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ON THE NORMAL BUNDLE OF A MANIFOLD

MARK MAHOWALD

In the Michigan lecture notes of 1940 [8] Whitney proved that any
manifold in the cobordism class of P2 cannot be embedded in i?4 with
a normal field while non-orientable manifolds in the trivial cobordism
class may or may not have a normal field. We will give a new proof
of this result using some of the recent notions of differential topology.
As one would expect, Whitney's theorem is a special case of a more
general theorem and for the statement of this theorem we introduce
some notation.

Let M* be a compact smooth w-manifold. Let v)i be the dual
Stiefel Whitney classes of Mn.

DEFINITION. Let σ(Mn) = 0 if w^w^ = 0 and σ(Mn) = 1 if

Wi Wn-x Φ 0.

Clearly σ(Mn) is just a Stiefel Whitney number [6]. Note also
that by a result of Massey [5], σ(Mn) = 0 unless n — 2j.

THEOREM 1. For any embedding of Mn in R2n the (twisted) Euler
class is congruent to 2σ mod 4.

This result is a slight sharpening of the theorem of Massey [4];
the proof is given in § 4 after some preliminary results in §§ 2 and 3.

Let χ be the Euler characteristic of M2. In Whitney's theorem
the role of σ in Theorem 1 is played by χ. It is not hard to verify
that for 2-dimension manifolds σ = χ mod 2. In addition, for 2-dimen-
sional manifolds we can prove (section 6)

THEOREM 2. For each k and each value of σ there is a manifold
M2 and an embedding of M2 in R* with twisted Euler class 2σ + 4k.

We have not been able to show that a single manifold has an
embedding for each k. Whitney exhibited two embeddings of the Klein
bottle, one with a trivial Euler class and one with a non-trivial one.

We also have this weaker result (section 7) for other values of n.

THEOREM 3. For every even n there exists a manifold Mn and
an embedding of Mn in R2n with no normal field.

It is known that if n Φ 2> and n > 3, then every ^-manifold embeds
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in R2n~x. Hence this result asserts in addition that some ^-manifolds
have inequivalent embeddings in R2n.

It is interesting to note that the principal lemma yielding Theorem
1 also gives a new proof of the following slightly strengthened version
of a result of Levine [2] and Mahowald [3].

THEOREM 4. Suppose Mn is orίentable in addition. If there
exists a class d of dimension (n — k — l)/2 such that d U Sq*d U wk Φ 0,
then Mn does not embed in Rn+k+1.

In [3] only the application of this result to give—Pn does not
embed in R2n~2 if n = 2j + 1—is given.

2* Some lemmas* In this section we will derive some information
about a particular secondary cohomology operation. Let K be a semi-
simplicial complex and let u e C2k(K; Z) such that δu = 2v. If w is
an integer (a modi) cocycle we write [w] ([w]d) for the cohomology
class containing w. We have the following results, some of which are
well known.

2.1. Sqτ[u\2 = [v]2 and /S2M2 = [v] where β3- is the Bockstein co-
boundary connected with the sequence 0—»Z—>Z—*Zj—>0.

2.2. If p is the Pontriagin square operation p: H2k(K; Z2) —•
H*k(K; Zι) then p([u]2) = [ul)u + u

2.3. If a e H%X; Z) then let a be its mod 2 restriction. Then

and

I. + [«], U [v],.

Proof. By the coboundary formula [7] which also holds in s.s.c.
we have δ(u U u + u \J13u) = 4(v (J^ + u{J v). This gives the first
statement and the second now follows by definition.

2.4. If u U u + δp is an integer cocycle then wUi^ is a mod 2
cocycle and SgXN U^]) = Sq^Sq'iu], + [u]2 U [v].

Proof. By the coboundary formula we have

δ(u\JiV) = u\Jv - v[ju + δ ^ U
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since δ(u U u) = 0 implies u\J v + v\J u — 0. Now 2.1 completes the
proof.

2.5. If u U u = 26 + δc, then 5 + ttUiV is a mod 2 cocycle and#

+ [u]2 U S ^ M 2 .

Proo/. Note that δ(u\J u) = 2(v \J u + u{J v) = 2δb. Hence

and the result follows as in 2.4.
In 2.4 we require that u{ju + dp is an integer cocycle, that is,

we require that β2[u U u] = 0. The universal example for such a class
w is obtained by considering a fibering p: X—>K(A2, 2k) with fiber
K(Z, 4k) and ft-invariant 2β4p(a) where a is the fundamental class of
K(Z2, 2k). Let af = p*(a). Then by 2.4, a' U^qW is a cocycle and
not a coboundary (since α' U SqW Φ 0). Let ε = a1 \}λSφa\

Let SA be the suspension of A and let s: Hj(A) -+ Hj+1(SA) be
the suspension isomorphism. There is a natural map/: SK(Z2, 2k—l)»-+X
such that / * is an isomorphism in dimension 2k.

