3.

Let χ be the Euler characteristic of M^{2}. In Whitney's theorem the role of σ in Theorem 1 is played by χ. It is not hard to verify that for 2 -dimension manifolds $\sigma=\chi \bmod 2$. In addition, for 2 -dimensional manifolds we can prove (section 6)

Theorem 2. For each k and each value of σ there is a manifold M^{2} and an embedding of M^{2} in R^{4} with twisted Euler class $2 \sigma+4 k$.

We have not been able to show that a single manifold has an embedding for each k. Whitney exhibited two embeddings of the Klein bottle, one with a trivial Euler class and one with a non-trivial one.

We also have this weaker result (section 7) for other values of n.
THEOREM 3. For every even n there exists a manifold M^{n} and an embedding of M^{n} in $R^{2 n}$ with no normal field.

It is known that if $n \neq 2^{j}$ and $n>3$, then every n-manifold embeds

[^0]in $R^{2 n-1}$. Hence this result asserts in addition that some n-manifolds have inequivalent embeddings in $R^{2 n}$.

It is interesting to note that the principal lemma yielding Theorem 1 also gives a new proof of the following slightly strengthened version of a result of Levine [2] and Mahowald [3].

Theorem 4. Suppose M^{n} is orientable in addition. If there exists a class d of dimension $(n-k-1) / 2$ such that $d \cup S q^{1} d \cup \bar{w}_{k} \neq 0$, then M^{n} does not embed in R^{n+k+1}.

In [3] only the application of this result to give- P_{n} does not embed in $R^{2 n-2}$ if $n=2^{j}+1$-is given.
2. Some lemmas. In this section we will derive some information about a particular secondary cohomology operation. Let K be a semisimplicial complex and let $u \in C^{2 k}(K ; Z)$ such that $\delta u=2 v$. If w is an integer $(\mathrm{a} \bmod j)$ cocycle we write $[w]\left([w]_{j}\right)$ for the cohomology class containing w. We have the following results, some of which are well known.
2.1. $S q^{1}[u]_{2}=[v]_{2}$ and $\beta_{2}[u]_{2}=[v]$ where β_{j} is the Bockstein coboundary connected with the sequence $0 \rightarrow Z \rightarrow Z \rightarrow Z_{j} \rightarrow 0$.
2.2. If \mathfrak{p} is the Pontriagin square operation $\mathfrak{p}: H^{2 k}\left(K ; Z_{2}\right) \rightarrow$ $H^{4 k}\left(K ; Z_{4}\right)$ then $\mathfrak{p}\left([u]_{2}\right)=\left[u \cup u+u \cup_{1} \delta u\right]_{4}$.
2.3. If $a \in H^{i}(X ; Z)$ then let \bar{a} be its $\bmod 2$ restriction. Then

$$
\beta_{4} \mathfrak{p} \mathcal{p}\left([u]_{2}\right)=\left[v \cup_{1} v+u \cup v\right]
$$

and

$$
\overline{\beta_{4} \mathfrak{p}\left([u]_{2}\right)}=S q^{2 k} S q^{1}[u]_{2}+[u]_{2} \cup[v]_{2} .
$$

Proof. By the coboundary formula [7] which also holds in s.s.c. we have $\delta\left(u \cup u+u \cup_{1} \delta u\right)=4\left(v \cup_{1} v+u \cup v\right)$. This gives the first statement and the second now follows by definition.
2.4. If $u \cup u+\delta p$ is an integer cocycle then $u \cup_{1} v$ is a $\bmod 2$ cocycle and $S q^{1}\left(\left[u \cup_{1} v\right]\right)=S q^{2 k} S q^{1}[u]_{2}+[u]_{2} \cup[v]$.

