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One of the most intriguing—and at the same time most problematic—notions in
object-oriented programming is inheritance. Inheritance is commonly regarded as
the feature that distinguishes object-oriented programming from other modern
programming paradigms, but researchers rarely agree on its meaning and usage.
Yet inheritance is often hailed as a solution to many problems hampering software
development, and many of the alleged benefits of object-oriented programming,
such as improved conceptual modeling and reusability, are largely credited to it.
This article aims at a comprehensive understanding of inheritance, examining its
usage, surveying its varieties, and presenting a simple taxonomy of mechanisms
that can be seen as underlying different inheritance models.
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1. INTRODUCTION

A characteristic feature of object-ori-
ented programming is inheritance. In-
heritance is often regarded as the fea-
ture that distinguishes object-oriented
programming from other modern pro-
gramming paradigms, and many of the
alleged benefits of object-oriented pro-
gramming, such as improved conceptual
modeling and reusability, are largely
accredited to it. Despite its central role
in current object-oriented systems, in-
heritance is still quite a controversial
mechanism, and researchers tend to dis-
agree on its meaning and usage. The

only currently well-developed and
widely accepted area seems to be the
theory of inheritance in terms of denota-
tional semantics [Cook 1989a; Cook and
Palsberg 1989; Reddy 1988].
Despite the fact that much effort has

been targeted on research into inheri-
tance in the past years, it seems that
inheritance is still often inadequately
understood. Many studies of inheritance
concentrate only on one specific view-
point, such as type theory or conceptual
modeling, and mostly ignore the other
possible viewpoints. Depending on the
viewpoint, inheritance is regarded ei-
ther as a structuring or modeling mech-
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anism for reasoning about programs, or
a mechanism for code sharing and re-
use. It seems that a more general, com-
prehensive view of inheritance is still
missing. The main motivation for this
article was the desire to reach a more
thorough understanding of inheritance
from different viewpoints.
This article provides a comprehensive

introduction to inheritance, starting
from its history and conceptual back-
ground, examining its intended and ac-
tual usage, and discussing its essence in
light of the current knowledge. Further-
more, the varieties of inheritance are
analyzed, and a simple taxonomy of in-
heritance mechanisms is presented.
This article is a continuation to an ear-
lier article on object-oriented program-
ming [Taivalsaari 1993a], and part of a
larger study of inheritance, published
as the author’s doctoral thesis [Taival-
saari 1993c].

2. INHERITANCE

If I have seen a little farther than others, it is
because I have stood on the shoulders of giants.

—ISAAC NEWTON

2.1 Definitions

In general, to inherit is to receive prop-
erties or characteristics of another, nor-
mally as a result of some special rela-
tionship between the giver and the
receiver [Danforth and Tomlinson
1988]. This broad definition of inheri-
tance comes from the usage of the term
in the real world, and at the first con-
sideration it seems to have very little to
do with computers. Nevertheless, in the
context of programming, inheritance
was introduced as early as in the end of
the 1960s as a central feature of the
programming language Simula [Dahl et
al. 1968]. However, Simula’s inheri-
tance mechanism was originally known
by a different name, concatenation
[Dahl et al. 1972, pp. 202–204; Nygaard
and Dahl 1978], and the intuitively
more appealing term inheritance was
invented some years later. Well-known

currently used synonyms for inheri-
tance in object-oriented systems are
subclassing, derivation (in C11) and
prefixing (in Simula and Beta); in some
papers the term subtyping is also used
in the same meaning [Halbert and
O’Brien 1987], although more commonly
that term is reserved for another pur-
pose, as will be discussed in Section
2.2.2.
The basic idea of inheritance is sim-

ple. Inheritance allows new object defi-
nitions to be based upon existing ones;
when a new kind of an object class is to
be defined, only those properties that
differ from the properties of the speci-
fied existing classes need to be declared
explicitly, while the other properties are
automatically extracted from the exist-
ing classes and included in the new
class. Thus, inheritance is a facility for
differential, or incremental program de-
velopment. Formally, inheritance can be
characterized as follows [Bracha and
Cook 1990; Cook 1989a; Wegner and
Zdonik 1988]:

R 5 P % DR.

In this maxim, R denotes a newly
defined object or class, P denotes the
properties inherited from an existing
object or class, DR denotes the incre-
mentally added new properties that dif-
ferentiate R from P (the delta part), and
Q denotes an operation to somehow
combine DR with the properties of P. As
a result of this combination, R will con-
tain all the properties of P, except that
the incremental modification part DR
may introduce properties that overlap
with those of P so as to redefine or
defeat (cancel) certain properties of P;
thus, R may not always be fully compat-
ible with P. Compatibility issues will be
discussed in Section 2.2.2.
There are certain terms and notions

pertaining to inheritance that will be
used throughout the article. For in-
stance, in the maxim above, P is known
as R’s parent or immediate ancestor; in
class-based systems the corresponding
term is superclass. Similarly, R is P’s
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child, immediate descendant, or in
class-based systems its subclass. Inher-
itance relationships are transitive, so
that a parent or superclass may be a
child or subclass of another object or
class. This implies that in addition to
incrementally defined properties, an ob-
ject will contain all the properties of its
parents, parents’ parents and so on. The
terms ancestor and descendant are used
in the obvious manner to denote the
immediate and nonimmediate parents
and children of a class.
Most modern object-oriented systems

allow inheritance from several parents
at the same time. Such inheritance is
known as multiple inheritance, as op-
posed to single inheritance discussed
above. As multiple inheritance offers
considerably more possibilities for in-
cremental modification than single in-
heritance, a generally accepted view is
that a modern object-oriented language
should support it, despite the fact that
multiple inheritance also introduces
many conceptual and technical intrica-
cies. Issues pertaining to multiple in-
heritance will be discussed briefly in the
following section. For different defini-
tions of inheritance, refer to Cardelli
[1984]; Cook [1989a]; Wegner [1987];
Wegner and Zdonik [1988].
As an example of inheritance, con-

sider the following pseudocode defini-
tion (Figure 1). In the example, two
classes, Window and TitleWindow, are
defined. Class Window defines one vari-
able, frame, and two operations (meth-
ods) drawFrame and drawContents.
Class TitleWindow inherits class Win-

dow and adds a new variable called title
plus a method that redefines frame
drawing. The actual implementation of
the methods is elided.
In its basic form, inheritance can be

characterized formally as record combi-
nation [Bracha and Lindstrom 1992;
Cardelli 1984; Cook 1989a]. An object or
a class that inherits the properties of
another is viewed as a record which is
otherwise similar to its parent, but
which has been extended with some ad-
ditional properties. This record combi-
nation can take place in several differ-
ent ways, however. For instance, in
class-based object-oriented systems (see
Section 3.1) the properties of an object
are typically located physically in differ-
ent places, and this tends to make the
analysis more complicated. Further-
more, other issues such as early binding
and encapsulation also encumber the
analysis of inheritance. In general, in-
heritance is not an independent lan-
guage feature, but it usually operates in
tight interaction with other language
mechanisms.

2.2 Conceptual View of Inheritance

To attain knowledge, add things every day; to
obtain wisdom, remove things every day.

—LAO-TZU, Tao Te Ching

A programming language is a notation
and, as such, serves to record and assist
the development of human thought in a
particular direction. For a notation to be
effective, it must carry a mental load for
the user and must have, among other

Figure 1. A simple example of inheritance.
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properties, economy and the ability to
subordinate detail [Marcotty and
Ledgard 1991]. By economy it is meant
that a wide range of programs can be
expressed using a relatively small vo-
cabulary and simple grammatical rules.
An important goal in achieving this is
the orthogonality of language con-
structs. In other words, the language
should provide no more than one way of
expressing any action in the language,
and each construct should be backed up
by solid conceptual and practical rea-
sons.
In order to motivate the use of inher-

itance in modern programming lan-
guages, let us now examine the relation-
ship of object-oriented programming
and conceptual modeling.

2.2.1 Object-Oriented Programming
and Conceptual Modeling

This structure of concepts is formally called a
hierarchy and since ancient times has been a
basic structure for all Western knowledge.

—ROBERT M. PIRSIG, Zen and the Art of Motorcycle
Maintenance

Q: What’s big and gray, has a trunk, and lives in
the trees?

A: An elephant. I lied about the trees.

—R. J. BRACHMAN

Object-oriented programming origi-
nated from Simula, a programming lan-
guage that was initially targeted for the
simulation of real-world phenomena.
Simulation is a task that requires a
great deal of conceptual modeling skills,
and therefore right from the beginning
the developers of Simula emphasized
the importance of a close correspon-
dence between the program and prob-
lem domain. As noted in Madsen et al.
[1990], the primary motivation leading
to the introduction of the class concept
in Simula, for example, was to model
the concepts in the application domain.
Similarly, the inheritance mechanism
was initially introduced to represent
certain kinds of modeling relationships,
namely conceptual specialization [Mad-
sen et al. 1990]. Let us now take a look

at the basic conceptual modeling rela-
tionships in order to elucidate the role
of inheritance as a modeling mecha-
nism.
Generally speaking, conceptual mod-

eling can be defined as the process of
organizing our knowledge of an applica-
tion domain into hierarchical rankings
or orderings of abstractions, in order to
obtain a better understanding of the
phenomena in concern. The principles
according to which this process takes
place are usually referred to as the ab-
straction principles, abstraction mecha-
nisms or abstraction concepts [Borgida
et al. 1984; Mattos 1988]. One of the
often mentioned benefits of object-ori-
ented programming is that unlike other
modern programming paradigms, it pro-
vides direct support for each of the most
important abstraction principles: (1)
classification/instantiation, (2) aggrega-
tion/decomposition, (3) generalization/
specialization and (4) grouping/individ-
ualization.
Classification, which is usually con-

sidered the most important abstraction
principle, is grouping like things to-
gether into classes or categories over
which uniform conditions hold [Borgida
et al. 1984]. Ideally, classes should
share at least one such characteristic
that the members of other classes do not
have. Classification is an intensional
abstraction principle that ought to be
based ideally on such properties of sub-
stances that do not change in the course
of time. The reverse operation of classi-
fication is instantiation, or exemplifica-
tion [Knudsen and Madsen 1988]. In-
stantiation produces instances, entities
which fulfill the intensional description
of their class. Collectively the instances
of a class form the extension of that
class. Most object-oriented languages
provide support for classification and
instantiation by allowing the construc-
tion of classes and instances. In proto-
type-based object-oriented systems (Sec-
tion 3.1) there are no classes, but the
effect of instantiation can be simulated
by copying concrete objects. For a more
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extensive discussion on the notions of
intension and extension, refer to Sowa
[1984, pp. 10–11].
The second main abstraction principle

is aggregation. By aggregation we refer
to the principle of treating collections of
concepts as single higher-level concepts:
aggregates [Borgida 1984; Smith and
Smith 1977a]. Aggregation describes
things in terms of parts and wholes. A
part is a part by virtue of being included
in a larger whole. A part can also be-
come a whole in itself, which can then
be split into further parts. Therefore,
aggregation hierarchies are sometimes
also referred to as part-whole hierar-
chies. The reverse operation of aggrega-
tion is decomposition, which yields the
individual components of an aggregate.
Object-oriented languages typically sup-
port aggregation/decomposition by al-
lowing the use of objects as variables in
other objects. Variables can be used to
hold other objects in order to construct
more complex part-whole hierarchies.
In some papers the term composition is
used as a synonym for aggregation.
The third major abstraction principle,

generalization, refers to the construc-
tion of concepts that cover a number of
more special concepts sharing some sim-
ilarities [Knudsen and Madsen 1988;
Smith and Smith 1977b]. On the basis
of one or more given classes, generaliza-
tion produces the description of a more
general class that captures the common-
alities but suppresses some of the de-
tailed differences in descriptions of the
given classes [Borgida et al. 1984]. The
converse operation of generalization is
specialization. A concept Cs can be re-
garded as a specialization of another
concept C if all phenomena belonging to
the extension of the specialized concept
Cs also belong to the extension of C
[Pedersen 1989]. This implies that C
and Cs are otherwise similar, but Cs
may also possess some additional, more
specific properties. Generalization and
specialization complement classification
in that they allow classes to be de-
scribed naturally in terms of other

classes [Mattos 1988]. In particular,
specialization—allowing new concepts
to be derived from less specific classes—
seems intuitively as the natural high-
level counterpart of inheritance, and
therefore it has traditionally been as-
sumed that inheritance and specializa-
tion are simply different views of the
same thing. Although at the first glance
this correspondence seems natural and
aesthetically pleasant, recently it has
been observed that the relationship be-
tween inheritance and conceptual spe-
cialization can be confusing. This issue
will be discussed in more detail in the
next section.
The fourth, perhaps the least obvious

main abstraction principle is grouping,
also known as association, partitioning
or cover aggregation [Brodie 1983; Mat-
tos 1988]. Frequently in conceptual
modeling it becomes necessary to group
objects together not because they have
the same properties (classification), but
because it is important to describe prop-
erties of a group of objects as a whole
[Loomis et al. 1987; Mattos 1988].
Grouping addresses this need by allow-
ing the representation of possibly non-
homogeneous collections of things re-
lated by their extensional rather than
by their intensional properties. Being
based on extensional properties, group-
ing bears some resemblance to the set
theory of mathematics [Mattos 1988].
Object-oriented programming supports
grouping by allowing the definition of
arbitrary collection classes such as lists,
sets, bags and dictionaries. The opposite
of grouping is individualization, which
yields individual members of a collec-
tion; the term individualization is, how-
ever, not very well-established.
The abstraction principles have been

illustrated in Figure 2, which gives an
example of each principle applied to the
same application domain, namely Car.
Furthermore, the list below summarizes
the main characteristics of each princi-
ple (adapted from Smith and Smith
[1980]).
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—Classification suppresses details of
instances and emphasizes properties
of a class as a whole.

