
On the Notion of Variability in Software Product Lines

Jilles van Gurp, Jan Bosch
Department of Mathematics and Computing Science, University of Groningen, PO Box 800, 9700 AV The Netherlands, 

[jilles|jan.bosch]@cs.rug.nl, http://www.cs.rug.nl/Research/SE

Mikael Svahnberg
Department of Software Engineering & Computer Science, Blekinge Technical University, 372 25 Ronneby, Sweden

msv@ipd.hk-r.se, http://www.ipd.hk-r.se/msv
Abstract

In this paper, we discuss the notion of variability. We
have experienced that this concept has so far been under-
defined. Although, we have observed that variability tech-
niques become increasingly important. A clear indication
of this trend is the recent emergence of software product
lines. Software product lines are large, industrial software
systems intended to specialize into specific software prod-
ucts. Our contribution in this paper is that we provide the
reader with a framework of terminology and concepts
regarding variability. In addition, we present three recur-
ring patterns of variability. Finally, we suggest a method
for managing variability in software product lines.

1 Introduction

Over time, variability in software assets has become
increasingly important in software engineering. Whereas
software systems originally were relatively static and it
was accepted that any required change would demand
potentially extensive editing of the existing source code,
this is no longer acceptable for contemporary software
systems. Instead, although covering a wide variety in sug-
gested solutions, newer approaches to software design
share as a common denominator that the point at which
design decisions concerning the supported functionality
and quality requirements are made is delayed to later
stages.

A typical example of such delayed design decisions is
provided by software product lines. Rather than deciding
on what product to build beforehand, in software product
lines, a software architecture and set of components is
defined and implemented that can be configured to match
the requirements of a family of software products. A sec-
ond example is the emergence of software systems that
can dynamically adapt their behavior at run-time, either by
selecting alternatives embedded in the software system or

by accepting new code modules during operation, e.g.
plug-and-play functionality. These systems are required to
contain so-called ‘dynamic software architectures’ [20].

The consequence of the developments described above
is that whereas earlier decisions concerning the actual
functionality provided by the software system were made
during requirement specification and had no effect on the
software system itself, new software systems are required
to employ various variability mechanisms that allow the
software architects and engineers to delay the decisions
concerning the variants to the point in the development
cycle that optimizes overall business goals. For example,
in some cases, this leads to the situation where the deci-
sion concerning some variation points is delayed until run-
time, resulting in customer- or user-performed configura-
tion of the software system. In other cases, variability can
be handled before compilation, thus removing complexity
of the final product.

Figure 1 illustrates how the variability of a software
system is constrained during development. The space
between the arrows of the funnel denotes the amount of
variability in the system. When the development starts,
there are no constraints on the system (i.e. any system can
be built). This is visualized in Figure 1 by having inifinite
space between the arrows. During development, the num-
ber of potential systems decreases (so there is increasingly
less variability) until finally at run-time there is exactly
one system (i.e. the running and configured system). At
each step in the development, design decisions are made.
Each decision constrains the number of possible systems
(this is also argued in [13]). When software product lines
are considered, it is beneficial to delay some decisions so
that products implemented using the shared product line
assets can be varied. We refer to these delayed design
decisions as variation points.

Figure 1 displays two stereotypical variability funnels.
One represents a situation where a lot of variability is
removed from the system early on (left), the other one rep-



resents a situation where a lot of effort has been made to
preserve variability until very late in the development pro-
cess. Arguably, the left funnel system is easier to develop,
however the right funnel system provides greater reusabil-
ity and flexibility.

1.1 Software Product Lines

The goal of a software product line is to minimize the
cost of developing and evolving software products that are
part of a product family. A software product line captures
commonalities between software products for the product
family. By using a software product line, product develop-
ers are able to focus on product specific issues rather than
issues that are common to all products.

The process of creating a specific software product
using a software product line is referred to as product
instantiation. Typically there are multiple relatively inde-
pendent development cycles in companies that use soft-
ware product lines: one for the software product line itself
(often referred to as domain engineering); and one for
each product instantiation.