Proof. By the coboundary formula we have

$$
\begin{aligned}
\delta\left(u \cup_{1} v\right) & =u \cup v-v \cup u+\delta u \cup_{1} v \\
& =2(u \cup v)+2\left(v \cup_{1} v\right)
\end{aligned}
$$

since $\delta(u \cup u)=0$ implies $u \cup v+v \cup u=0$. Now 2.1 completes the proof.
2.5. If $u \cup u=2 b+\delta c$, then $b+u \cup_{1} v$ is a $\bmod 2$ cocycle and

$$
S q^{1}\left[b+u \cup_{1} v\right]_{2}=S q^{2} S q^{1}[u]_{2}+[u]_{2} \cup S q^{1}[u]_{2} .
$$

Proof. Note that $\delta(u \cup u)=2(v \cup u+u \cup v)=2 \delta b$. Hence

$$
v \cup u+u \cup v=\delta b
$$

and the result follows as in 2.4.
In 2.4 we require that $u \cup u+\delta p$ is an integer cocycle, that is, we require that $\beta_{2}[u \cup u]=0$. The universal example for such a class u is obtained by considering a fibering $p: X \rightarrow K\left(A_{2}, 2 k\right)$ with fiber $K(Z, 4 k)$ and k-invariant $2 \beta_{4} \mathfrak{p}(\alpha)$ where α is the fundamental class of $K\left(Z_{2}, 2 k\right)$. Let $\alpha^{\prime}=p^{*}(\alpha)$. Then by 2.4, $\alpha^{\prime} \cup_{1} S q^{1} \alpha^{\prime}$ is a cocycle and not a coboundary (since $\alpha^{\prime} \cup S q^{1} \alpha^{\prime} \neq 0$). Let $\varepsilon=\alpha^{\prime} \cup_{1} S q^{1} \alpha^{\prime}$.

Let $S A$ be the suspension of A and let $s: H^{j}(A) \rightarrow H^{j+1}(S A)$ be the suspension isomorphism. There is a natural map $f: S K\left(Z_{2}, 2 k-1\right) \rightarrow X$ such that f^{*} is an isomorphism in dimension $2 k$.
2.6. With the above notation there is a class $\beta \in p^{*} H^{*}\left(K\left(Z_{2}, 2 k\right) ; Z_{2}\right)$ (that is a primary operation) such that $f^{*}(\beta+\varepsilon)=s\left(\alpha \cup S q^{1} \alpha\right)$ where $s: H^{j}\left(K\left(Z_{2}, 2 k-1\right)\right) \simeq H^{j+1}\left(S K\left(Z_{2}, 2 k-1\right)\right)$. If β satisfies the above equation then $\beta+S q^{2 k}$ will do so too.

Proof. As a vector space $H^{4 k}\left(S K ; Z_{2}\right)$ is generated by

$$
f^{*} p^{*} H^{4 k}\left(K\left(Z_{2}, 2 k\right)\right) \quad \text { and } \quad s\left(\alpha \cup S q^{1} \alpha\right)
$$

Hence $f^{*}(\varepsilon)=\lambda s\left(\alpha \cup S q^{1} \alpha\right)+\beta$ where $\lambda=0$ or 1 and β satisfies the theorem. By direct computation we see that

$$
S q^{1} s\left(\alpha \cup S q^{1} \alpha\right)=S q^{2 k} S q^{1} s \alpha \notin f^{*} p^{*} S q^{1} H^{4 k}\left(K(Z, 2 k) ; Z_{2}\right)
$$

But by 2.4 $S q^{1} f^{*}(\varepsilon)=S q^{2 k} S q^{1} s \alpha$. Since

$$
S q^{1} \lambda s\left(\alpha \cup S q^{1} \alpha\right)+S q^{1} \beta=S q^{2 k} S q^{1} s \alpha
$$

if and only if $\lambda=1$ and $S q^{1} \beta=0$ we are finished.
In 2.5 we required that $u \cup u \equiv 0 \bmod 2$. The universal example for such a class u is given by a fiber space $p_{1}: Y \rightarrow K\left(Z_{2}, 2 k\right)$ with $K\left(Z_{2}, 4 k-1\right)$ as the fiber and $S q^{2 k}$ as the k-invariant. Since there is no homotopy in dimension $4 k$ we have, letting $[u]_{2}=p_{1}^{*} \alpha$:
2.7. The class $\mu=\left[b+u \cup_{1} v\right] \in H^{4 k}\left(Y ; Z_{2}\right)$ is not spherical and
hence is the universal example of a nontrivial natural cohomology operation which we write as μ too.