—Generalization suppresses the differ-
ences between categories and empha-
sizes common properties.

—Aggregation suppresses details of
components and emphasizes details of
the relationship as a whole.

—Grouping suppresses details of a
group of objects and emphasizes the
grouping of those objects together.

For further information on abstraction
principles, the reader is referred to
Borgida [1984]; Knudsen [1988]; Loomis
et al. [1987]; Madsen and Møller-Ped-
ersen [1988] and Mattos [1988].

2.2.2 Inheritance, Subtyping and Spe-
cialization

The differentiae of genera which are different and
not subordinate one to the other are themselves
different in kind. For example, animal and knowl-
edge: footed, winged, aquatic, two-footed, are dif-
ferentiae of animal, but none of these is a differ-
entia of knowledge; one sort of knowledge does not
differ from another by being two-footed.

—ARISTOTLE, Categories §3

The classical view of inheritance in ob-
ject-oriented programming is that it is a
hierarchical structuring mechanism in-
tended for conceptual specialization. In-
deed, language constructs for support-
ing generalization/specialization are

Figure 2. Abstraction principles.
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often mentioned as the main character-
istic of a programming language sup-
porting object-orientation [Madsen and
Møller-Pedersen 1988]. Correspond-
ingly, object-oriented programming has
sometimes been characterized as “pro-
gramming with taxonomically organized
data” [Cardelli 1984].
Recently it has however been ob-

served that the correspondence between
inheritance and specialization is actu-
ally much more intricate than has pre-
viously been assumed [America 1987;
Wegner and Zdonik 1988; Zdonik 1986].
Most of the problems in this respect
arise from the fact that object-oriented
systems do not typically provide any
guarantees in that inheritance really is
used for conceptual specialization. For
instance, the redefined operations in a
subclass do not usually have to bear any
semantic relationship to the replaced
operations in the superclass; the only
semantic tie is that they share the same
names [Zdonik 1986]. In general, if in-
heritance is implemented in the conven-
tional fashion, allowing unlimited addi-
tion, redefinition and cancellation of
properties in descendants, there is vir-
tually nothing to ensure that the con-
ceptual correspondence between par-
ents and their children really prevails.
Consequently, abstractions built using
inheritance rarely are true conceptual
specializations of their parents.
Some researchers have tried to guar-

antee the conceptual correspondence be-
tween parents and children by estab-
lishing certain compatibility rules. For
instance, Wegner has identified four dif-
ferent levels of compatibility between
classes and subclasses [Wegner 1990;
Wegner and Zdonik 1988]. The weakest
of these, cancellation, allows the opera-
tions of the class to be freely redefined
and even cancelled (removed) in a sub-
class. The second level, name compati-
bility allows the operations to be rede-
fined, but requires the subclass to
preserve the same set of names (i.e., no
properties may be removed). The third
level, signature compatibility requires
full syntactic (interface) compatibility

between classes and their subclasses.
The fourth level, behavior compatibility
assumes full behavioral compatibility
between classes and their subclasses.
This implies that subclasses may not
change the behavior of their super-
classes in any radical way. The first
three forms of compatibility, being
based on mere syntactic aspects of class
definitions, are relatively easy to guar-
antee, and inheritance mechanisms
based on them are generally referred to
as nonstrict inheritance [Wegner 1987;
Wegner and Zdonik 1988]. Ensuring full
behavior compatibility, however, turns
out to be a much more difficult task.
The term strict inheritance is often used
to refer to behaviorally compatible
forms of inheritance [Wegner 1987;
Wegner and Zdonik 1988].
While strict inheritance at the first

consideration seems to be the most de-
sirable form of inheritance, there are
several other reasonable ways to use
inheritance that necessitate nonstrict
inheritance. These alternative uses of
inheritance will be discussed in detail in
the next section. In fact, it has been
argued that strict inheritance, i.e., the
use of inheritance for conceptual spe-
cialization, is of limited utility in the
evolutionary development of complex
systems [Wegner 1987]. After all, strict
inheritance restricts the use of inheri-
tance to the refinement of existing
abstractions only, and prohibits the in-
cremental modification of those abstrac-
tions in more creative ways. When us-
ing strict inheritance only, the addition
of anything truly new to the system has
to be accomplished by constructing
those abstractions from scratch. In gen-
eral, it seems that nonstrict inheritance
can increase the expressive power of
object-oriented systems. However, at
the same time it decreases structural
clarity because so much less can be in-
ferred about the properties of descen-
dants [Wegner 1987].
Another problematic issue in equat-

ing inheritance with specialization is
multiple inheritance. An often cited con-
troversial example of multiple inheri-
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tance can be found in a book by Meyer
[1988]. In his book, Meyer defines a
class Fixed_Stack by inheriting two pre-
viously defined classes Stack and Array
[Meyer 1988, pp. 241–242]. This is
highly questionable because inheriting
these classes implies that Fixed_Stack,
in addition to being a specialization of
Stack, would also be a specialization of
Array. From the conceptual viewpoint,
this is incorrect since many operations
on arrays, such as the indexed element
access operations, are not generally ap-
plicable to stacks. The correct solution
in this case would be to inherit class
Stack only, and use class Array as a
component. Similar abuses of multiple
inheritance are surprisingly common in
the literature. In general, since multiple
inheritance always results in a combi-
nation of existing abstractions, it tends
to be difficult to regard it as a form of
conceptual specialization. Rather, mul-
tiple inheritance seems to have more in
common with aggregation. As aptly ex-
pressed by Alan Snyder in a panel dis-
cussion at OOPSLA’87: “multiple inher-
itance is good but there is no good way
to do it.” For further information on
using multiple inheritance refer to Du-
cournau and Habib [1987], Knudsen
[1988] and Snyder [1991].
Based on the observations above it

should be obvious that equating inheri-
tance with conceptual specialization
poses several problems. Generally
speaking, there seems to be a discrep-
ancy between inheritance as a language
mechanism and inheritance as a facility
for conceptual modeling. These two
roles of inheritance can be characterized
as follows [Korson and McGregor 1990]:

(1) As part of the high-level program
design phase, inheritance serves as
a means of modeling generalization/
specialization relationships.

(2) In the low-level implementation
phase, inheritance supports the re-
use of existing classes as the basis
for the definition of new classes.

One of the first researchers to empha-
size this distinction was Brachman
[1983] who investigated the role of is-a
relationships in semantic networks.
Brachman suggested that inheritance
should be treated only as an implemen-
tational issue that bears no direct corre-
spondence to conceptual modeling.
Later papers to study the relationship
of inheritance and specialization in the
context of object-oriented programming
are America [1987; 1991], Cook et al.
[1990], Palsberg and Schwatzbach
[1991], Porter [1992] and Raj and Levy
[1989]. A common argument in these
papers is that in object-oriented sys-
tems a clear distinction ought to be
made between two important concepts:
inheritance and subtyping. Inheritance
is a more low-level mechanism by which
objects or classes can share behavior
and data. Subtyping, on the other hand,
expresses conceptual specialization
[America 1991]. Following this dichot-
omy, inheritance is a mechanism that is
suited but not necessarily limited to
specialization (see Figure 3). In this
context inheritance is often also re-
ferred to more specifically as implemen-
tation inheritance, representation inher-
itance or in class-based systems
subclassing. Commonly used synonyms
for subtyping are specification inheri-
tance or interface inheritance [America
1987, 1991; Madsen et al. 1990]. Some
papers also use the terms syntactic and
semantic inheritance to distinguish be-
tween inheritance of implementation
and specification, respectively [Hart-
mann et al. 1992].
It is widely argued that using inheri-

tance for specialization is both theoreti-
cally and practically valuable, while us-
ing it for mere implementation purposes
is likely to cause difficulties and reflects
poor understanding of the purpose of
inheritance. Therefore, following the
Aristotlean tradition of dividing things
into essential and accidental, the use of
inheritance for specialization is often
characterized as essential use of inheri-
tance, whereas the other uses are con-
sidered more or less accidental or inci-
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dental [Sakkinen 1989]. However, as
already mentioned above and as will be
discussed further in next section, there
are other uses of inheritance beyond
specialization that can be considered
well-justified and thus essential, too.
Although the reasons for distinguish-

ing between inheritance and subtyping
are widely recognized and accepted, so
far this distinction has been incorpo-
rated only in a few programming lan-
guages. Some languages making the
distinction are POOL-I [America 1991]
and Typed Smalltalk [Graver and John-
son 1990; Johnson 1986]. In these lan-
guages subtyping serves as a higher-
level relation between types, whereas
inheritance operates at the level of
classes. In most other (strongly-typed)
object-oriented languages—including
C11, Eiffel, Trellis/Owl [Schaffert et al.
1986] and Simula—types are, however,
equated with classes, and inheritance
is basically restricted to satisfy the
requirements of subtyping [Cook et al.
1990]. As observed in several papers
[Cook 1989b; Palsberg and Schwartzbach
1991], this can lead to problems in type
checking. These type checking issues are,
however, beyond the scope of this article.
A drawback of the suggested separa-

tion between inheritance and subtyping
is the extra complexity that it places on
the implementation and use of lan-
guages supporting such separation.
Furthermore, it has been argued that
not even this distinction is enough if
one wants to be specific about the or-
thogonality of language constructs. Sim-
ilarly as there exists a distinction be-
tween inheritance and subtyping, there
is a significant difference between sub-
typing and specialization. LaLonde
[1989] and LaLonde and Pugh [1991]
have proposed the following definitions
for the three concepts:

—Subclassing is an implementation
mechanism for sharing code and rep-
resentation.

—Subtyping is a substitutability rela-
tionship: an instance of a subtype can
stand in for an instance of its super-
type.

—Is-a is a conceptual specialization re-
lationship: it describes one kind of
object as a special kind of another.

Subclassing, subtyping, and special-
ization are all important for different
reasons. Subclassing supports reusabil-
ity for the class library implementor:

Figure 3. Inheritance versus subtyping (traditional view).
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new kinds of classes can be defined by
leveraging off existing ones. Subtyping
supports reusability for the class library
user: to get maximum reusability, we
need to know which classes can be sub-
stituted with which other classes. Spe-
cialization (is-a) relationships, in turn,
are important for understanding the
logical relationships between the con-
cepts; in this sense, specialization is
important for the class library designer.
Figure 4 illustrates the differences be-
tween subclassing, subtyping, and spe-
cialization [LaLonde and Pugh 1991].
Each of the concepts in Figure 4 can be

refined further. For instance, as observed
by Brachman [1983; 1985], there are sev-
eral kinds of is-a relationships. Varieties
of subtyping have been examined by Weg-
ner [1987], who distinguishes the follow-
ing “subtypes” of subtyping:

—Subset subtyping. Int[1..10] is a sub-
set subtype of Int.

—Isomorphic copy subtyping. Int is an
isomorphic copy subtype of Real.

—Object-oriented subtyping. Student is
an object-oriented subtype of Person.

The varieties of inheritance and sub-
classing will be examined in the follow-
ing subsections.

2.2.3 Use of Inheritance in Practice

Like the ski resort full of girls hunting for hus-
bands and husbands hunting for girls the situa-
tion is not as symmetrical as it might seem.

—ALAN MACKAY

Inheritance is a language mechanism
that allows new object definitions to be
based on existing ones. A new class inher-
its the properties of its parents, and may
introduce new properties that extend,
modify or defeat its inherited properties.
In general, most object-oriented lan-
guages allow the inherited properties to
be reimplemented, renamed, removed,
duplicated, have their visibility changed,
or undergo almost any other kind of
transformation as they are mapped from
parents to descendants. Therefore, it is
apparent that inheritance can be used for
purposes that go beyond specialization. In
fact, the use of inheritance for conceptual
specialization seems to be an ideal that is
rarely realized. Most commercially avail-
able class libraries, such as the standard
classes of Smalltalk-80 or commercial
C11 class libraries, are permeated with
examples of using inheritance in other
ways. This section examines those uses of
inheritance that are common in real ob-
ject-oriented systems, but which do not

Figure 4. Subclassing, subtyping, and specialization.
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obey the semantic requirements of con-
ceptual specialization.