Instantiating a software product line typically means
taking a snapshot of the current software product line and
using that as a starting point for developing a product.
Basically, there are two steps in the instantiation:
• Selection. In this phase the architecture is stripped

from all unneeded functionality. Where possible pre-
implemented variants are selected for the variation
points in the software product line.

• Extension. In this phase additional variants are created
for the remaining variation points.
From this we can see that there are two conflicting

goals for a product line. On one hand a product line has to
be flexible in order to allow for diverse product line
instantiations. On the other hand a product line has to pro-
vide functionality that can be used out of the box to create
products with a minimal effort. The conflict is that the pro-
cess of customizing the product line is costly and conse-
quently it is simpler to develop conrete products that fall
within the scope of the product line if the product line
offers just enough variabiliy. The scope of the product line
widens if more variability is added to the product line.
However this also increases the cost of product derivation.

1.2 Problem statement

The increased use of variability mechanisms is a trend
that has been present in software engineering for a long
time, but typically ad-hoc solutions have been proposed
and used. To the best of our knowledge, few attempts have
been made to organize the existing approaches and mecha-
nisms in a framework or taxonomy, nor suggested design
principles for selecting appropriate techniques for achiev-
ing variability. The aim and contribution of this paper is to
address this problem by providing a set of concepts and
terminology as well as a process for managing variability.

1.3. Related work

Software Product Lines. Our work was largely inspired

Possible systems

Running code

Linked code

Compiled code

Source code

Design Documentation

Architecture Description

Requirement Specification

User expectations, technologies

1

8

Figure 1 The Variability Funnel with early and delayed variability

Possible systems

8
1



by earlier work in our research group. One of the authors
published a book about designing and using software
product lines [5]. This book was largely based on case
studies and experience reports such as [3, 4, 23, 24]. From
these reports we learned that evolution in software product
lines is more complicated than in stand alone products
because of the dependencies between the various products
and because of the fact that there may be conflicting
requirements between the different products.

Empirical research such as [22], suggests that a soft-
ware product line approach stimulates reuse in organiza-
tions. In addition, a follow up paper by [21] provides
empirical evidence for the hypothesis that organizations
get most reuse benefits during the early phases of develop-
ment. Because of this we believe it is worthwhile for soft-
ware product line developing companies to invest time
and money in performing methods such as in Section 4.
Variability Patterns. We were not the first to look for
variability patterns. In [16], patterns are used to model
variability in product families. Unlike us, they limit them-
selves to the detailed design phase. Instead we try to cover
the entire development process, thus gaining the advan-
tage of discovering variation points earlier (as pointed out
above).

Also in [13], a number of variability mechanisms are
discussed. This book also discusses how subsequent
design decicions remove variability from an architecture.
However it fails to put these mechanisms in the context of
a variation management method like we do. Also, variabil-
ity is not linked to features. This is an important character-
istic of our approach as it is an important means for early
identification (i.e. before architecture design) of variabil-
ity needs in the future system.
Requirements. Our argument for introducing the external
feature in Section 2 is based on [25]. They argue that a
requirement specification should contain nothing but
information about the environment. The rationale behind
this is that a requirement specification should not be
biased by implementation. Since features are an interpreta-
tion of the requirements, there is a need to map implemen-
tation independent requirements to implementation aware
features.
Feature Modeling. Our extended feature graph is based
on the work presented in [9]. The main difference, aside
from graphical differences, between our notation and
theirs is the external feature and the addition of binding
time. In [10] the feature graph notation is used as an
important asset in a method for implementing software
product lines. Combined with our management method,
the feature graph notation may be an important contribu-
tion to building software product lines.

Also related is the FODA method discussed in [14]. In
this domain analysis method, feature graphs play an

important role. The FORM method presented in [15] can
be seen as an elaboration of this method. In this work fea-
ture graphs are recognized as a tool for identifying com-
monality between products. We take the point of view that
it is more important to identify the variability between
architectures than to identify the commonalities since the
goal of developing a software product line is to be able to
change the resulting system. In order to do that, the system
has to be flexible enough to support the changes. The
FORM method uses four layers to classify features (capa-
bility, operating environment, domain technology and
implementation technique). We use a more fine-grained
layering by using the different representations (architec-
tural design, detailed design, source code, compiled code,
linked code and running system) as abstractions. The
advantage of this is that we can the relate variation points
to different moments in the development. We consider this
to be one of the contributions of our paper.