Let $g: S K\left(Z_{2}, 2 k-1\right) \rightarrow Y$ be the natural map inducing an isomorphism g^{*} in dimension $2 k$. By an argument identical to the proof of 2.6 we have 2.8. In the above notation $g^{*}\left(\mu+\beta^{\prime}\right)=s\left(\alpha \cup S q^{1} \alpha\right)$ where $\beta^{\prime} \in p_{1}^{*} H^{*}\left(K\left(Z_{2}, 2 k\right), Z_{2}\right)$. If β^{\prime} satisfies the above equation then $\beta^{\prime}+S q^{2 k}$ will do so too.
3. Let γ_{n} be the universal n-plane bundle and let I be the trivial line bundle. The base space of I will usually be clear from the context. If ν is any n-plane bundle we let $T(\nu)$ be the Thom complex and $U \in H^{n}\left(T ; Z_{2}\right)$ be the Thom class. Recall that in $T, U \cup U$ is equal to $U \cup \bar{w}_{n}$ which is the restriction $\bmod 2$ of an integer class $U \cup \chi$ where χ is the twisted Euler class (of order 2 if n is odd). Hence $\beta_{2} S q^{n} U=0$. By usual obstruction theory, letting $n=2 k$, we see that there exists a map $g: T\left(\gamma_{2 k}\right) \rightarrow X$ such that g^{*} is an isomorphism in dimension $2 k$.

Lemma 3.1. In the above notation we can find a β satisfying 2.6 such that $g^{*}(\beta+\varepsilon)=U \cup \bar{w}_{n-1} \cup \bar{w}_{1}, n=2 k$.

Proof. Consider the diagram:

where i is the map induced by the natural inclusion of $\gamma_{n-1} \oplus I$ in γ_{n}, and g^{\prime} is defined by requiring $g^{\prime *}(s \alpha)=U^{\prime}$, the Thom class of $T\left(\gamma_{n-1} \oplus I\right)$. Letting β be the class of 2.6 , we have $g^{*} f^{*}(\beta+\varepsilon)=$ $s\left(U_{n-1} \cup U_{n-1} \cup \bar{w}_{1}\right)=U^{\prime} \cup \bar{w}_{n-1} \cup \bar{w}_{1}$ where U_{n-1} is the Thom class of $T\left(\gamma_{n-1}\right)$. Hence $g^{*}(\beta+\varepsilon)=U \cup \bar{w}_{n-1} \cup \bar{w}_{1}+\alpha$ where $\alpha \in \operatorname{ker} i^{*}$. But ker i^{*} is generated by $S q^{n} U=U \cup \bar{w}_{n}$. Therefore 2.6 completes the proof.

4. Proof of Theorem 1.

Notation. In the remaining sections it will be convenient to use a dot for the cup product.

Let M^{n} be embedded in $R^{2 n}$ and let $T(\eta)$ be the Thom complex of the normal bundle. By [6] M^{n} has a normal field if $n=1 \bmod 2$ (it even embeds in $R^{2 n-1}$) so we suppose n is even. The group $H^{2 n}(T(n) ; Z)=Z$ and is generated by a class b such that $2 j b=U \cdot \lambda$
(\bar{w}_{n} is zero, hence λ is zero $\bmod 2$). The cohomology operation μ is defined on U and by 2.7 and 3.1 we have $\mu(U)=\left[U \cdot \bar{w}_{1} \cdot \bar{w}_{n-1}+j b\right]_{2}$. Since the top cohomology class of the Thom complex of a normal bundle to an embedding is spherical [6], $\mu(U)=0$. Therefore $j b=U \cdot \bar{w}_{1} \cdot \bar{w}_{n-1}$ $(\bmod 2)$.
5. Proof of Theorem 4. Suppose we have an embedding of the kind described. Let E and E_{0} be the normal disk and sphere bundle respectively. Consider the sequence

$$
T(\eta)=E / E_{0} \xrightarrow{\tau} S E_{0} \xrightarrow{S f} S K\left(Z_{2}, j\right) \xrightarrow{g} Y
$$