Inheritance for implementation refers
to situations in which inheritance is
used not because the abstractions to be
inherited are ideal from the conceptual
point of view, but simply because they
happen to contain appropriate proper-
ties for the new abstraction that is un-
der construction. In implementation in-
heritance, theoretical and conceptual
issues such as behavior compatibility
are ignored, and pragmatic reasons
such as potential savings in coding ef-
fort, storage space or execution speed
are emphasized instead. As obvious, us-
ing inheritance for mere implementa-
tion reasons is often questionable, and
it has been criticized in the literature
[America 1987; Sakkinen 1989]. Some of
the most apparent variations of imple-
mentation inheritance are (adapted
from Rumbaugh et al. [1991, p. 64]):

—cancellation,
—optimization, and
—convenience.

In cancellation, the descendant re-
stricts the inherited behavior by explic-
itly making certain inherited properties
unavailable, or by tightening the pa-
rameter type requirements. Cancella-
tions are common in the Smalltalk-80
collection class hierarchy that will be
discussed below. In optimization, the
descendant takes advantage of some
specific implementation information to
improve the code for its operations. For
example, a superclass Set could have an
operation to find the maximum element
implemented as a sequential search; the
subclass SortedSet could provide a more
efficient implementation for the same
operation since the elements are al-
ready sorted. In implementation inheri-
tance for convenience, the new class is
made a subclass of the existing class
simply because the existing class seems
to provide what is desired.
The archetypical example of the use

of implementation inheritance is the
Collection class hierarchy of Small-

talk-80 [Goldberg and Robson 1989, pp.
144–169; Graver and Johnson 1990; La-
Londe 1989; LaLonde et al. 1986; Weg-
ner 1990]. The Collection class hierar-
chy consists of more than 20 classes
that represent various kinds of con-
tainer objects such as Sets, Bags (sets
that allow duplicate elements), Dictio-
naries (mappings from keys to values),
and Strings. Many of these classes have
been made subclasses of others simply
because the superclass happens to con-
veniently provide the right functional-
ity. For example, class Dictionary im-
plements a keyed lookup table as a hash
table of ^key, value& pairs. The hash
table implementation is inherited from
class Set (which in turn is a subclass of
Collection), but applications using Sets
would behave quite differently if given
Dictionaries instead. In other words,
class Dictionary is behaviorally incom-
patible with its superclass. Besides con-
venience, the Collection class hierarchy
provides examples of cancellations and
optimizations as well. For instance,
since Dictionary elements can only be
removed by their key values, class Dic-
tionary overrides the remove:ifAbsent
method inherited from class Set with an
error message method. Similarly, the
iteration method do: is redefined in al-
most every collection class to optimize it
for each particular kind of abstraction.
Despite its idiosyncrasies, the Collec-
tion class hierarchy of Smalltalk does
have its advantages. Generally it seems
that implementing the same functional-
ity in a conceptually more elegant fash-
ion would necessitate a more complex
and more memory-consuming class hier-
archy. Cook has argued to the contrary,
however, and has presented an alterna-
tive Collection class hierarchy based on
the conceptual relationships of the
classes [Cook 1992].

Inheritance for combination refers to
situations in which inheritance is used
for combining existing abstractions with
multiple inheritance [Halbert and
O’Brien 1987]. As illustrated by the
Fixed_Stack example discussed in Sec-
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tion 2.2.2, such use of inheritance is
error-prone, and in many cases it would
be appropriate to use single inheritance
and aggregation instead. Nevertheless,
two subforms of combination inheri-
tance can be identified. First, multiple
inheritance is often used for combining
abstractions of equal importance. The
classical example of such use of multiple
inheritance is to inherit two classes,
Teacher and Student, to form a class
TeachingAssistant [Halbert and O’Brien
1987; Sciore 1989]. In practice the com-
bination of conceptually equal abstrac-
tions using multiple inheritance can be
quite laborious, however, because such
abstractions tend to contain a large
number of overlapping properties that
have to be dealt with in the subclass
[Chambers et al. 1991]; sometimes this
may necessitate considerable modifica-
tions. In many cases such situations
could also be expressed more naturally
using roles [Pernici 1990]. For instance,
from the conceptual viewpoint, Teacher
and Student are not really proper sub-
classes of Person, but they should
rather be seen as different roles that
persons are capable of playing at differ-
ent times. The second form of inheri-
tance for combination is mixin-based in-
heritance, or mixin inheritance [Bracha
and Cook 1990; Hendler 1986], which
has recently received considerable at-
tention. Mixin inheritance originated
from the programming languages Fla-
vors [Moon 1986] and Oaklisp [Lang
and Pearlmutter 1986], and has subse-
quently been utilized in the Common
Lisp Object System (CLOS) [DeMichiel
and Gabriel 1987; Keene 1989]. Mixin
inheritance will be discussed in more
detail later in Section 3.7.

Inheritance for inclusion. One alter-
native use of inheritance is also inheri-
tance for inclusion. Many class-based
object-oriented languages (e.g., Small-
talk) do not provide a separate module
mechanism, and thus classes are some-
times needed for simulating modules or
function libraries. For instance, to cre-
ate a library of trigonometric functions

in an object-oriented language without
a module mechanism, the only viable
way is to place those functions in a
separate class. This library class can
then be used in two different ways. The
first possibility is to “instantiate” the
library, which has the negative conse-
quence that the functions will have to
be accessed indirectly via an interven-
ing variable. The second way is to use
inheritance to simulate the import
mechanism of many abstract data type
(ADT) languages such as Modula-2
[Wirth 1985]. Using the library as a
superclass, the functions in the library
will be included in the scope of the
subclass and can thus be referred to
directly without extra effort. This is
practical, but is yet another example of
using inheritance for other reasons than
conceptual specialization.

Other uses of inheritance. In addi-
tion to the above-mentioned uses of in-
heritance, some researchers have iden-
tified several rarer forms of inheritance.
One such example is inheritance for
generalization that can be seen as the
opposite of inheritance for specializa-
tion [Halbert and O’Brien 1987; Ped-
ersen 1989]. Like specialization, inheri-
tance for generalization is based on
conceptual reasons, but the actual di-
rection of conceptual relationships has
been reversed. In other words, rather
than specializing the behavior of its
parent, a descendant is designed as a
generalization of its parent. Inheritance
for generalization has been investigated
in detail by Pedersen [1989], who con-
siders such use of inheritance valuable
when changes to the existing classifica-
tion hierarchy are needed and when
those changes should be accomplished
incrementally rather than by modifying
the existing inheritance hierarchy. An-
other advantage of generalization is
that in some situations it may be easier
to implement abstractions as generali-
zations of more special concepts than
vice versa [Halbert and O’Brien 1987;
Pedersen 1989]. For example, if a sys-
tem already incorporates a deque ab-
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straction, then the implementation of
stack by generalization is easier than
by constructing it from more general
abstractions [Snyder 1986a].
In conclusion, there is no single answer

as to what constitutes proper use of in-
heritance. Although conceptual special-
ization was originally regarded as the
only legitimate reason for using inheri-
tance, in practice inheritance is com-
monly used for other quite reasonable
purposes. Consequently, a major theme
in the object-oriented programming re-
search in the past years has been the
clarification of the role of inheritance.
Despite these efforts, researchers still
have differing opinions on inheritance,
and a lot of work in this area remains to
be done.

2.3 The Essence of Inheritance

On the basis of the preceding discussion
it appears that the analogy between in-
heritance and conceptual specialization
is a lot weaker than has often been
claimed. In order to reach a better un-
derstanding of what the essence of in-
heritance in object-oriented program-
ming really is, let us now set the
conceptual modeling viewpoint aside for
a while, and approach the issue from a
more pragmatic viewpoint. The section
starts by recognizing certain inherent
problems in traditional programming
methodologies and by showing how in-
heritance can address these problems. A
more theoretical discussion of the es-
sence of inheritance will then follow.

2.3.1 Inheritance as an Incremental
Modification Mechanism

Ours is a world of things—but of changing things
not quiescent ones.

—MARIO BUNGE, The Furniture of the World

There are six kinds of change: generation, de-
struction, increase, diminution, alteration, change
of place.

—ARISTOTLE, Categories §14

A well-known fact in software devel-
opment is that if a piece of software is

useful, it will have to be changed.
Therefore, one of the most important
qualities of software is malleability, or
modifiability; the easier the software
system is to change, the more likely it is
that it will fulfill the requirements it
was built to satisfy, and the more easily
it will be able to keep up with the evolv-
ing needs of the users. Traditional pro-
gramming methodologies do not take
this evolutionary nature of software
into account very well. The principles of
abstract data type (ADT) programming,
such as locality of information, modu-
larity and representation independence
[Liskov 1987], provide some help in this
respect, but are unable to solve some of
the most central issues.
One of the main problems plaguing

software development is that program
modification, in the traditional fashion,
is a process of destructive or radical
change [Cook 1989a; Cook and Palsberg
1989]. In many situations, even small
modifications to some parts of the sys-
tem will have widespread effects on the
other parts. The larger the software sys-
tem is, the greater is the likelihood of
undesired, inadvertent side-effects. Yet
many of the changes in software sys-
tems do not really necessitate destruc-
tive modification. If the modifications,
replacements, or removals of existing
parts of the program were explicitly
avoided, and an incremental program-
ming style were adopted, these unfore-
seen effects could be avoided.
To properly understand the problems

with destructive modification, let us
consider an example in which we are
building a simple graphical windowing
system. In Figure 5, we define a class
Window whose instances are assumed
to be windows on the screen. To avoid
extra verbosity and complexity, only a
small subset of the variables and opera-
tions needed in implementing a real
window system have been included. It is
assumed that methods drawFrame and
drawContents display the frame and the
contents of a window on the screen at
the location specified by the variable
rect. Method refresh invokes both these
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methods in order to update both the
frame and the contents. Since the exam-
ple will be used to illustrate further
aspects of inheritance in the end of this
section, references to methods draw-
Frame and drawContents have been de-
noted using a special pseudovariable
self. At this point these self-references
can simply be ignored.
Suppose we would later like to modify

our window system to support windows
that are capable of displaying a title
(name) on their frame. In conventional
ADT systems this can be achieved in
two basic ways. The first way is to edit
the source code of the existing class
Window to support both plain windows
and windows with a title. This could be
accomplished by adding a new variable
to hold the title of the window, and
another variable to store information of
whether the current window is a plain
one or one with a title. Additionally, a
case statement should be added to
method drawFrame to determine
whether or not the title should be
printed on the frame.
The second way to achieve the same

effect is to copy the source code of the
existing Window class and edit the copy
to form a completely new TitleWindow
class—this approach can be called the
“copy-and-modify” scheme. Neither of
these approaches is really satisfactory.
In a large system direct modification of
an existing component is likely to cause
inconsistencies with the other compo-
nents that happen to refer to the prop-
erties of the modified component. The
copy-and-modify scheme, on the other
hand, is uneconomical, because usually

the changes to the existing components
are relatively small in proportion to the
overall size of the component. Further-
more, textual copying loses the relation-
ship between the original and copied
component, and this is likely to cause
maintenance problems later on. In gen-
eral, there are two arguments against
tampering with existing source code
[Krueger 1992].

—Editing source code forces the soft-
ware developer to work at a low level
of abstraction. The effort required to
understand and modify the low-level
details of a component offsets a signif-
icant amount of the effort saved in
reusing the component.

—Editing source code may invalidate
the correctness of the original compo-
nent. This eliminates the ability to
amortize validation and verification
costs over the life of a reusable com-
ponent.

Inheritance addresses the above men-
tioned problems by promoting incre-
mental definition. By adding new prop-
erties, a new class can extend, modify
and defeat the properties inherited from
its parents, but the original class still
remains the same. However, note that
the avoidance of destructive changes it-
self is not enough. So as to avoid unnec-
essary redefinitions, some extra linguis-
tic support is needed. Consider the
definition in Figure 6.
The class definition in Figure 6 is an

attempt to define a new class TitleWin-
dow as an extension of the previously
defined class Window. Since class Win-

Figure 5. Class Window.
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dow implements the basic functionality
of windows, it seems apparent that in
order to create windows with a title on
their frame, the only thing that needs to
be redefined is the previously defined
operation drawFrame. However, a prob-
lem with this approach is that after the
redefinition of drawFrame, all those op-
erations in superclass Window that hap-
pen to refer to the original operation
drawFrame, such as refresh, are invalid.
When applied to instances of TitleWin-
dow, method refresh will still invoke the
original method drawFrame of class
Window, thus producing windows with-
out a title on their frame.
In general, it is common for class def-

initions to contain a large number of
operations that refer to the other opera-
tions in the same definition. These in-
terdependencies between classes make
incremental modification problematic; if
one operation is redefined in a descen-
dant, all the other operations referring
to that operation will also have to be
redefined. This is inconvenient and
against the idea of incremental modifi-
cation. For this reason, an additional
language mechanism, late binding, is
needed. Late binding allows references
to the properties of objects to be post-
poned until the program is actually run,
thus making operations polymorphic,
i.e., able to take on different meanings
at different times. By virtue of late
binding, references to other properties
from within an operation do not have to
be statically fixed, but may invoke dif-
ferent properties depending on the con-
text from which the operation is actu-
ally invoked. This dynamic context is
determined by self-reference, a pseudo-
variable that denotes the object whose
operation is currently being executed.