Our hierarchical feature graph bears some resemblance
to the integral hierarchical and diversity model presented
in [11]. Unlike their model, we use variation points to
model variability. The notion of variation points was first
introduced in [12]. Their model uses a similar layering as
can be found in [1]. In this paper, three distinct granulari-
ties of reuse are identified (component, class and algo-
rithm) that correspond to our architecture design, detailed
design and implementation levels.
Feature interaction. Feature interaction can be modeled
in a feature graph as dependencies between different fea-
tures [10]. Since features can be seen as incremental units
of development [8], dependencies make it impossible to
link all features to a single component or class. As a con-
sequence, source code of large systems such as software
product lines tends to be tangled. Features that are associ-
ated with several other features are called crosscutting fea-
tures. Variability in such features is very hard to
implement and often requires that a system is designed
using for example design patterns [10].
Methodology. Our method for managing variability bears
some resemblance to the architecture development method
outlined in [17]. The first steps in this method are to select
a few cases to find major abstractions. Our method of cre-
ating a feature graph based on a number of cases in order
to find variation points can be seen as a refinement of
these steps.

Another method that is related to ours is the FAST
(Family-Oriented Abstraction, Specification and Transla-
tion) method that is discussed in [7]. This empirically
tested method uses the SCV (Scope, Commonality and
Variability) analysis method to identify and document
commonality and variability in a system. The result of this
analysis is a textual document. A notation modeling vari-
ability in terms of features, such as provided in this paper,



is not used in their work. An important lesson learned in
our paper is that variation points should be bound early in
order to save on development cost.

1.4 Remainder of the paper

In the remainder of this paper we will in discuss fea-
tures as a useful abstraction for describing variability
(Section 2). After that we will introduce our framework of
terminology (Section 3). In Section 4 we provide a method
for managing variability. In Section 5 we illustrate our ter-
minology with a few examples of variability techniques in
the Mozilla browser architecture and we conclude our
paper in Section 6.

2 Features: increments of evolution

One of the issues that need to be addressed is how to ex-
press variability. In this section we suggest that features
are a useful abstraction for doing so. In [5], we define fea-
tures as follows: “a logical unit of behavior that is speci-
fied by a set of functional and quality requirements“. The
point of view taken in this book is that a feature is a con-
struct used to group related requirements (“there should at
least be an order of magnitude difference between the
number of features and the number of requirements for a
product line member“).

In other words, features are an abstraction from
requirements. In our view, constructing a feature set is the
first step of interpreting and ordering the requirements. In
the process of constructing a feature set, the first design
decisions about the future system are already taken. In [8],
features are identified as units of incrementation as sys-
tems evolve. It is important to realize that there is an n to
m relation between features and requirements. This means
that a particular requirement (e.g. a performance require-
ment) may apply to several features and that a particular
feature typically meets more than one requirement (e.g. a
functional requirement and a couple of quality require-
ments).

A software product line provides a central architecture
that can be evolved and specialized into concrete products.
The differences between those products can be discussed
in terms of features. Consequently, a software product line
must support variability for those features that tend to dif-
fer from product to product.

In [9] the following categorization of features is sug-
gested:
• Mandatory Features. These are the features that iden-

tify a product. E.g. the ability type in a message and
send it to the mail server is essential for an email client
application.

• Optional Features. These are features that, when
enabled, add some value to the core features of a prod-
uct. A good example of an optional feature for an
email client is the ability to add a signature to each
message. It is in no way an essential feature and not all
users will use it but it is nice to have it in the product.