2.6. With the above notation there is a class β e p*H*(K(Z2, 2k); Z2)
(that is a primary operation) such that f*(β + ε) = s(α U S^α) where
s: W{K{Z2J 2k - 1)) - W+1(SK(Z2, 2k - 1)). If /S satisfies the above
equation then β + Sg2fc will do so too.

Proof. As a vector space Hik(SK; Z2) is generated by

f*p*H*k(K{Z21 2k)) and β(α U Sgta) .

Hence /*(e) = Xs(a U Sqty + /S where λ = 0 or 1 and β satisfies the
theorem. By direct computation we see that

Sq'sia U Sqty = Sq'ίkSq1sa£f*p*SqΉih{K(Z, 2k); Z2) .

But by 2.4 S^/*(ε) = Sq2kSqτsa. Since

U Sgta) + Sq*β = Sq2kSqτsa

if and only if λ = 1 and 5^/3 = 0 we are finished.
In 2.5 we required that u[Ju = 0mod2. The universal example

for such a class u is given by a fiber space px: Y-+K(Z2,2k) with
K(Z2, 4k — 1) as the fiber and Sq2k~ as the ^-invariant. Since there is
no homotopy in dimension 4k we have, letting [u]2 — p?a:

2.7. The class μ = [6 + M Ui^] e £Γ4A;(Γ; Z2) is not spherical and
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hence is the universal example of a nontrivial natural cohomology
operation which we write as μ too.

Let g: SK(Z2, 2k — 1) —• Y be the natural map inducing an iso-
morphism g* in dimension 2k. By an argument identical to the proof
of 2.6 we have 2.8. In the above notation g*(μ + β') = s(a (j Sqty
where βf e pfH*(K(Z2, 2k), Z2). If βf satisfies the above equation then
β' + Sq2k will do so too.

3* Let Ίn be the universal %-plane bundle and let I be the trivial
line bundle. The base space of I will usually be clear from the con-
text. If v is any w-plane bundle we let T{v) be the Thorn complex
and Ue Hn(T; Z2) be the Thorn class. Recall that in T, U{] U is equal
to U U wn which is the restriction mod 2 of an integer class U U X
where χ is the twisted Euler class (of order 2 if n is odd). Hence
β2Sqn U = 0. By usual obstruction theory, letting n = 2k, we see that
there exists a map g: T(y2k) —• X such that g* is an isomorphism in
dimension 2k.

LEMMA 3.1. In the above notation we can find a β satisfying 2.6
such that g*(β + ε) = U{J w%^ U wlf n — 2k.

Proof. Consider the diagram:

^d s T(7^ Θ I) - ^ SK(Zt, n-ΐ)

k
T(yn) JU x

where i is the map induced by the natural inclusion of τn-i 0 I i*1

7n, and gr is defined by requiring g'*(sa) = Uτ, the Thorn class of
Γ(7n-i Θ ί ) . Letting /3 be the class of 2.6, we have g'*f*(β + e) =
s( ί7w_χ (J ?7w-i U Wi) = U' \J wn-x U Wi where Un-λ is the Thorn class of
Γ(τ»-i). Hence g*(/3 + ε) = J7u δ β - i U wx + α where α e k e r i*. But
ker i* is generated by SqnU= U\Jwn. Therefore 2.6 completes the
proof.

4* Proof of Theorem 1*

NOTATION. In the remaining sections it will be convenient to use
a dot for the cup product.

Let Mn be embedded in R2n and let T{η) be the Thorn complex of
the normal bundle. By [6] Mn has a normal field if n = 1 mod 2
(it even embeds in R2n~x) so we suppose n is even. The group
H2n(T(n); Z) = Z and is generated by a class δ such that 2jb = ZJ λ
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(wn is zero, hence λ is zero mod 2). The cohomology operation μ is
defined on U and by 2.7 and 3.1 we have μ(U) = [E7 w1 tίv_1 + jb]2.
Since the top cohomology class of the Thorn complex of a normal bundle
to an embedding is spherical [6], μ(U) = 0. Therefore jb = U'W^w^i
(mod 2).

5* Proof of Theorem 4* Suppose we have an embedding of the
kind described. Let E and Eo be the normal disk and sphere bundle
respectively. Consider the sequence

T(η) = E/Eo -^-> SE0 J£+ SK(Z2, j) JU Y

where g is defined in the paragraph just before 2.8 and Sf is the
suspension of the map /: Eo-+ K(Z2, j) satisfying /*(α) = a d where a
is any class such that τ*(sα) = U. The map τ is the natural map.1

Let λ = fSfz. Clearly λ is a defining map for μ. We have g*μ =
sia Sq^) by 2.8. By direct computation f*(a'Sq1a) = a wk d'Sqτd + 6
where & is in kerτ*. Finally λ*(μ) = U*wk'd*Sqxd which is in the
top cohomology class of T{η) and hence must be zero. This contra-
diction proves the theorem.