In the window system example above,
for instance, the use of late-bound self-
reference causes the behavior of opera-
tion refresh to vary dynamically depend-
ing on which kind of a window it is
currently acting upon, thereby ensuring
that the correct drawFrame operation
can be invoked.
What do we learn from all this? First,

it is apparent that many modifications
needed in software systems could be
performed incrementally, yet conven-
tional systems enforce these modifica-
tions to be carried out in a destructive
manner. Second, late binding is a pre-
requisite for implementing a system
that allows true incremental modifica-
tion. Without late binding, there is no
assurance that newly defined compo-
nents will work correctly when inher-
ited operations are applied to them. In
general, inheritance can be defined as
follows (adapted from Cook [1989a] and
Cook and Palsberg [1989]):

Inheritance is an incremental modifica-
tion mechanism in the presence of a
late-bound self-reference.

A detailed description of the semantics
of late binding and self-reference will be
given in the next section.

2.3.2 Late Binding and Self-Reference

To thine own self be true.

—WILLIAM SHAKESPEARE, Hamlet

Inheritance is an incremental modifica-
tion mechanism. By virtue of inheri-
tance, a new object class can extend
itself by internalizing properties of an-
cestors as though they were its own
[Wegner 1987]. Late binding, as implied
above, allows this internalization to be
performed in a manner that minimizes

Figure 6. Class TitleWindow.
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the need for physical code duplication,
by letting the same operations invoke
different properties depending on the
context from which these operations are
invoked, thereby promoting sharing of
code. This section takes a more theoret-
ical look at how incremental modifica-
tion is actually achieved, and gives a
general description of the semantics of
late-bound message sending. Since we
are not yet focusing on any particular
model of inheritance, the description
will be kept independent of implementa-
tion aspects.
Theoretically, inheritance can be

characterized as the operation that de-
rives new abstractions from previously
defined ones, denoted formally R 5 P Q
DR, or in the case of multiple inheri-
tance: R 5 P1 Q P2 Q . . . Q Pn Q DR.
When applied transitively, the opera-
tion results in abstraction hierarchies
that take the form of tree (in the case of
single inheritance), or more generally:
directed acyclic graph (DAG; see Amer-
ica [1987] and Knudsen [1988]). Each
node in an inheritance DAG represents
a collection of properties that has been
incrementally added on top of the inher-
ited properties at some particular level,
corresponding to a delta part in some
“R 5 P Q DR” declaration.
Note that although in object-oriented

systems inheritance is typically possible
only between classes, there is usually
an isomorphic correspondence between
classes and their instances, so that in-
stances can also be viewed as inheri-

tance DAGs if so desired. The mapping
between classes and their instances
may not always be totally one-to-one,
however, because repeated inheritance
(e.g., a class having two superclasses
that have a common superclass; also
known as fork-join inheritance [Sakki-
nen 1989], or diamond inheritance
[Bracha 1992, pp. 24–26]) may cause
some instance variables to be dupli-
cated. Bear in mind that an essential
restriction on all inheritance hierar-
chies is that they may not contain cy-
cles. This restriction is obvious as it
would be nonsensical for abstractions to
inherit their own properties.
If objects are viewed as directed acy-

clic graphs, the semantics of inheritance
can be described quite easily and inde-
pendently of any particular model of
inheritance. Whenever a late-bound
message is sent to an object, the follow-
ing kind of an algorithm will take con-
trol. The algorithm is illustrated in Fig-
ure 7 (adapted from Cook [1989a] and
Cook and Palsberg [1989]). Parts of the
figure will be discussed also in the next
subsection.

(1) First, self-reference is set to refer to
the receiver of the message. Previ-
ous value of self-reference is saved
so that it can be restored later. In
Figure 7, this phase is called SEND.

(2) The given message selector is then
matched against the properties of
the receiver by traversing its inher-
itance DAG node by node. The ac-

Figure 7. Semantics of message passing with late binding.
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tual traversal order depends on the
form of inheritance being used (Sec-
tion 3.3). In Figure 7, this phase is
called LOOKUP.

(3) If a matching property is found in
some node, the matching property is
invoked, e.g., using a normal proce-
dure call mechanism. In Figure 7,
this phase is termed CALL. After
execution, the previous value of self-
reference is restored.

(4) In case no matching property can be
found in the whole DAG, a binding
error will be raised. In Figure 7, this
phase is called ERROR.

As a result of successful late binding,
the matching operation of the object will
be invoked. During the execution of the
operation, the self-reference will remain
denoting the root of the current inheri-
tance DAG, so that subsequent message
sends via the self-reference from within
that operation can access the other
properties of the object. By virtue of late
binding, operations inherited from par-
ents can invoke such properties that
were not necessarily even implemented
at the time when the parent was de-
fined.
Note that in actual implementations

of object-oriented languages, the above
described algorithm is usually replaced
with much more efficient strategies.
Simple inline caching techniques
[Deutsh and Schiffman 1984], for in-
stance, eliminate the need to perform
the actual lookup in 95 percent of the
situations. Various optimization tech-
niques have been surveyed in Driesen et
al. [1995].
To the programmer, the self-reference

typically appears in the form of a spe-
cial pseudovariable, self, that can be
used explicitly to inform the system
that late binding via self-reference is
requested. At the language level, self is
treated as a free variable whose textual
occurrences in a program are bound to a
particular object only at the time they
are executed. By the term pseudovari-
able it is implied that self is system-

maintained and cannot be modified by
the programmer.
In different languages different

names for the self-reference are used.
Smalltalk and its derivatives use self,
whereas in Simula, Beta [Kristensen et
al. 1983; Madsen and Møller-Pedersen
1989] and C11 the corresponding lan-
guage construct is known as this. Eiffel
provides a pseudovariable current for
the same purpose [Meyer 1988, p. 79
and 177]. In some object-oriented lan-
guages self-references are implicit. In
Eiffel, for instance, current is usually
elided, and thus late-bound operation
invocations look syntactically identical
to ordinary procedure calls in conven-
tional programming languages. The
C11 programmer may explicitly decide
whether or not to use this in his mem-
ber function calls.

2.3.3 Accessing Overridden Proper-
ties. Besides self, object-oriented lan-
guages typically provide other pseudo-
variables that contribute to the
incremental definition of programs. The
most common of these is super [Gold-
berg and Robson 1989, pp. 63–66] that
is used for accessing those inherited
properties that have been redefined in
subclasses. When an operation sends a
message via super, the lookup is started
from the immediate parent of the node
possessing that operation. This is differ-
ent from normal message lookup in
which the lookup is always started from
the node denoted by the self-reference.
When using super, the self-reference is
left untouched, so that subsequent mes-
sages via self from the redefined opera-
tions will be able to access the more
recently defined properties.
In order to illustrate the behavior of

super, let us take the class TitleWindow
defined in Section 2.3.1 into consider-
ation again. In that example we rede-
fined the operation drawFrame in order
to construct windows with a title on
their frame. In such a situation it would
apparently be a great help if we could
somehow utilize the previously defined
drawFrame operation of superclass
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Window. However, since the purpose of
class TitleWindow is primarily to de-
scribe the title extension, it should
know as little as possible about the ac-
tual frame drawing process. In order to
avoid code duplication, the new draw-
Frame operation for TitleWindow
should apparently first invoke the ear-
lier drawFrame operation, thus drawing
the plain border, then calculate the cor-
rect position for the title, and print the
title on the frame. This is exactly what
can be accomplished using the super-
reference (see Figure 8). Without super,
the whole frame printing algorithm
would have to be reimplemented in the
subclass. Thus, the super-reference is
an invaluable tool for reducing the need
for code reimplementation and contrib-
uting to incremental modification.
Several variations of super-reference

exist. Whereas super is characteristic of
languages modeled after Smalltalk, in
CLOS the corresponding language con-
struct is known as call-next-method
[Keene 1989, p. 233]. Unlike super,
CLOS’s call-next-method does not re-
quire any message selector as parame-
ter, but uses the previous selector name
by default. In this sense CLOS’s call-
next-method is analogous to Beta’s inner
construct [Kristensen et al. 1983], al-
though otherwise Beta’s inheritance
scheme is radically different (see Sec-
tion 3.3). C11 gives the programmer
the ability to access redefined proper-
ties by using superclass names as qual-
ifiers [Ellis and Stroustrup 1990, p.
390]. Eiffel does not provide any explicit
super-reference, but allows the same ef-
fect to be simulated by renaming the
inherited properties in the subclass

[Meyer 1988, pp. 246–250]. Some lan-
guages, such as Simula and Deltatalk
[Borning and O’Shea 1987] do not pro-
vide any facilities for accessing rede-
fined operations, and this may limit in-
cremental modification in many
situations. In Self [Ungar and Smith
1987], the super-reference was origi-
nally called super, but later renamed as
resend [Chambers et al. 1991].
In general, late binding, self-reference

and super-reference are salient ele-
ments of all inheritance mechanisms.
Late binding and self-reference allow
the programmer to perform “surgery”
which can change object behavior with-
out physically reaching inside any ob-
ject. Super-reference supplements these
facilities by allowing access to redefined
properties, thereby reducing the need
for code duplication. When used prop-
erly, together these facilities allow the
properties of objects to be reused with-
out any textual copying or editing,
which is a major advantage over other
programming styles and techniques. In
this sense, inheritance is a truly novel
and fundamental mechanism for con-
structing programs [Cook 1989a].

2.3.4 Inheritance as a Specificational
Structuring tool

Inside every large program there is a small pro-
gram trying to get out.

—C.A.R. HOARE

Incremental modification is not a pana-
cea. Not all modifications to programs
can be performed incrementally. Never-
theless, many of the problems in con-
ventional software development meth-

Figure 8. Class TitleWindow using super-reference.
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odologies can be alleviated considerably
using incremental modification. One ad-
ditional benefit of inheritance in this
respect is that it enables the construc-
tion of partially, or incompletely imple-
mented abstractions. By partially imple-
mented abstractions we refer to
abstractions whose definitions have
purposely been left incomplete, and
whose properties may thus refer to such
components or properties that have not
even been implemented yet; late bind-
ing is obviously needed for this. Ab-
stractions of this kind are sometimes
extremely useful, because they can
serve as specifications or contracts upon
which the concrete implementations can
be based, thus facilitating the conver-
gence of analysis, design, and imple-
mentation. Such abstractions often have
a communicative role, allowing the de-
signers to agree upon the interfaces of
the abstractions before the actual im-
plementation efforts are started. In gen-
eral, these ideas are intimately related
to Wirth’s notion of successive, or step-
wise refinement [Wirth 1971].
In class-based object-oriented sys-

tems, partial implementation is usually
supported in the form of abstract
classes. An abstract class is a class that
specifies a message interface, but does
not fully implement it. Such a class is
written with the expectation that its
subclasses will add to its structure and
behavior, usually by completing the im-
plementation of its incomplete opera-
tions. Since abstract classes are imple-
mented only partially, by convention no
instances are created from them. In
fact, in some papers abstract classes are
defined as classes which even cannot be
instantiated; many systems, such as
Smalltalk-80, do not guarantee this,
however. Since abstract classes serve
only to provide inheritable functional-
ity, they are often also referred to as
abstract superclasses [Bracha 1990].
Other frequently used synonyms are ba-
sic classes in CLOS terminology [Keene
1989, p. 224], deferred classes in Eiffel
terminology [Meyer 1988, pp. 234–240],
abstract superpatterns in Beta terminol-

ogy [Madsen and Møller-Pedersen
1989], and partial types [Halbert and
O’Brien 1987].
Representative examples of abstract

classes in object-oriented systems are
classes Object and Collection in Small-
talk. Smalltalk’s class Object is an ab-
stract superclass that defines the gen-
eral properties of all objects in the
Smalltalk system [Goldberg and Robson
1989, pp. 94–103]. Instantiation of class
Object would, however, make little
sense since Object exhibits no other be-
havior than these general operations.
Similarly, class Collection defines the
general message protocol for various
collection classes such as dictionaries,
sets, arrays and strings. Many opera-
tions in class Collection, such as the
iteration method do:, have deliberately
been left unimplemented, however, and
are to be added by the subclasses.
In systems utilizing mixin inheritance

(see Section 3.7), partial implementa-
tions are used for another purpose. Mix-
ins are small, noninstantiatable por-
tions of behavior that are used solely for
adding properties to other classes.
Mixin classes do not define any general
framework or serve as specifications of
some larger abstraction hierarchy.
Rather, they just describe reusable
pieces of functionality that can be at-
tached to other classes using multiple
inheritance. Therefore, as opposed to
ordinary abstract superclasses, mixin
classes are sometimes referred to as ab-
stract subclasses [Bracha and Cook
1990].
In general, we can distinguish two

additional forms of inheritance: inheri-
tance from complete implementations
and inheritance from partial implemen-
tations [Halbert and O’Brien 1987].
Both forms rely on performing modifica-
tions in an incremental fashion and are
thus subcategories of the more general
notion of incremental modification. In-
heritance from complete implementa-
tions allows the reuse and refinement of
existing complete abstractions, while in-
heritance from partial implementations
serves as a specificational structuring
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tool, enabling the successive refinement
of programs from abstract specifications
towards successively more concrete im-
plementations. Some researchers have
argued that inheritance from complete
implementations is harmful and should
be avoided [Lieberherr et al. 1988;
Lieberherr and Holland 1989].
Note that in a way, abstract classes

have a dual role. On the one hand, they
have a conceptual role, and serve as
specification or design tools in the above
described manner, their presence being
motivated by the conceptual analysis of
the problem domain. On the other hand,
abstract classes also have a more prag-
matic role: to serve as hooks for improv-
ing reusability. These two roles are not
necessarily coincident; in order to make
a class hierarchy as reusable as possi-
ble, it is often essential to split the
problem domain into smaller classes
(and have more abstract classes) than
would otherwise be necessary from the
conceptual viewpoint. This is because
the smallest unit of reuse in most ob-
ject-oriented systems is the class. Mixin
inheritance discussed later in Section
3.7 is a good example of the potential
discrepancy between reuse and model-
ing.