• Variant Features. A variant feature is an abstraction
for a set of related features (optional or mandatory).
An example of a variant feature for the email client
might be the editor used for typing in messages. Some
email clients offer the feature of having a user config-
urable editor.
We have added a fourth category:

• External Features. These are features offered by the
target platform of the system. While not directly part
of the system, they are important because the system
uses them and depends on them. E.g. in an email cli-
ent, the ability to make TCP connections to another
computer is essential but not part of the client. Instead
the functionality for TCP connections is typically part
of the OS on which the client runs.
Our choice of introducing external features is further

motivated by [25]. In this work it is argued that require-
ments should not reflect on implementation details (such
as platform specific features). Since features are abstrac-
tions from requirements, we need external features to link
requirements to features. Using this categorization we
have adapted the notation suggested by [9] to support
external features. In addition we have integrated the notion
of binding time which we will discuss in detail in
Section 3. An example of our enhanced notation can be
found in Figure 2. In this feature graph, the features of an
email client are illustrated. The notation uses various con-
structs to indicate optional features; variant features in that
exclude each other (xor) and variant features that may be
used both (or).

The example in Figure 2 demonstrates how these dif-
ferent constructs can be used to indicate where variability
is needed. The receive message feature, for instance, is a
mandatory variant feature that has pop3 and imap as its
variants. The choice as to which is used is delayed until
runtime, meaning that users of the email client can config-
ure to use either variant. Making this sort of details clear
early on helps identify the spots in the system where vari-
ability is needed early on. The receive message feature
might be implemented using an abstract receive message
class that has two subclasses, one for each variant.

Our feature decomposition may give readers the
impression that a conversion to a component design is
straightforward. Unfortunately, due to a phenomenon
called feature interaction, this is not true. Feature interac-
tion is a well-known problem in specifying systems. It is
virtually impossible to give a complete specification of a



system using features because the features cannot be con-
sidered independently. Adding or removing a feature to a
system has an impact on other features. In [8], feature
interaction is defined as a characteristic of “a system
whose complete behavior does not satisfy the separate
specifications of all its features”. In [10], the feature inter-
action problem is characterized as follows: “The problem
is that individual features do not typically trace directly to
an individual component or cluster of components - this
means, as a product is defined by selecting a group of fea-
tures, a carefully coordinated and complicated mixture of
parts of different components are involved.“. This applies
in particular to so-called crosscutting features (i.e. features
that are applicable to classes and components throughout
the entire system).

However, constructing feature diagrams may help
developers identify which parts of their system need to
support variability. Since the only prerequisite for building
a feature diagram is the requirement specification, this can
be done very early in the development process. Because of
this, we argue that feature diagrams are an important tool
for the management of variability.

3 Variability

Variability is the ability to change or customize a sys-
tem. Improving variability in a system implies making it
easier to do certain kinds of changes. It is possible to antic-
ipate some types of variability and construct a system in
such a way that it facilitates this type of variability. Reus-
ability and flexibility have been the driving forces behind
the development of such techniques as object orientation,
object oriented frameworks and software product lines.
Consequently these techniques allow us to delay certain

design decisions to a later point in the development.
Now that we are able to identify variability using the

feature graph notation, we can examine the notion of vari-
ability more closely. We have found that when discussing
a concrete variation point in a system, certain characteris-
tics reappear. In this section we will introduce these char-
acteristics and introduce suitable terminology.

3.1 Abstraction levels

During software development, a software system goes
through a number of development phases. Each develop-
ment phase has its own representations. One could say that
development consists of transformations of these repre-
sentations. E.g. a requirement specification is transformed
in to a feature graph. After that, the feature graph forms
the basis for the architecture design, which in turn forms
the basis of the detailed design. After detailed design,
source code is created. This source code is compiled,
linked and finally run.

These different representations can be regarded as dif-
ferent abstraction levels of the system. Initially developers
work with high-level models describing the requirements
and features of the future system. Based on these high-
level representations, the first design decisions are taken
and an architecture design is created, etc. Consequently
development can be characterized as going from abstract
representations of a system to more concrete detailed
descriptions. During each transformation design decisions
are taken. But more importantly, some design decisions
are delayed and left open for variability deliberately.
These open design decisions are referred to as variation
points.