where g is defined in the paragraph just before 2.8 and $S f$ is the suspension of the map $f: E_{0} \rightarrow K\left(Z_{2}, j\right)$ satisfying $f^{*}(\alpha)=a \cdot d$ where a is any class such that $\tau^{*}(s a)=U$. The map τ is the natural map. ${ }^{1}$ Let $\lambda=f S f \tau$. Clearly λ is a defining map for μ. We have $g^{*} \mu=$ $s\left(\alpha \cdot S q^{1} \alpha\right)$ by 2.8. By direct computation $f^{*}\left(\alpha \cdot S q^{1} \alpha\right)=a \cdot \bar{w}_{k} \cdot d \cdot S q^{1} d+b$ where b is in $\operatorname{ker} \tau^{*}$. Finally $\lambda^{*}(\mu)=U \cdot \bar{w}_{k} \cdot d \cdot S q^{1} d$ which is in the top cohomology class of $T(\eta)$ and hence must be zero. This contradiction proves the theorem.
6. Proof of Theorem 2. Let $f^{\prime}: S^{4} \rightarrow T\left(\gamma^{2}\right)$ be any map. By Theorem 36 [6] the $\operatorname{map} f^{\prime}$ is homotopic to a map $f: S^{4} \rightarrow T\left(\gamma^{2}\right)$ which is transverse regular on $G_{2, k}$ (the grassmann manifold of 2 planes in R^{2+k} which, if $k>3$, is universal for classifying 2 plane bundles over 2-manifolds. Then $f^{-1}\left(G_{2, k}\right)=M^{2}$ is a sub-manifold of S^{4} and $f / M^{2}: M^{2} \rightarrow G_{2, k}$ is the classifying map of the normal bundle to an embedding of M^{2} in $R^{4} \subset S^{4}$. All that remains is to investigate the structure of $\pi_{4}\left(T\left(\gamma^{2}\right)\right.$).

Lemma 6.1. The first few homotopy groups of $T\left(\gamma^{2}\right)$ are

$$
\begin{array}{ccccc}
i & 1 & 2 & 3 & 4 \\
\pi_{i}\left(T\left(\gamma^{2}\right)\right) & 0 & Z_{2} & 0 & Z .
\end{array}
$$

The k-invariant with which the Z group is added is $2 \beta_{4} \mathfrak{p}(\alpha)$ where α is the fundamental class of $K\left(Z_{2}, 2\right)$.

Remark. It is interesting to note that this portion of the Postnikov tower for $T\left(\gamma^{2}\right)$ is the same as the corresponding portion for $\widetilde{G}_{n}, n>4$ where \widetilde{G}_{n} is the classifying space for oriented n-plane bundles. Indeed the k-invariants computed in [1] agree with these

[^1]given here. The class $w_{4} \in H^{4}\left(\widetilde{G}_{n} ; Z_{2}\right)$ is associated with $U \cdot w_{1}^{2}$ in $H^{4}\left(T\left(\gamma^{2}\right) ; Z_{2}\right)$ while w_{2}^{2} and $U \cdot w_{2}$ are similarly associated.

Proof of the lemma. Since the Thom class of $T\left(\gamma^{2}\right)$ is also the fundamental class and since $S q^{1} U \neq 0$, the Hurewicz isomorphism theorem proves that $\pi_{2}\left(T\left(\gamma^{2}\right)\right)=Z_{2}$. Now $H^{3}\left(T\left(\gamma^{2}\right) ; J\right)=Z_{2}$ if $J=Z$ or $Z_{2 k}$ for any k and zero for other Z_{p}. Hence any homotopy group in dimension 3 . must be attached with a nontrivial k-invtriant. But $H^{4}\left(K\left(Z_{2}, 2\right) ; Z_{2}\right)$. is generated by $S q^{2} \alpha$ and $S q^{2} U=U \cdot w_{2}$ in $H^{*}\left(T\left(\gamma^{2}\right)\right)$ and so $\pi^{2}\left(T\left(\gamma^{2}\right)\right)=0$.