6. Proof of Theorem 2. Let / ' : S4 -> Γ(τ2) be any map. By
Theorem 36 [6] the map / ' is homotopic to a map / : S4 —> Γ(τ2) which
is transverse regular on G2tk (the grassmann manifold of 2 planes in
R2+k which, if k > 3, is universal for classifying 2 plane bundles over
2-manifolds. Then f-\G2ik) = M2 is a sub-manifold of S4 and
//Λf2: M2 —> (r2,fc is the classifying map of the normal bundle to an
embedding of M2 in J?4 c S4. All that remains is to investigate the
structure of ττ4(Γ(72)).

LEMMA 6.1. The first few homotopy groups of T(γ2) are

i 1 2 3 4

^(T(72)) 0 Z2 0 £ .

27&e k-invariant with which the Z group is added is 2β£)(a) where
a is the fundamental class of K(Z2, 2).

REMARK. It is interesting to note that this portion of the
Postnikov tower for T(y2) is the same as the corresponding portion for
Gn9 n > 4 where Gn is the classifying space for oriented %-plane
bundles. Indeed the fc-invariants computed in [1] agree with these

1 If we realize E/Eo by adding a cone over EQ to E, then E is naturally embedded
in E U cEo and r. E U eEo -» E U cEolE.
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given here. The class w± e H\Gn; Z2) is associated with U w\ in
H\T(72); Z2) while w\ and U*w2 are similarly associated.

Proof of the lemma. Since the Thorn class of T(y2) is also the
fundamental class and since Sq1UΦ 0, the Hurewicz isomorphism theorem
proves that τr2(Γ(72)) = Z2. Now H3(T(j2); J) = Z2 if J = Z or ^2& for
any k and zero for other Zp. Hence any homotopy group in dimension 3
must be attached with a nontrivial A-invtriant. But H4(K(Z2, 2); Z2)
is generated by Sq2a and Sq*U= U-w2 in iϊ*(T(72)) and so π\T(j2)) = 0.

Now H\T{Ί2)) Z) = £, generated by CΛχ where χ is the twisted
Euler class. Hence the rank of πST{Ί2)) is 1. Since the restriction
mod 2 of U χ is Sq2U, the Z component is attached with a nontrivial
^-invariant. Finally H6(K(Z2,2); Z) = Z4 generated by βAp(a) and

(β4p(a)) = Sq^a + aSqxa (see 2.3) and since Sq2SqxU + U- Uw1 =
U WI W-L Φ 0 the &-invariant for the Z component can not be β${a)^
Therefore it must be 2β4p(a).

Let p:X—> K(Z2, 2) be the fiber map having 2/34£(α) as ifc-invariant
and K(Z, 4) as fiber. By 2.4 we see that H*(X; Z2) = Z2 + Z2 generated
by a new class a! u βqW and by Sq2a! where α' = p*a. Hence the
natural map / : T(j2) -* X induces an isomorphism /*: iΓ(X) -+ Hι(T{y2))
for all coefficient groups if ί ^ 4. To complete the proof of the lemma
we note that / * is also an isomorphism in dimension 5.

Now we can complete the proof of Theorem 2. Since the order
of the fc-invariant is 2, f'*(U χ) = 2j# where ^ is a generator of
JEZ"4(S4; Z) and j = [/'], the homotopy class of / ' in π4 under some
identification with the integers. Let ij be the normal bundle for
embedding, of M2 in i?4 constructed above. Then the composite

(where λ2 is the natural map and \ is obtained by collapsing the com-
plement of a normal neighborhood of M2 to a point) is just / ' . Since
λf is an isomorphism in dimension 4, the twisted Euler class of the
embedding is 2j times the twisted fundamental cohomology class.

7. Proof of Theorem 3* Let T{T) be the Thorn complex of
the universal w-plane bundle, n even. Then Hn(T(yn); Z) — Z2 generated
by the cycle dual to the Thorn class U. Since T(yn) is (n — l)-connected,
we have πn(T{T)) = Z2. Therefore by Serre's theorem, ([6], page 109)
rank H2n(T(jn); Z) = rank π2n{T{T)). In particular there is a map
f:S2n -> T(T) such that f*(U-χ) Φ 0 where χ is the twisted Euler class.
Now following the argument of § 6 we construct the desired manifold..
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