In Figure 3, we have listed a number of representations

Figure 2 Example feature graph

Mail Client

Type Message Send MessageReceive Message

Pop3 IMAP

Internal Editor

EditSignature file

runtime

runtime

VI Emacs

TCP Connection

anExternalFeature

aFeature

or specialization

xor specialization

composition

optional feature

runtime

Runtime platform

Linuxwin32

compiletime



a system goes through and the associated processes that
transform these representations. Note that transformation
processes are not equal to development phases. Although,
these transformation processes recurr in most develop-
ment methods (for example iterative methods such as for
instance Extreme Programming [2] but also waterfall
model based methods) there are considerable differences
between methods as to how much time and effort is spent
on the various processes and when they are executed.

Especially for the later transformation processes it is
very much technology dependent when these processes
are executed. If we compare the use of an interpreted lan-
guage like Python and a compiled language like C, we see
that a C program is compiled and linked before product
delivery whereas with Python compiling and linking are
done while the system is executed. Yet, the variability
techniques involved are very much the same. This also
shows the advantage of an interpreted language: the user
has more variability techniques at hand, simply because
there are more transformations (i.e. compilation, linking)
at run-time.

3.2 Variation point properties

Now that we have established that variability can be
associated with different abstraction levels, we can intro-
duce some additional properties of variability. A variation
point can be in three, mutually exclusive states:

• Implicit. In Figure 1, we illustrated how during devel-
opment a system is constrained. In the early phases of
development there are many open design decisions,
and consequently a there is a lot of variability. How-
ever, these decisions have not been deliberately left
open so there is not a single point in the system that we
can denote as a variation point. We refer to this type of
variation points as implicit.

• Designed. As soon as the design decision is left open
deliberately we say that the variation point is designed.

• Bound. The intention of designing a variation point in
a system is to be able to insert a variant at a later stage.
As soon as this happens, the variation point is bound to
a variant.
Usually, when a variation point is designed there is

also some idea about how and when variants are to be
added to the system. In order to support this notion, we
make a distinction between:
• Open variation points. Each variation point is associ-

ated with a set of variants that can be bound to it. In an
open variation point, new variants may be added to this
set.

• Closed variation points. In a closed variation point,
no new variants can be added.
Usually, a variation point is only open in specific rep-

resentations. An example of a variation point is an abstract
class. This variation point is designed during detailed
design. During detailed design it is also open since new
subclasses can still be added during that phase. However,

User input, technology, expectations

Requirement Specification

Architecture Description

Design Documentation

Source Code

Compiled Code

Linked Code

Running Code

(RC) Requirement Collection

(AD) Architecture Design

(DD) Detailed Design

(I) Implementation

(C) Compilation

(L) Linking

(E) Execution

Figure 3 Representation & transformation processes

Transformation ProcessRepresentation

(UA) User Actions



after linking takes place the variation point is closed since
it is impossible to add new subclasses to the system with-
out at least re-linking the system. It should be noted that in
modern programming languages, linking may be done
dynamically in which case the variability point remains
open. The consequence of this is that sub classes may be
added after product delivery.

Using the properties defined in this section, we can
accurately describe variability in a system. We can also
compare and evaluate different techniques of implement-
ing variability. In Section 5, we will do this for a number
of techniques used in the Mozilla architecture.

3.3 Recurring patterns of variability

We have observed that when representation and devel-
opment phase are abstracted from, variability follows cer-
tain patterns. To the best of our knowledge, variability
always follows one of the following three patterns:
Single variant. With this pattern of variability, there is a
set of variants. At binding time a single variant is picked
from this set of available variants. Single variants can be
identified in feature diagrams by looking for the xor spe-
cialization construct.
Optional variant. Optional variant is a special case of
single variant since here the set of available variants only
contains one variant and using it is optional. Optional vari-
ants are indicated in feature diagrams with an open circel
on the relation end.
Multiple parallel variants. When multiple parallel vari-
ants are used, the variation point is not permanently bound
to a variant but rather, the variant selection and binding
process is executed every time the variation point is
accessed. This type of variation point can be recognized
by the use of the or specialization construct in feature dia-
grams.