3. VARIATIONS OF INHERITANCE

Understanding depends on expectations based on
familiarity with previous implementations.

—MARY SHAW

What we’ve got is freedom of choice. What we
want is freedom from choice.

—From a song by a new-wave band, Devo

Object-oriented language design space
is not a dichotomy, and these lan-
guages cannot be categorized into com-
pletely clear-cut, orthogonal subclasses.
Rather, they seem to be more like a
result of “mixin inheritance”: the same
basic themes and patterns are repeated
over and over again in slightly different
forms and variations. This similarity
between models is intriguing, and it
sparks the desire to explore the possible

common constituents further. This sec-
tion undertakes a detailed analysis of
the variations of inheritance mecha-
nisms in object-oriented programming
systems, aiming at new insights as to
what the possible common constituents
of different inheritance models are. At
the same time, some further concepts
and notions will be introduced. Finally,
a simple taxonomy of the basic mecha-
nisms and issues underlying the seem-
ingly divergent forms of inheritance will
be presented.

3.1 Class Inheritance Versus Prototype
Inheritance

Class is a state of grace that few people have.

—DOROTHY CULLMAN

Prototype: the first or primary of anything; the
original (thing or person) of which another is a
copy, imitation, representation, or derivation, or is
required to conform; a pattern, model, standard,
exemplar, archetype.

—Oxford English Dictionary VIII, p. 1512

Object-oriented systems are usually
built around classes. Classes are de-
scriptions of objects capable of serving
as templates or “cookie-cutters” from
which instances, the actual objects de-
scribed by classes, can be created. This
creation process is typically known as
instantiation. In broad terms, a class
represents a generic concept, or a “reci-
pe,” while an instance represents an
individual. A class holds the similarities
among a group of objects, dictating the
structure and behavior of its instances,
whereas instances hold the local data
representing the state of the object.
Class-based systems are quite class-

centric. To add a new kind of an object
to the system, a class describing the
properties of that object type must be
defined first. Similarly, inheritance can
only take place between classes,
whereas instances are completely “ster-
ile”, i.e., incapable of serving as parents.
Therefore, the model is commonly re-
ferred to as class inheritance [Stein et
al. 1988; Wegner 1987, 1990].
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An interesting alternative for tradi-
tional class inheritance is prototype in-
heritance, or object inheritance [Blas-
chek 1994; Borning 1986; Dony et al.
1992; Liebermann 1986; LaLonde et al.
1986; Stein et al. 1988; Stein 1987; Un-
gar and Smith 1987]. As opposed to
class-based systems, in prototype-based
systems there are no classes. Rather,
new object types are formed directly by
constructing concrete, full-fledged ob-
jects, which are referred to as prototypes
or exemplars. A prototype can be
thought of as a standard example in-
stance, which represents the default be-
havior for some concept. Prototype-
based systems provide no classes, and
therefore in these systems there is no
notion of instantiation either. The effect
of instantiation, the ability to create
multiple objects of similar kind, is
achieved by cloning (copying) existing
objects instead. In addition, objects in
prototype-based systems are usually in-
dividually modifiable. By virtue of the
individuality of objects, prototype-based
systems support incremental modifica-
tion at the level of individual objects, as
opposed to class-based systems in which
typically only groupwise (class-level)
modification is possible.
From the philosophical viewpoint the

distinction between class-based and
prototype-based systems reflects the
long-lasting philosophical dispute con-
cerning the representation of abstrac-
tions. Plato viewed forms—stable, im-
mutable descriptions of things—as
having an existence more real than in-
stances of those abstractions in the real
world [Plato 1981, Books 6 and 7]. Ob-
ject-oriented languages like Smalltalk
and Simula are Platonic in their explicit
use of classes to represent similarity
among collections of objects. Prototype-
based systems represent another way of
viewing the world, in which one chooses
not to categorize things, but rather to
exploit their alikeness. A typical argu-
ment in favor of the prototype-based
approach is that people seem to be a lot
better at dealing with specific examples
first, then generalizing from them, than

they are at absorbing general abstract
principles first and later applying them
in particular cases [Lieberman 1986].
There are many variations of proto-

type-based systems [Dony et al. 1992;
Taivalsaari 1993c]. Roughly speaking,
prototype-based object-oriented lan-
guages can be divided into two broad
categories according to how incremental
modification is supported in them: dele-
gation-based and copying-based. In del-
egation-based languages, there is a spe-
cial delegation mechanism that provides
the incremental modification capability
[Lieberman 1986]. In delegation-based
languages, when an object receives a
message it does not understand, the ob-
ject will delegate the message to those
objects that have been designated as its
“parents.” Parent objects will then try to
carry out the message on the delegating
object’s behalf. During the delegation
process, the self-reference will remain
pointing to the original receiver, allow-
ing late-bound properties in parents to
operate in the context of the original
receiver. Delegation will be discussed in
more detail in the next section. The best
example of a delegation-based object-
oriented language is Self [Ungar and
Smith 1987], a Smalltalk-like language
that has become the yardstick against
which other prototype-based object-ori-
ented languages are measured.
Borning [1986] has shown that a pro-

totype-based language does not neces-
sarily have to support delegation in or-
der to be a full-fledged object-oriented
language. Borning demonstrated that
by utilizing cloning (copying) and the
possibility to dynamically add new prop-
erties to objects in the presence of the
regular late-binding message sending
mechanism, it is possible to capture the
essence of inheritance—incremental
modification—in a prototype-based lan-
guage even without delegation. Unless
supplanted with some additional mech-
anisms and implementation techniques,
this model has some problems, however.
In particular, as a result of extensive
use of copying, memory consumption
can be excessively high. Also, groupwise
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modification of objects is more tedious
than in delegation-based systems due to
absence of common parent objects or
any explicit inheritance hierarchy. Ex-
amples of prototype-based object-ori-
ented languages built along the lines of
Borning’s model are Omega [Blaschek
1991] and Kevo [Taivalsaari 1993c].
Prototype-based object-oriented lan-
guages have been discussed in detail in
a book by Blaschek [1994].

3.2 Delegation Versus Concatenation

Inheritance is acquisition of properties
from past generations. More practically,
inheritance is a relationship between
objects that guarantees that a descen-
dant has at least the properties that its
parents have. By incrementally adding,
redefining or defeating properties, the
descendant can become differentiated
from its parents. At the level of object
interfaces this implies that the record
representing the descendant must con-
tain at least those identifiers that its
parents have. In addition, the descen-
dant can introduce new identifiers that
are either distinct or overlapping. An
incrementally added identifier is said to
be distinct if no other identifiers with
the same name exist in the same inher-
itance DAG. Otherwise, the identifier is
overlapping. In general, from the view-
point of interface management, inheri-
tance is simply a combination operation
R 5 P Q DR on record structures P 5
[. . .] and DR 5 [. . .] with possibly over-
lapping identifiers (see Wegner and
Zdonik [1988]). This combination opera-
tion must be able to relate the interface
(name space) of descendant R to the
interface of parent P.
Within computer memory there are

only two ways to express direct relation-
ships between things: references or con-
tiguity. Based on this observation, two
elementary strategies for implementing
inheritance can be distinguished: dele-
gation and concatenation. Delegation is
a form of inheritance that implements
interface combination by sharing the in-
terface of the parent—in other words,

using references. Concatenation, on the
other hand, achieves the same effect by
copying the interface of the parent into
the interface of the descendant—as a
result of this, the descendant’s interface
will be contiguous. As an example of
delegation and concatenation, consider
the simple example below. Let us as-
sume that we have the following kind of
object aPen defined in our system with
two variables x and y and a method
called draw, defined using simple record
notation.

aPen:-[VAR x, VAR y, METHOD draw];

Suppose that we now want to define
another object aTurtle that inherits the
properties of aPen and adds a new vari-
able heading and a method forward. If
we accomplish this using delegation, the
interface of the descendant will be as
follows:

aTurtle:-[PARENT p :-aPen, VAR heading,
METHOD forward];

On the other hand, using concatenation
the interface of the resulting object will
be contiguous, as illustrated below:

aTurtle:-[VAR x, VAR y, METHOD draw,
VAR heading, METHOD forward];

In both cases the basic result is the
same: the descendant will be able to
respond to messages corresponding to
the inherited identifiers in addition to
the incrementally added ones. However,
the way in which message sending is
handled in these approaches is differ-
ent. In delegation, those messages that
are not accepted by the most specialized
part of the object must be delegated
(forwarded) to parents. In concatena-
tion, the interface of every object is self-
contained, and thus no forwarding is
needed. Since the term delegation im-
plies shared responsibility for the com-
pletion of a task, it would be misleading
to use that term to denote also the
latter form of inheritance. Delegation
and concatenation have been illustrated
in Figure 9.
Note that the difference between del-

egation and concatenation is indepen-

On the Notion of Inheritance • 459

ACM Computing Surveys, Vol. 28, No. 3, September 1996



dent of the question of whether the sys-
tem is based on classes or prototypes;
delegation and concatenation can
equally underlie both models. The main
difference is that in class-based systems
delegation or concatenation takes place
between classes, whereas in prototype-
based systems the same occurs between
individual objects. In fact, although the
term concatenation is not widely used in
the current literature of object-oriented
programming, there are good historical
reasons for its use. The concept of pre-
fixing in Simula [Dahl et al. 1968],
which later evolved into the modern
concept of inheritance, was originally
defined in terms of textual concatena-
tion of program blocks [Cook and Pals-
berg 1989] (see Dahl et al. [1972, pp.
202–204, Nygaard and Dahl 1987]).
Even in the current implementations of
Simula and its descendant Beta [Kris-
tensen et al. 1983] the interfaces (to be
more specific: the virtual operation
search tables) of classes and their sub-
classes are self-contained and indepen-
dent of each other [Madsen and Møller-
Pedersen 1988; Magnusson 1991]. On
the other hand, as shown by Stein
[1987], the way that inheritance be-
tween classes is achieved in Smalltalk

is analogous to the delegation approach
adopted in prototype-based languages
such as Self. In both approaches unre-
solved messages will always be for-
warded to separate constructs; in Small-
talk this separate construct is a
superclass, and in Self it is a parent
object.
In general, delegation and concatena-

tion are distinct strategies for imple-
menting inheritance, both of which
can equally underlie class-based and
prototype-based systems. Simula and
its descendant Beta are examples of
languages which implement class inher-
itance by concatenation. Smalltalk, on
the other hand, implements class inher-
itance by delegation. Self is the best
example of a language that implements
prototype inheritance by delegation. The
copying-based approach discussed in
Section 3.1 represents prototype inheri-
tance by concatenation. Thus, although
it has sometimes been claimed that del-
egation is a mechanism that can be
thought of as underlying all inheritance
mechanisms [Stein 1987], this is not
really the case. One of the few papers in
which a similar distinction between dif-
ferent kinds of object-oriented systems
has been made is, Snyder [1991],

Figure 9. Delegation versus concatenation.
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wherein Snyder distinguishes mono-
lithic objects and multiobjects. Snyder’s
notion of monolithic objects is roughly
analogous to our notion of concatena-
tion, whereas his multiobjects represent
the use of delegation (see also Sakkinen
[1989]).
The main differences between delega-

tion and concatenation have been gath-
ered into Table I. Most of the differ-
ences between the approaches pertain
to the treatment of inheritance graphs
(DAGs). Delegation preserves inheri-
tance DAGs without modifications, but
concatenation requires DAGs to be flat-
tened out into contiguous name spaces.
This flattening implicitly prevents haz-
ardous cycles in inheritance DAGs, but
at the same time it causes some impor-
tant differences in the usage of these
models. The notions of life-time sharing
and creation-time sharing mentioned in
the table will be defined later in Section
3.8.
Delegation and concatenation both

have certain advantages over each
other. For instance, owing to dependent
interfaces, delegation enables flexible
propagation of change: any change to
parents will be automatically reflected
to descendants. This can be extremely
useful at times, allowing a large group
of objects to be modified simply by
changing a common parent. On the
other hand, thanks to self-contained in-
terfaces, concatenation supports inde-
pendent modification of object inter-
faces, making possible renaming and
selective inheritance (Section 3.6). As for
efficiency, delegation is generally more
space-efficient due to extensive use of
sharing, but concatenation is generally
more time-efficient since the absence of

sharing makes it easier to optimize the
method lookup more aggressively.