Now $H^{4}\left(T\left(\gamma^{2}\right) ; Z\right)=Z$, generated by $U \cdot \chi$ where χ is the twisted Euler class. Hence the rank of $\pi_{4}\left(T\left(\gamma^{2}\right)\right)$ is 1 . Since the restriction $\bmod 2$ of $U \cdot \chi$ is $S q^{2} U$, the Z component is attached with a nontrivial k-invariant. Finally $H^{5}\left(K\left(Z_{2}, 2\right) ; Z\right)=Z_{4}$ generated by $\beta_{4} \mathfrak{p}(\alpha)$ and $\overline{\left(\beta_{4} \mathfrak{p}(\alpha)\right)}=S q^{2} S q^{1} \alpha+\alpha S q^{1} \alpha$ (see 2.3) and since $S q^{2} S q^{1} U+U \cdot U w_{1}=$ $U \cdot w_{2} \cdot w_{1} \neq 0$ the k-invariant for the Z component can not be $\beta_{4} \mathfrak{p}(\alpha)$. Therefore it must be $2 \beta_{4} \mathfrak{p}(\alpha)$.

Let $p: X \rightarrow K\left(Z_{2}, 2\right)$ be the fiber map having $2 \beta_{4} p(\alpha)$ as k-invariant and $K(Z, 4)$ as fiber. By 2.4 we see that $H^{4}\left(X ; Z_{2}\right)=Z_{2}+Z_{2}$ generated by a new class $\alpha^{\prime} \cup_{1} S q^{1} \alpha^{\prime}$ and by $S q^{2} \alpha^{\prime}$ where $\alpha^{\prime}=p^{*} \alpha$. Hence the natural map $f: T\left(\gamma^{2}\right) \rightarrow X$ induces an isomorphism $f^{*}: H^{i}(X) \rightarrow H^{i}\left(T\left(\gamma^{2}\right)\right)$ for all coefficient groups if $i \leqq 4$. To complete the proof of the lemma. we note that f^{*} is also an isomorphism in dimension 5.

Now we can complete the proof of Theorem 2. Since the order of the k-invariant is $2, f^{\prime *}(U \cdot \chi)=2 j \gg$ where K is a generator of $H^{4}\left(S^{4} ; Z\right)$ and $j=\left[f^{\prime}\right]$, the homotopy class of f^{\prime} in π_{4} under some identification with the integers. Let η be the normal bundle for the embedding of M^{2} in R^{4} constructed above. Then the composite

$$
S^{4} \xrightarrow{\lambda_{1}} T(\eta) \xrightarrow{\lambda_{2}} T\left(\gamma^{2}\right)
$$

(where λ_{2} is the natural map and λ_{1} is obtained by collapsing the complement of a normal neighborhood of M^{2} to a point) is just f^{\prime}. Since λ_{1}^{*} is an isomorphism in dimension 4, the twisted Euler class of the embedding is $2 j$ times the twisted fundamental cohomology class.
7. Proof of Theorem 3. Let $T\left(\gamma^{n}\right)$ be the Thom complex of the universal n-plane bundle, n even. Then $H_{n}\left(T\left(\gamma^{n}\right) ; Z\right)=Z_{2}$ generated by the cycle dual to the Thom class U. Since $T\left(\gamma_{n}\right)$ is $(n-1)$-connected, we have $\pi_{n}\left(T\left(\gamma^{n}\right)\right)=Z_{2}$. Therefore by Serre's theorem, ([6], page 109) rank $H^{2 n}\left(T\left(\gamma^{n}\right) ; Z\right)=\operatorname{rank} \pi_{2 n}\left(T\left(\gamma^{n}\right)\right)$. In particular there is a map $f: S^{2 n} \rightarrow T\left(\gamma^{n}\right)$ such that $f^{*}(U \cdot \chi) \neq 0$ where χ is the twisted Euler class. Now following the argument of $\S 6$ we construct the desired manifold.

References

1. A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Ann. of Math., 69 (1959), 667-677.
2. J. Levine, Princeton Thesis.
3. M. Mahowald, On the embeddability of the real projective spaces, Proc. Am. Math. Soc., 13 (1962), 763-764.
4. W. S. Massey, Normal vector fields on manifolds II, Notices, Amer. Math. Soc., 10 (1963), p. 362.
5. -, On the Stiefel Whitney classes of a manifold, Amer. J. of Math., 82 (1960), 92-102.
6. J. Milnor, Lectures on Characteristic Classes, Princeton mimeographed notes.
7. N. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math., 48 (1947), 290-320.
8. H. Whitney, On the topology of differentiable manifolds, Lectures in Topology, Michigan Press, 1940.