Note that combinations of these patterns are possible,
(e.g. an optional single variant). Using these patterns of
variability and the properties of variation points, we can
make a classification of different variability realization
techniques. Unfortunately, doing so is beyond the scope of
this paper. However, we are currently working on a paper
discussing a taxonomy of variability mechanisms based on
the patterns described above.

4 Variability management

Based on the previous sections, we suggest the follow-
ing method for managing variability during the develop-
ment that consists of the following steps:
• Identification
• Constraining
• Implementation

• Managing the variants
Identification of variability. The first step in the process
is to identify where variability is needed. We suggest that
the feature diagram notation we introduced in this paper is
a good approach for doing so. From such a diagram, the
important variation points can be identified.
Constraining variability. Once a variation point has
been identified, it needs to be constrained. After all the
purpose is not to provide limitless flexibility but to pro-
vide just enough flexibility to suit the current and future
needs of the system in a cost effective way. For constrain-
ing a variation point, the following activities need to take
place:
• Choose a binding time for each variation point. Should

the user be able to choose the variant or can developers
do this before product delivery?

• Decide when and how variants are to be added to the
system.

• Pick a variability pattern for each point. If the feature
diagram notation was used, this information can be
obtained from the diagram.

• Pick representation for realization of the variation
point. Relevant for this decision is the way new vari-
ants are to be added.

Implementing variability. Based on the previous a suit-
able realization technique needs to be selected. In
Section 5 we provided the reader with a few examples of
such techniques. However, there are many more tech-
niques. We intend to provide a taxonomy of mechanisms
and techniques in future work. Providing such a taxonomy
here would be beyond the scope of this paper.
Managing the variants. Depending on whether a varia-
tion point is open or not, some sort of variant management
is needed. In some cases variants may be added manually.
But it is also common for modern systems to download
and install new variants over the internet. An example of a
management in software is the XPInstall component in the
Mozilla architecture (see Section 5). This component
automates the downloading and installation of component
variants. Especially when the multiple parallel variant pat-
tern is used, a software management system will be
needed to manage the variants.

5 Case study: Mozilla

As an example of variability in practice we analyzed
the architecture of the Mozilla browser. The Mozilla
browser has been developed as a so-called open source
project. Consequently, information is readily available
about its design. In addition, many variability techniques
are applied in the Mozilla architecture, which makes it an
interesting subject in the context of this paper.

The Mozilla project [18] was started in 1998 when



Netscape [19] decided to make the source code of
Netscape 4 available under an open source license. About
half a year later, it was decided to redevelop the browser
from scratch since the original source code was tangled
beyond repair. At the moment of writing, the first com-
mercial product based on the Mozilla source code (i.e.
Netscape 6) has been released.

The main goal for the Mozilla project was not to pro-
vide a browser but rather a product line for building web
applications. In the remainder of this section we will list a
number of Mozilla features and analyze them, using the
terminology and concepts introduced in this paper.

5.1 Mozilla features

Themes. An important feature of Mozilla is its support for
user interface themes. Figure 4 illustrates this feature with
a feature diagram. Mozilla implements the model view
controller architectural pattern. Consequently the theme
support variation point was designed during architectural
design. As indicated by the feature diagram, this variation
point is bound at run-time. By default two themes are bun-
dled with Mozilla. However, users can download third
party themes as well (i.e. the variation point is open at run-
time). Since there has to be at least one theme (otherwise
the application wouldn’t have look and feel), the variation
point follows the single variant pattern.
Security. Security in Mozilla is handled through a compo-
nent called Personal Security Manager (PSM). This is an
optional. component that can be added to the system by
users (see Figure 5). The PSM provides such services as
managing certificates for components, encryption/decryp-
tion of email messages etc. Variability for this feature was
deliberately built into the architecture to allow third par-