3.3 Direction and Completion of Message
Lookup

Perfection is achieved only on the point of col-
lapse.

—C.N. PARKINSON

In Section 2.3.2 we described the general
message sending algorithm that can be
seen as underlying all inheritance mecha-
nisms. The algorithm consisted of four
elements—SEND, LOOKUP, CALL and
ERROR—that were intentionally defined
somewhat vaguely. In particular, the
LOOKUP part of the algorithm simply
stated that as part of message matching
the inheritance DAG will be traversed
node by node. We did not, however, spec-
ify what the actual traversal order is.
Neither did we completely specify when
this lookup will eventually end. For ex-
ample, if the DAG contains several over-
lapping identifiers, it is unclear which
one of these properties should be invoked,
or should they all become invoked. In the
latter case it would be important to spec-
ify also the exact order in which all these
overlapping properties are to be executed.
Moreover, in case of multiple inheritance
the overlapping of identifiers is often in-
advertent, and the undesired identifier
name collisions should somehow be taken
into account. These issues will be ad-
dressed in this and the next section. Note
that all these questions apply equally to
class-based and prototype-based systems,
regardless of whether they are based on
delegation or concatenation.
In most contemporary object-oriented

systems the message lookup proceeds

Table 1. Delegation versus concatenation.
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from the most recently defined (descen-
dant) parts of objects towards the least
recently defined parts (parents). For ex-
ample, the behavior of message lookup
in Smalltalk has been described infor-
mally as follows [Goldberg and Robson
1989, p. 61]: “When a message is sent,
the methods in the receiver’s class are
searched for one with a matching selec-
tor. If none is found, the methods in
that class’s superclass are searched
next. The search continues up the su-
perclass chain until a matching method
is found”. Thus, in Smalltalk message
lookup always has a specific direction,
and will terminate as soon as the first
matching property is found. This con-
vention is used in various other object-
oriented languages including C11 and
Eiffel, except that in many systems
multiple inheritance makes things
somewhat more complicated. Since the
lookup is dominated by the most re-
cently defined parts of objects, i.e.,
those properties that have been defined
at the descendant level, we call this
scheme descendant-driven inheritance.
As usual, there are some interesting

variations. Beta [Kristensen et al. 1983;
Madsen and Møller-Pedersen 1989], a
descendant of Simula, uses a totally op-
posite parent-driven lookup scheme. In
Beta, property lookup is started from
the topmost superpattern (the Beta
equivalent of superclass) in the current
inheritance DAG. Beta supports single
inheritance only, so this topmost super-
pattern is always unique, and the inher-
itance DAG can be seen simply as a
linear path from parents to descen-
dants. When a message is sent to an
object (in Beta terminology: a virtual
procedure is invoked), lookup proceeds
from the virtual procedures defined in
the topmost superpattern towards more
recently defined superpatterns of the
object until a matching procedure is
found. This matching procedure will
then be invoked in the normal manner.
Since superpatterns have precedence
over their subpatterns, the Beta-style
reverse inheritance strategy ensures
that descendants can never totally over-

ride the behavior inherited from par-
ents, thereby providing additional sup-
port for maintaining the behavioral
compatibilities between parents and de-
scendants.
The distinction between descendant-

driven and parent-driven lookup
schemes is illustrated in Figure 10.
Note that the parent-driven lookup
scheme is not really suited to systems
with multiple inheritance, because in
such systems inheritance DAGs do not
necessarily have any single root node
from which the lookup could be started.
Besides the differences in the direc-

tion of message lookup, the inheritance
scheme of Beta deviates from main-
stream object-oriented languages also in
other ways. One important difference
pertains to the completion or exhaustion
of message lookup. In most object-ori-
ented systems message lookup is termi-
nated as soon as a matching property
has been found and executed. If the
programmer wants to execute the over-
ridden properties inherited from the
parents, it is the programmer’s respon-
sibility to explicitly do so by defining
the methods to explicitly call the meth-
ods of their parents. Many object-ori-
ented languages provide a special super-
reference exactly for this purpose, as
discussed earlier in this paper.
Beta addresses the lookup exhaustion

issue differently. In Beta, the overlap-
ping (“extended”) properties in subpat-
terns will always be invoked automati-
cally without programmer intervention.
After finding and executing a matching
property, the lookup will be continued
implicitly in the parent-driven lookup
order until all the corresponding prop-
erties in the object have been executed.
This is essentially different from main-
stream object-oriented systems in which
even one matching property will suffice
to terminate the lookup. As noted by
Madsen and Møller-Pedersen, the
Smalltalk-style of terminating the
lookup immediately after encountering
the first matching method is more flexi-
ble, but is also a potential source of
errors since the programmer may forget
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to execute the corresponding property in
the superclass [Madsen and Møller-Ped-
ersen 1989].
Theoretically, the direction and ex-

haustion issues are closely related to
record combination. In his thesis, Cook
[1989, p. 10] suggested that a distinc-
tion be made between left preferential
and right preferential record combina-
tion in order to specify the precedence of
message lookup. However, since the
terms left and right are quite imprecise
and open to interpretations, the terms
parent and descendant are used here in
the same meaning. In general, theoreti-
cally we can make a distinction between
five basic inheritance (record combina-
tion) schemes, as illustrated in Table II.
Strict record combination refers to situ-
ations in which overlapping property
names are strictly forbidden. Asymmet-
ric combination (see Harper and Pierce
[1991]) refers to such schemes in which
the lookup is limited to the first match-
ing property. Composing combination
requires all the matching properties to

be executed. In Table II, x is the prop-
erty to be executed, and P and R denote
the sets of properties defined at the
parent and child level, respectively. A
special operation o is used to denote
execution ordering; for instance, a o b
implies that both a and b are executed,
but a is invoked before b.
Note that although the inheritance

scheme of Beta is radically different from
than in most other object-oriented sys-
tems, these systems are typically capable
of simulating each other quite easily. In
Smalltalk, for instance, Beta’s composing
message lookup scheme can be simu-
lated simply by systematically placing
an explicit super-reference within every
method. Moreover, if these super-refer-
ences are always positioned in the begin-
ning of each method, the lookup order
becomes logically parent-driven, even
though the physical search order still re-
mains descendant-driven. The same tech-
nique can be used in Beta which provides
a special inner construct for controlling
the order of subpattern execution [Kris-

Figure 10. Descendant-driven and parent-driven forms of inheritance.
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tensen et al. 1983; Madsen and Møller-
Pedersen 1989]. The behavior of inner is
analogous to that of super-reference, but
its direction is reverse. Rather than in-
voking properties of superclasses, Beta’s
inner construct invokes properties in sub-
patterns. Thus, by placing an inner-refer-
ence in the beginning of each virtual func-
tion in a Beta program, the lookup order
becomes logically descendant-driven.
However, there is no easy way to simu-
late asymmetric message lookups in Beta.
There are also other techniques that

can be used to control the direction and
exhaustion of message lookup. In partic-
ular, mixin inheritance discussed in
Section 3.7 allows all the inheritance
schemes listed in Table II to be simu-
lated flexibly; different schemes are
achieved simply by changing the order
in which base classes and mixins are
combined. For a thorough discussion on
this idea, refer to Bracha and Cook
[1990]. Among the currently available
object-oriented languages, the CLOS
system with its special before, after and
around methods provides perhaps the
most comprehensive facilities for deal-
ing with the lookup direction and ex-
haustion. For further information on
these aspects of CLOS, see DeMichiel
and Gabriel [1987] and Keene [1989, pp.
11–13, and 50].

3.4 Ordered Versus Unordered Inheritance

A name is a spoken sound significant by conven-
tion, without time, none of whose parts is signifi-
cant in separation.

—ARISTOTLE, De Interpretatione §2

It’s useful to the people that name them, I sup-
pose. If not, why do things have names at all.

—LEWIS CARROLL, Through the Looking Glass

A problematic issue pertaining to multi-
ple inheritance are name collisions. A
name collision occurs when the inheri-
tance DAG contains overlapping proper-
ties and the property lookup algorithm
is unable to decide which one of these to
execute. Not all overlapping properties
result in name collisions, however. For
example, in single inheritance the over-
lapping of properties is a natural result
of incremental modification: when a de-
scendant redefines some of its inherited
properties to differentiate itself from its
parent, the newly redefined properties
naturally overlap with the inherited
ones. This form of overlapping of prop-
erties poses no problems for message
lookup algorithms and is sometimes
called vertical overlapping (see Knudsen
[1988]). In multiple inheritance vertical
overlapping occurs analogously when
two properties with the same name are
located along the same path in an inher-
itance DAG. For example, in Figure 11a
identifier x in node D vertically overlaps
with identifier x in its parent node A.
Problems arise when overlapping of

properties is horizontal. Horizontally
overlapping identifiers are those that
are located along distinct paths in an
inheritance DAG (see property y in Fig-
ure 11b), and thus horizontal overlap-
ping can take place only in multiple
inheritance. Generally speaking, there
are two basic approaches to dealing
with name collisions: ordered and unor-
dered inheritance [Chambers et al.

Table 2. Variations of record combination for message lookup
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1991]. Most Lisp-based systems such as
Flavors [Moon 1986], CommonLoops
[Bobrow et al. 1986] and CLOS
[DeMichiel and Gabriel 1987; Keene
1989] obey ordered multiple inheritance
schemes. In these systems the inheri-
tance DAG is first somehow linearized,
and the first matching property on this
linear path will then be executed re-
gardless of the other properties with the
same name. In contrast, languages like
Trellis/Owl [Schaffert 1986], Eiffel
[Meyer 1988], C11 [Ellis and Strous-
trup 1990] and CommonObjects [Snyder
1986b] treat inheritance DAGs without
any relative ordering. In these lan-
guages, name collisions are considered
programming errors, and any ambigu-
ities must be resolved explicitly by the
programmer.
Note that not even horizontal overlap-

ping of properties should always be
treated as a name collision. If two con-
ceptually unrelated abstractions are
combined using multiple inheritance, it
may well happen that these abstrac-
tions accidentally contain overlapping
identifiers [Chambers et al. 1991]. Since
the abstractions are conceptually unre-
lated, it is clear, however, that the oper-
ations of these abstractions are not in-
tended to access each others’ properties.
For instance, in the example above, the
late-bound invocation of property y via
self-reference from node A or D should
not result in a name collision, although

a similar invocation from node F cer-
tainly should. In order to be able to cope
with these kinds of situations, some sys-
tems have been augmented with quite
complicated mechanisms and inheri-
tance rules. For example, an earlier ver-
sion of Self included a special sender
path tiebreaker rule for addressing this
particular problem [Chambers et al.
1991]. For further information on the
treatment of name collisions, see partic-
ularly Knudsen [1988].

3.5 Dynamic Inheritance

Wood may remain ten years in the water, but it
will never become a crocodile.

—Congolese proverb

In Section 3.2 a distinction between two
fundamental strategies for implement-
ing inheritance—delegation and concat-
enation—was made. It was concluded
that both strategies have their own ben-
efits that are difficult to capture using
the other strategy. In this section this
discussion is taken a bit further by dis-
cussing dynamic inheritance: the ability
to change parents of objects dynami-
cally at runtime [Chambers et al. 1991;
Stein et al. 1988]. Despite being intu-
itively a rather dangerous language fea-
ture, dynamic inheritance provides
some notable benefits, and therefore,
although dynamic inheritance has typi-
cally been available only in some proto-

Figure 11. Vertically and horizontally overlapping identifiers.