Syracuse University
Northwestern University

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Robert Osserman
Stanford University
Stanford, California

J. Dugundil
University of Southern California
Los Angeles 7, California
Lowell J. Paige
University of California
Los Angeles 24, California

ASSOCIATE EDITORS
E. F. Beckenbach
B. H. Neumann
F. Wolf
K. Yosida

SUPPORTING INSTITUTIONS

```
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
```

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
 CALIFORNIA RESEARCH CORPORATION SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should by typewritten (double spaced), and on submission, must be accompanied by a separate author's résumé. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. Effective with Volume 13 the price per volume (4 numbers) is $\$ 18.00$; single issues, $\$ 5.00$. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $\$ 8.00$ per volume; single issues $\$ 2.50$. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal but they are not owners or publishers and have no responsibility for its content or policies.
Pacific Journal of Mathematics
Vol. 14, No. 4 August, 1964
Homer Franklin Bechtell, Jr., Pseudo-Frattini subgroups 1129
Thomas Kelman Boehme and Andrew Michael Bruckner, Functions with convex means 1137
Lutz Bungart, Boundary kernel functions for domains on complex manifolds 1151
L. Carlitz, Rings of arithmetic functions 1165
D. S. Carter, Uniqueness of a class of steady plane gravity flows 1173
Richard Albert Dean and Robert Harvey Oehmke, Idempotent semigroups with distributive right congruence lattices 1187
Lester Eli Dubins and David Amiel Freedman, Measurable sets of measures 1211
Robert Pertsch Gilbert, On class of elliptic partial differential equations in four variables 1223
Harry Gonshor, On abstract affine near-rings 1237
Edward Everett Grace, Cut points in totally non-semi-locally-connected continua 1241
Edward Everett Grace, On local properties and G_{δ} sets 1245
Keith A. Hardie, A proof of the Nakaoka-Toda formula 1249
Lowell A. Hinrichs, Open ideals in $C(X)$ 1255
John Rolfe Isbell, Natural sums and abelianizing 1265
G. W. Kimble, A characterization of extremals for general multiple integral problems 1283
Nand Kishore, A representation of the Bernoulli number B_{n} 1297
Melven Robert Krom, A decision procedure for a class of formulas of first order predicate calculus 1305
Peter A. Lappan, Identity and uniqueness theorems for automorphic functions 1321
Lorraine Doris Lavallee, Mosaics of metric continua and of quasi-Peano spaces 1327
Mark Mahowald, On the normal bundle of a manifold 1335
J. D. McKnight, Kleene quotient theorems 1343
Charles Kimbrough Megibben, III, On high subgroups 1353
Philip Miles, Derivations on B* algebras 1359
J. Marshall Osborn, A generalization of power-associativity 1367
Theodore G. Ostrom, Nets with critical deficiency 1381
Elvira Rapaport Strasser, On the defining relations of a free product 1389
K. Rogers, A note on orthoganal Latin squares 1395
P. P. Saworotnow, On continuity of multiplication in a complemented algebra 1399
Johanan Schonheim, On coverings 1405
Victor Lenard Shapiro, Bounded generalized analytic functions on the torus 1413
James D. Stafney, Arens multiplication and convolution 1423
Daniel Sterling, Coverings of algebraic groups and Lie algebras of classical type 1449
Alfred B. Willcox, Šilov type C algebras over a connected locally compact abelian group. II 1463
Bertram Yood, Faithful *-representations of normed algebras. II 1475
Alexander Zabrodsky, Covering spaces of paracompact spaces 1489

[^0]: Received October 2, 1963.

[^1]: ${ }^{1}$ If we realize E / E_{0} by adding a cone over E_{0} to E, then E is naturally embedded in $E \cup_{c} E_{0}$ and $\tau: E \cup_{c} E_{0} \rightarrow E \cup_{c} E_{0} / E$.