ties to add their own proprietary security components.
Consequently, the security variation point was designed
during architectural design. The variation point is bound at
link-time. Although currently the PSM is the only avail-
able variant, the variation point is open at run-time
(mozilla uses dynamic linking) so users can install a dif-
ferent security component should such an alternative
become available.
Network. A variation point that follows the multiple par-
allel variant pattern can be found in the way mozilla
retrieves its files. Files are retrieved using the so-called
Necko component (see Figure 6). This component uses
URIs (uniform resource identifier) and protocol handlers
to retrieve information from websites, ftp sites, the local
filesystem, a jar file or any other supported protocol. The
Necko variation point is designed during architecture
design, it is open during detailed design and since it is an
instance of the multiple parallel variant pattern, it is bound
at run-time on a per call basis (i.e. each time something
needs to be retrieved, a suitable protocol handler is bound
to the variation point).
Java Support. Mozilla can optionally support Java. In
Figure 7, we illustrate this feature with a feature diagram.
From this figure we learn that there is a variation point in
the Mozilla architecture for Java Support. Also, the varia-
tion point combines both the single variant pattern and the
optional variant pattern. The binding of this variation point
is optional and the variants are external to the architecture
and binding typically happens at linking time. In the fea-
ture graph we list three common Java implementations

Mozilla

Theme

Classic Modern User provided

run-time

Figure 4 Theme support in Mozilla

Mozilla

PSM

Figure 5 Mozilla’s Personal Security Manager

Mozilla

Necko

http ftp file gopher finger

Figure 6 Necko

Java Support

IBM JavaBlackdown JavaSUN JRE

Link-time

Mozilla

Figure 7 Java support in Mozilla



available under Linux.
In the implementation of Mozilla, all interaction with

the JVM (java virtual machine) is done through the OJI
(open java interface) interface. Since this interface was
introduced during architecture design, the Java support
variation point became designed during architecture
design. Furthermore, since users can install OJI compliant
java implementations, the variation point is open at run-
time. The system is capable of downloading and linking
the necessary binary components without requiring a
restart of the application.

5.2 The underlying techniques

Of course the techniques used in Mozilla are not
unique for Mozilla. Most of the mechanisms employed in
Mozilla are based on common techniques. In this section
we give a brief overview and indicate what their advan-
tages are with respect to variability.
The broker pattern. Mozilla has its own component
architecture XPCOM which closely resembles COM (the
component infrastructure included with MS Windows).
The XPCOM architecture is an instance of the broker pat-
tern described in [6]. This pattern provides a variability
mechanism following the ‘single variant pattern’ we
describe in this paper. Rather than hard coding references
between components, components have to request the bro-
ker (i.e. XPCOM) for a reference of a suitable component.
This allows developers to replace the called component
without having to change the calling component. It also
allows them to provide more than one component for a
given interface. The OJI interface discussed above is an
example of an application of this technique. The browser
accesses the JVM through this interface. Consequently,
any OJI compliant JVM can be plugged into the XPCOM
architecture.
Blackbox components. The main advantage of using the
XPCOM architecture is that it forces developers to use
XPCOM components in a blackbox fashion. The compo-
nent bus constrains the use of a component to what has
been specified in the IDL interfaces. This prevents that
code of different components gets tangled too much. It
also allows for delaying binding until linking rather than
compilation. Since there are no source code dependencies
between components, all dependency related variability is
bound after compilation.
Dynamic binding. Another important technique is
dynamic binding. Without dynamic binding, the system
would not be able to use new components at run-time. The
system would have to be shut down, patched recompiled
and restarted each time a new component is registered
with the XPCOM bus. Dynamic linking gives users the
flexibility to use all variability techniques that are associ-

ated with linking. Traditionally, in statically linked sys-
tems these techniques had to be applied before product
delivery, whereas with dynamic linking they can be
applied after product delivery.
Scripting. A technique that goes beyond the use of
dynamic binding is the use of interpreted languages. The
advantage of interpreted languages over compiled lan-
guages in the context of variability is that scripts can be
changed at run-time.
Domain specific languages. One prominent feature of the
Mozilla architecture is the use of XML. Mozilla uses
XML as a format for storing and exchanging structured
data. Rather than specifying things like a user interface as
C code or even javascript code, an XML representation
called XUL is used. XUL is an example of a domain spe-
cific language (the domain in this case is user interfaces).