On the Notion of Inheritance • 465

ACM Computing Surveys, Vol. 28, No. 3, September 1996



type-based systems, it has recently cap-
tured the interest of many researchers
of class-based systems as well.
Recall from the earlier discussion that

delegation-based systems accomplish
the interface combination required by
incremental modification by sharing the
interface of the parent, i.e., using refer-
ences rather than copying. In class-
based systems, the references between
children and parents are usually main-
tained by the system and are completely
inaccessible to the programmer. In con-
trast, in prototype-based systems these
references are typically implemented as
parent slots. By giving these slots
names, and by making them assignable,
we allow the parents of objects to be
changed on the fly. Consider the follow-
ing object definitions:

aPEN:-[VAR x, VAR y, METHOD draw];
aTurtle:-[PARENT parent:-aPen, VAR
heading, METHOD forward];

Assuming that the parent slot parent
behaves like an ordinary variable, we
can dynamically change the parent slot
to refer to some other object. Below we
define a new object a3dPen, supposedly
representing a three-dimensional coun-
terpart of aPen, and make this object
the parent of aTurtle.

a3dPen:- [VAR x, VAR y, VAR z, METHOD
draw];
aTurtle.parent:- a3dPen;

After these operations, the behavior
of aTurtle is no longer the same as it
was before. The object contains an extra
variable z, and the actual method draw
is different than before. As apparent,
dynamic inheritance can be quite dan-
gerous. If the properties of the new par-
ent do not comply with those needed by
the descendant, runtime binding errors
will result. Dynamic inheritance can
also have a deteriorating effect on per-
formance, since the possibility to change
parents at runtime prevents certain
kinds of message lookup optimizations
from being done [Chamber et al. 1991].
The benefits of dynamic inheritance

are best described by giving an exam-

ple. In the design and implementation
of programs we are often faced with
things and structures that can be in
different states or conditions. In this
context we are not referring to the con-
crete state of the variables of these ob-
jects, such as the integer 12345 in vari-
able foo, but rather to a more
conceptual or logical kind of state. For
instance, container objects such as
stacks, lists and queues can be empty,
nonempty or full. In graphical user in-
terfaces, windows can usually be open,
closed or represented as icons. Simi-
larly, application-specific objects such
as bank accounts, flight reservations, or
patient registers also exhibit many
kinds of logical states. The behavior of
the operations of objects typically varies
considerably depending on these logical
states. For instance, the behavior of the
pop operation of a stack depends essen-
tially on whether the stack contains
items or is empty; in the latter case pop
must not return any value but rather
raise an error. Similarly, when a bank
account has been frozen by the bank,
the teller machine should not dispense
any money when a withdrawal is re-
quested but rather swallow the card. In
conventional object-object systems,
these kinds of logical states or modes, as
they are sometimes called, are hard to
express. Usually, additional state vari-
ables and control structures are needed.
For instance, each of the basic window
manipulation operations such as open,
close, iconify, resize and zoom typically
has to contain an explicit if-statement
or case-statement to determine whether
the operation is appropriate for the win-
dow in the current situation. Obviously,
the diffusion of mode information and
accumulation of control structures both
tend to have a negative impact on the
readability and maintainability of code.
Dynamic inheritance provides a solu-

tion to the problems with logical states.
Since the behavior of objects can be
changed at runtime, not all the informa-
tion about an object has to be described
in one class or prototype. Rather, by
implementing a separate set of methods
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for each logical state, the behavior of
each mode can be kept clearly apart
from the others. Dynamic inheritance is
illustrated in Figure 12 in which we see
a window object with three parent ob-
jects (“traits” in Self terminology
[Chambers et al. 1991]) representing
the different logical states of windows
(open, closed, iconified). Each of the par-
ent objects implements the same basic
set of methods, but the behavior of the
methods is specialized to each particu-
lar logical state. Initially the parent slot
of the prototype is set to point to traits
OpenWindow, implying that only those
operations that are applicable to open
windows are available, but when the
logical state of the object changes at
runtime, e.g., the window becomes
closed, the parent slot is changed corre-
spondingly. Using this approach,
method definitions can be kept concise
and clear, because the methods in one
mode do not have to know how the other
modes behave. The number of control
structures in programs is reduced sub-
stantially.
Note that dynamic inheritance is not

typically possible in class-based sys-

tems. This is mainly due to the fact that
in class-based systems classes describe
not only behavioral but structural as-
pects as well; if the superclass of a class
were suddenly changed at runtime, the
structure of the instance would likely be
incompatible the structure specified by
the new superclass. The fact that most
class-based systems do not support late
binding of variables makes the situation
even more problematic. Due to the ap-
parent benefits of modes, however,
there have been some proposals on how
to add corresponding mechanisms to
class-based systems [Chambers 1993;
Stein 1989; Taivalsaari 1993b]. Among
these, Chambers’ predicate classes seem
particularly promising.

3.6 Selective Inheritance

Just as delegation enables dynamic in-
heritance, concatenation gives rise to
some interesting variations of inheri-
tance. For instance, the self-contained
nature of object interfaces in concatena-
tion has the advantage of making the
object interfaces independent of each
other. This possibility is utilized in

Figure 12. Dynamic inheritance.
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Eiffel, which allows the inherited prop-
erties to be renamed in subclasses
[Meyer 1988, pp. 246–250]. Renaming
apparently requires that the inheri-
tance mechanism is implemented using
concatenation; otherwise the modifica-
tion of inherited identifiers would not be
possible without affecting superclasses.
Besides allowing renaming, indepen-

dent interfaces have other benefits. In
particular, they make possible such
forms of inheritance in which not all
properties of inherited abstractions
have to be passed to descendants.
Rather, the descendant can be given the
explicit possibility to decide which par-
ticular properties of parents to inherit
and which not. Such forms of inheri-
tance are said to represent selective in-
heritance [Wilkes 1988]. Selective inher-
itance has been tried out in Sina/St
[Aksit and Tripathi 1988], a Smalltalk-
based system that dispenses with
classes and uses a two-level type con-
cept with separate interfaces and imple-
mentations instead. At the level of type
interfaces, the programmer can explic-
itly select which properties of objects to
inherit and which not. The Kevo system
[Taivalsaari 1993c] also supports selec-
tive inheritance through its partial re-
use mechanisms.
One of the interesting theoretical as-

pects of selective inheritance is that it
shows that the difference between in-
heriting an abstraction (such as a class
or a prototype) and using the abstrac-
tion as a variable is actually very sub-
tle. From the interface combination
viewpoint the only difference between
these is that in the former case the
property names of the inherited compo-
nent are implicitly included into the
interface of the descendant, and thus
the inherited properties can be referred
to directly. In contrast, in the latter
case the properties are not included and
must be accessed indirectly via an inter-
vening variable. As an example of this,
consider the following example. Assume
that we have the following objects t1
and t2 defined in our system. Since we
are dealing with interface aspects only,

the actual method implementations and
variable values are ignored.

t1 :- [METHOD m1, VAR v1];
t2 :- [METHOD m2, VAR v2];

Suppose that we now define two other
objects t3 and t4 which make use of the
existing objects t1 and t2. Object t3
uses t1 and t2 as its parents, whereas
t4 uses t1 and t2 as its variables. Note
that in this particular example t3 has
been implemented using delegation and
t4 using reference variables, but the
situation would be analogous using con-
catenation and containment.

t3 :-[PARENT p1 :- t1, PARENT p2 :- t2,
METHOD m3, VAR v3];

t4 :-[VAR p1 :- t1, VAR p2 :- t2, METHOD
m3, VAR v3];

Basically, the only difference between
objects t3 and t4 pertains to how their
properties can be accessed. In case of t3
(t1 and t2 as parents), the properties of
t1 and t2 can be accessed directly with-
out having to mention the intervening
identifiers p1 and p2. In case of t4 (t1
and t2 as variables), the intervening
identifiers along the access path to
properties m1, v1, m2 and v2 must be
mentioned explicitly. For example, the
following expressions

t3.m1;
t3.v2;

are legal, whereas the corresponding
messages to t4 would lead to binding
errors. Thus, for t4 the intervening
identifiers p1 and p2 must be used as
shown below.

t4.p1.m1;
t4.p2.v2;

Note that in the presence of selective
inheritance the distinction between par-
ents and variables becomes blurred. Se-
lective inheritance allows only a subset of
the identifiers of parents to be brought
into the interface of the descendant, and
hence the degree of “parentness” and
“variableness” can be varied. In particu-
lar, if a language provides a mechanism
by using which any uniquely named prop-
erty within an object can be accessed di-
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rectly without having to specify the full
path to it, then from the viewpoint of
interface management the distinction be-
tween variables and parents will vanish
altogether. This idea is utilized in Sina/St
where multiple inheritance is achieved
simply by declaring multiple variables at
the interface of a type and making the
properties of these variables directly ac-
cessible by means of an appropriate pred-
icate [Aksit and Tripathi 1988]. Of
course, in most object-oriented languages
encapsulation (information hiding)
changes the picture to some extent, since
not all variables or methods may be ac-
cessible to outside clients due to being
declared private.
The use of selective inheritance can

lead to some conceptual and technical
problems. In particular, incautious
omission of inherited properties can
produce objects whose interfaces are in-
complete, and that do not possess all
the properties to which their operations
need access. Therefore, additional
mechanisms may have to be introduced
to guarantee the completeness of ob-
jects. For further information on selec-
tive inheritance, refer to Aksit and Tri-
pathi [1988], Cook [1989a] and Wilkes
[1988].

3.7 Mixin Inheritance

Mixin inheritance is a certain way of
using inheritance that has received
quite a lot of attention in the literature
of object-oriented programming [Bracha
1992; Bracha and Cook 1990; Hendler
1986]. This is not surprising, consider-
ing that mixin inheritance has certain
important theoretical and pragmatic
benefits. On the theoretical side, mixin
inheritance has been proven to be capa-
ble of capturing the functionality of sev-
eral other forms of inheritance [Bracha
and Cook 1990]. Therefore, mixin inher-
itance is sometimes regarded as a more
“elementary” form of inheritance that
can provide help in understanding the
other forms. On the pragmatic side,
mixin inheritance is beneficial because
it can considerably improve the reus-
ability of program components.
The basic idea of mixin inheritance is

simple. Unlike in ordinary inheritance,
in which the modification (delta) parts
in class definitions are embedded di-
rectly in the new definitions (see Figure
13a), in mixin inheritance separate
mixin classes are created to hold the
modifications [Bracha and Cook 1990;
Hendler 1986]. A mixin class is syntac-
tically identical to a normal class, but

Figure 13. Ordinary inheritance versus mixin inheritance.
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its intent is different. Such a class is
created solely to be used for adding
properties to other classes—one never
creates an instance of a mixin. New
concrete classes, such as class R in Fig-
ure 13b, are constructed by combining
primary parent classes (class P in Fig-
ure 13b) with secondary mixin classes
(R_Mixin) using multiple inheritance.
Since mixin classes do not have su-

perclasses and are not therefore struc-
turally bound to any specific place in
the inheritance hierarchy, the same
modifications (delta parts) can be re-
peatedly used (inherited) without hav-
ing to rewrite or copy their contents
manually when similar modifications
are needed in other places [Bracha and
Cook 1990]. This enhances reusability
by allowing the same functionality to be
flexibly added to various components.
Using single inheritance in a similar
situation, considerable code duplication
would result because the same pieces of
code would have to be repeatedly writ-
ten in several classes. Ordinary multi-
ple inheritance would usually suffice to
solve the problem, too. However, ordi-
nary multiple inheritance is prone to
cause difficulties if the same classes be-
come inherited two or more times along
different inheritance paths (e.g., class
has two superclasses that have a com-
mon superclass). As already mentioned
earlier in the article, this problem is
commonly referred to as repeated inher-
itance [Meyer 1988, pp. 274–279], fork-
join inheritance [Sakkinen 1989], or dia-
mond inheritance [Bracha 1992, pp.
24–26].
Note that in mixin inheritance multi-

ple inheritance is used strictly for com-
binatory purposes. Provided that the
mixin classes are implemented cor-
rectly, no additional manual “gluing” is
needed when base classes and mixins
are inherited (combined). In practice
this requires that the methods of mixin
classes are implemented in such a way
that they are open to extensions, and
remember to invoke the corresponding
methods in their surrounding environ-

ment (see, e.g., Bracha and Cook
[1990]).
Mixin inheritance is not without prob-

lems. From the conceptual point of view,
one of the less beneficial characteristics
of mixin inheritance is that it tends to
cause confusion in the relationship of
object-oriented programming and con-
ceptual modeling by diversifying the
role of classes. As apparent in Figure
13b, in mixin inheritance classes are
used for three distinct purposes. First,
there are base classes that define the
general characteristics of a hierarchy of
concepts. These classes are either con-
crete instantiable classes, or abstract
noninstantiable classes that exist solely
to be refined by their subclasses. Sec-
ond, there are mixin classes that serve
as elementary units of reusable behav-
ior. Mixin classes cannot be used in
isolation but must first be combined
with a concrete class to become func-
tional; therefore, mixin classes are
sometimes referred to as abstract sub-
classes [Bracha and Cook 1990]. Third,
mixin-based systems also have combi-
nation classes that are needed for in-
stantiating concrete instances with the
desired functionality.
In summary, mixin inheritance can

considerably increase the reusability of
class definitions, but at the same time it
may decrease the conceptual clarity of
the system by requiring the same class
mechanism to be used for three differ-
ent purposes in a rather subtle and
unintuitive way. In this sense, mixin
inheritance serves as a practical exam-
ple of the fact that reusability and con-
ceptual modeling are opposite goals: in
order to obtain maximum reusability,
one usually has to sacrifice modeling,
and vice versa. For further information
on mixin inheritance, refer to Bracha
and Cook [1990].

3.8 Life-Time Sharing Versus Creation-
Time Sharing

Inheritance is a familiar concept from
the real world. All living organisms in-
herit genetic information from their an-
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cestors, and thus inheritance serves as
one of the fundamental mechanisms for
maintaining life on earth. Besides its
biological meaning, the term inheri-
tance has various uses in human lan-
guages. For instance, it is common to
speak of cultural inheritance (“Aborigi-
nals inherited their traditions and cus-
toms from their ancestors”), economic
inheritance (“Frank inherited a lot of
money from his aunt”), inheritance of
status (“princess Victoria inherited her
rank from her father, the king of Swe-
den”) and so on. The term inheritance
can also have more colloquial uses such
as “this paper inherited a lot of ideas
from my earlier work.” All these uses of
the term inheritance have certain
things in common. In particular, inheri-
tance is synonymous with receiving; in
most sentences the verb inherit could be
replaced with receive and the meaning
of the sentence would remain the same.
Note that receiving implies that there
must necessarily be at least two sepa-
rate entities—the donor and the receiv-
er—that participate in the inheritance
process.
A characteristic aspect of inheritance

is sharing. As a result of inheritance,
the donor and receiver are expected to
share something with each other. Shar-
ing need not be physical, however. For
instance, although it is common to say
that the child “shares the blue eyes of
his father”, it does not mean that the
father and child will have to use the
same pair of eyes. Similarly, although
identical twins “share” the same genetic
information, they are nevertheless two
separate persons. In general, in its real
world meaning, inheritance usually re-
fers to very transitory relationships be-
tween things. In biological inheritance,
for instance, the combination of genetic
information takes place within a short
period of time, and the resulting new
“abstraction” later becomes completely
independent of its parent (well, at least
in principle, although in case of human
beings the economic ties usually re-
main. . .). This independence is reason-
able, because it would be impractical for

parents and children to physically share
organs with each other.
In object-oriented programming the

meaning of inheritance is somewhat dif-
ferent. Although inheritance still basi-
cally implies receiving, in object-ori-
ented programs inheritance usually
creates much stronger relationships be-
tween things than in the real world. For
instance, when a subclass inherits prop-
erties from its superclass, it is common
that the methods of the superclass are
made available to the subclass by phys-
ically sharing the same code. Although
such “Siamese” sharing is alien to bio-
logical inheritance, it is reasonable in
programming, because requiring every-
thing to be duplicated in the subclass
would waste a lot of memory. Snyder
has expressed this by claiming that “a
key goal for any implementation of an
object-oriented language is to allow the
same compiled code to be used for each
class that inherits a given method”
[Snyder 1986b]. Not all inheritance in
object-oriented programming results in
physical sharing, however. For instance,
the instance variables in instances of
classes are always distinct from those in
the instances of superclasses.
From the theoretical viewpoint, it is

useful to make a distinction between
two fundamental forms of sharing that
serve as a basis for property inheri-
tance: life-time sharing and creation-
time sharing. Life-time sharing refers to
physical sharing between parents and
children. Once the sharing relationship
between parent and child has been es-
tablished, the child remains sharing the
properties of its parent until the rela-
tionship is removed. Furthermore, every
change to the parent is implicitly re-
flected to the child. Creation-time shar-
ing, in turn, implies that sharing occurs
only while the receiving process is in
progress. Creation-time sharing is char-
acterized by the independent evolution
of the parent and the child, and is typi-
cal of the real world. Delegation dis-
cussed in Section 3.2 results in life-time
sharing, whereas concatenation results
in creation-time sharing. The notions of
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life-time sharing and creation-time
sharing were introduced by Dony et al.
[1992], who realized that these concepts
are useful in analyzing the differences
between various prototype-based object-
oriented systems.
The forms of sharing have a profound

effect on the semantics of object-ori-
ented languages. Generally speaking,
inheritance in real-world object-ori-
ented languages can occur at three dif-
ferent levels: behavior, state and struc-
ture. Inheritance of behavior refers to
the passing of operations from parents
to their children. Since operations are
typically immutable, in many cases this
can be accomplished simply by sharing
code. Inheritance of state, in turn, refers
to the passing of contents (values) of
variables from parents to the children.
This can imply either sharing or dupli-
cation, depending on what is appropri-
ate in each particular situation. Sharing
of state leads to objects whose states are
intimately connected to each other and
which thus are dependent on each other.
Duplication of state, on the other hand,
leads to independent objects [Stein
1987]. Note that inheritance of state is
not typically possible in class-based sys-
tems, because in such systems inheri-
tance occurs between definitions of ob-
jects (i.e., classes) rather than between
objects themselves. Instead, class inher-
itance supports inheritance of structure,
by which it is meant that normally only
the information that is needed for re-
constructing (allocating) the inherited
instance variables is passed to descen-
dants. This implies that there must be
an additional mechanism to pass infor-
mation about instance variables to sub-
classes. Some prototype-based lan-
guages provide special copy-down slots
for this purpose.

3.9 Single Dispatching Versus Multiple
Dispatching

Most object-oriented systems are based
on single dispatching. Messages are
sent to distinguished receiver objects,
and the runtime type of the receiver

determines the method that is invoked
by the message. The possible parame-
ters in the message are passed on to the
invoked method, but do not participate
in the actual lookup. Although this ap-
proach is intuitive and works well in
most situations, it has some drawbacks.
For instance, one implication is that a
binary expression such as “514” gets
the unnatural interpretation.

5.plus(4).

In other words, 5 is treated as the re-
ceiver of the message plus, while 4 is
regarded as a parameter that plays no
role in actual method lookup. Although
such “currying” works fine in most situ-
ations, it is conceptually undesirable
since in arithmetic expressions right
hand sides are usually no less impor-
tant than left hand sides. It can also
have a negative effect on program read-
ability. For instance, in Smalltalk all
binary expressions are parsed left to
right, and normal arithmetic precedence
rules do not apply. This makes mathe-
matical expressions in Smalltalk differ-
ent from those in most other languages
in which multiplication and division
take precedence over addition and sub-
traction [Goldberg and Robson 1989, p.
28].
Besides conceptual problems, single

dispatching can also lead to some more
technical problems and require duplica-
tion of code. In order to make single
dispatching handle properly situations
in which the same type of object may
receive different kinds of parameters,
the use of additional control structures
is usually needed. For instance, sending
a message “5 1 4.4” requires the integer
method 1 to be able to check at runtime
whether the parameter is an integer or
a floating point number, and handle
both integer and floating point addition.
Conversely, since it is equivalently legal
for the programmer to send a message
“4.4 1 5,” the floating point class must
include the corresponding code to han-
dle both real numbers and integers. As
a result, the same pieces of code may
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have to be included in two places, or, if
the message is nary rather than binary,
in n places.
In general, traditional message pass-

ing schemes are sometimes too “selfish.”
There is a single receiver whose type
determines which method is executed,
while the parameters are ancillary and
have no role in method selection. An
object-oriented language based on this
kind of an approach is termed a single
dispatching language. In many situa-
tions, however, it would be beneficial to
generalize the message binding mecha-
nism to more than just single receiver.
To surmount the limitations of single
dispatching languages, some object-ori-
ented languages include a more general
form of message passing in which multi-
ple arguments to a message can partici-
pate in the lookup process. These lan-
guages are called multiple dispatching
languages. Since methods in multiple
dispatching languages may belong to
several classes simultaneously, they are
called multimethods. Multiple dispatch-
ing is common in Lisp-based object-ori-
ented systems, where multimethods are
known as generic methods [DeMichiel
and Gabriel 1987]. Multimethods were
pioneered in CommonLoops [Bobrow et
al. 1986], but the best-known multiple
dispatching object-oriented language of
today is CLOS [DeMichiel and Gabriel
1987; Keene 1989].
Some researchers claim that multiple

dispatching provides increased expres-
sive power over single dispatching
[Chambers 1992]. With multimethods,
the message lookup may involve all ar-
guments, not just the receiver, and thus
the above mentioned problems with the
“asymmetry” of single dispatching can
be avoided. Multiple dispatching is far
from being widely accepted, however.
Multiple dispatching languages are gen-
erally more complex than single dis-
patching languages, and their imple-
mentations have not traditionally been
very efficient. In practice, the biggest
single concern to the programmers is
however that languages supporting
multiple dispatching do not “feel object-

oriented.” This feeling reflects a basic
difference in the programming styles
encouraged by single and multiple dis-
patching systems [Chambers 1992].
When using a single dispatching lan-
guage, the programmer mentally fo-
cuses on defining abstract data types
(ADTs), associating operations with the
data types for which they are imple-
mented. These operations are “con-
tained” in the data type, and together
the operations and the data form an
encapsulated whole. A whole design and
implementation methodology has been
developed around this ADT-oriented
programming style.
Multiple dispatching languages do

not provide much linguistic support for
the ADT-oriented programming style.
Since multimethods are dispatched on
multiple arguments, they are not con-
tained in any single class, and the ADT-
oriented view with strong encapsulation
breaks down. In practice, the program-
ming style encouraged by multiple dis-
patching systems seems to be closer to
functional, or traditional procedural
programming style than ADT style. To
many advocates of object-oriented pro-
gramming, multimethods—having origi-
nated from Lisp-based systems—seem
like an ad hoc solution that is a conse-
quence of trying to fit round objects to
the square world of functions. This feel-
ing is reinforced by the fact that multi-
methods do not “look object-oriented”
either. In multiple dispatching lan-
guages the use of the object-oriented
object.message(parameters) notation is
discouraged, and the traditional func-
tion(parameters) or Lisp-like (function
param1 . . . paramN) notation is used
instead. Although some researchers
have proposed (receiver1, receiver2, . . . ,
receiverN).message notation as a com-
promise, these notations are not as well
suited to ADT programming style as the
normal dot notation or its equivalents.
Recently Chambers, one of the origi-

nal implementors of the Self language
[Ungar and Smith 1987], has spoken
strongly in favor of multimethods
[Chamber 1992]. One of Chambers’
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main arguments is that problems with
multiple dispatching arise mainly from
the limitations of text-based program-
ming, and by providing a good graphical
programming environment, most of the
problems with multimethods disappear.
Instead of placing multimethods outside
of any single class, or by duplicating the
same definition in every participating
class, a good visual browser would auto-
matically display the same multimethod
in association with all its classes. Intu-
itively, this sounds like a good idea, but
it still remains to be seen whether mul-
tiple dispatching really catches on in
the object-oriented community.

3.10 Classifying Inheritance Mechanisms

Earlier in the article we saw that while
inheritance is a simple linguistic mech-
anism with relatively straightforward
semantics from the theoretical point of
view, many variations of inheritance ex-
ist that tend to make the analysis of
inheritance difficult in practice. In addi-
tion to basic questions—such as
whether the system is based on classes
or prototypes, or whether it supports
single or multiple inheritance—there is
a large number of more elementary is-
sues that have a considerable impact on
the semantics and pragmatics of the
system. When implemented in concrete
object-oriented programming languages,
typically these mechanisms tend to in-
terfere with each other, making the
analysis and comparison of the lan-
guages complicated.
In trying to understand the concrete

realizations of inheritance in object-ori-
ented programming languages, it is use-
ful to use a progressive approach, i.e., to
start from conceptually simpler issues
and then gradually progress towards
more complicated aspects. The following
kind of three-level taxonomy has proved
helpful in analyzing inheritance in ob-
ject-oriented programming languages.

(1) Inheritance as incremental modifi-
cation. As discussed in Section
2.3.1, the “core” of inheritance is

incremental modification. If this cri-
terion is not fulfilled, then we are
not talking about inheritance in the
object-oriented sense.

(2) Interface inheritance. At this level,
inheritance is viewed as an interface
combination or name space combi-
nation mechanism. Questions per-
taining to the management of the
actual properties (methods and vari-
ables) of objects are ignored.

(3) Property inheritance. The actual
properties (methods and variables)
of objects are included in the analy-
sis.

Figure 14 gives an overview of the
issues and sources of variability that
arise at each level. For a more detailed
treatment on the subject, refer to
Taivalsaari [1993c].

4. CONCLUSION

Broadly speaking, the history of software develop-
ment is the history of ever-later binding time.

—Encyclopedia of Computer Science

In this article we have surveyed the
notion of inheritance, examining its in-
tended and actual usage, its essence
and its varieties. We realized that al-
though inheritance was originally intro-
duced as a mechanism to support con-
ceptual specialization, in reality many
alternative roles for inheritance can be
recognized, ranging from conceptual
modeling to implementation-level usage
(e.g., using inheritance simply as a code
sharing mechanism to save storage
space or programming effort). Also, we
pointed out that there is no single, com-
monly accepted model of inheritance,
but a lot of variations of the same basic
theme exist.
The fundamental observation under-

lying object-oriented inheritance mecha-
nisms is that they all are essentially
incremental modification mechanisms,
i.e., mechanisms that allow existing
programs to be extended and refined
without editing existing code. In gen-
eral, inheritance can be defined gener-
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ally as an incremental modification
mechanism in the presence of late-bound
self-reference. Although object-oriented
programming has many other benefits
compared to other programming para-
digms, none of them seems as profound
as the incremental capability. To con-
clude, let us quote Stein et al. [1988]
who have noted that “the true value of
object-oriented techniques as opposed to
conventional programming techniques
is not that they can do things the con-
ventional techniques can’t, but that
they can often extend behavior by add-
ing new code in cases where conven-
tional techniques would require editing
existing code instead.” This captures
the heart of the matter.
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