5.3 Summary

In this section we explained some of the variability
techniques applied in the Mozilla architecture. The varia-
tion points we selected in the Mozilla architecture illus-
trate the three patterns we identified. A fourth example
(i.e. java support) shows that the patterns can be combined
in various ways. Using our terminology in combination
with the feature diagram, we are able to discuss these tech-
niques on a high level and without discussing any imple-
mentation details.

One of the observations we can make about variability
in the Mozilla architecture is that most of the variation
points are bound at run-time. Because of this, Mozilla is
highly customizable. A second observation is that most
variation points are kept open until after product delivery.
Both observations fit in with the trend of delaying design
decisions we illustrated in Figure 1.

6 Conclusion

The motivation for writing this paper was that we
observed an increase in the application of various variabil-
ity techniques. Furthermore we observed that these tech-
niques are often applied in an adhoc fashion. This paper
makes a number of contributions to address these issues:
• The main contribution of this paper is that it provides a

framework of terminology and concepts regarding
variabilitiy. Our framework of terminology provides
the reader with the tools to describe variability in a
software system in terms of variation points and vari-
ants. In addition we associate binding times with varia-
tion points. To the best of our knowledge this paper is
the first that generalizes the notion of variability in
such a way.



• A second contribution of our paper is the introduction
of recurring patterns of variability.

• A third contribution is the variability management
method described in Section 4. An integral part of our
method is our adapted version of the feature graph
notation first discussed in [9]. Our adaptations consist
of adding binding time information to the feature
graph constructs and the addition of the external fea-
ture construct.
Using our terminology, patterns and variability man-

agement method, software developers can recognize
where variability is needed in their system early on and
design their systems accordingly. Furthermore they can
communicate their intentions with other developers and
motivate design choices without going into detail about
the implementation.

References

[1] D. Batory, S. O’Malley, “The Design and implemen-
tation of Hierarchical Software Systems with Reusable
Components“, in ACM Transactions on Software Engi-
neering and Methodology, Vol. 1, No. 4, October 1992, pp.
355-398.
[2] K. Beck, “Extreme Programming Explained”, Addi-
son Wesley 1999.
[3] J. Bosch, “Product-Line Architectures in Industry: A
Case Study”, in Proceedings of the 21st International
Conference on Software Engineering, November 1998.
[4] J. Bosch, “Evolution and Composition of Reusable
Assets in Product-Line Architectures: A Case Study”, in
Proceedings of the First Working IFIP Conference on
Software Architecture, February 1999.
[5] J. Bosch, “Design & Use of Software Architectures -
Adopting and Evolving a Product Line Approach“, Addi-
son-Wesley, ISBN 020167494-7, 2000.
[6] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M.
Stahl, “Pattern-Oriented Software Architecture - A System
of Patterns“, John Wiley & Sons, 1996.
[7] J. Coplien, D. Hoffman, D. Weiss, “Commonality and
variability in software engineering“, IEEE Software,
November/December 1999, pp. 37-45.
[8] J. P. Gibson,”Feature Requirements Models: Under-
standing Interactions”, in Feature Interactions In Telecom-
munications IV, Montreal, Canada, June 1997, IOS Press.
[9] M. L. Griss, J. Favaro, M. d'Alessandro, “Integrating
feature modeling with the RSEB”, Proceedings. Fifth
International Conference on Software Reuse (Cat.
No.98TB100203). IEEE Comput. Soc, Los Alamitos, CA,
USA, 1998, xiii+388 pp. p.76-85.

[10] M. L. Griss, “Implementing Product line Features
with Component Reuse“, to appear in Proceedings of 6th
International Conference on Software Reuse, Vienna, Aus-
tria, June 2000.
[11] P. van de Hamer, F.J. van der Linden, A. saunders, H.
te Sligte, “N Integral Hierarchy and Diversity Model for
Describing Product Family architecture“, in Proceedings
of the 2nd ARES Workshop: Development and evolution of
Software Architectures for Product Families, Springer
Verlag, Berlin Germany, 1998.
[12] I. Jacobson, M. Griss, P. Johnson, “Software Reuse:
Architecture, Process and Organization for Business suc-
cess“, Addison-Wesley, 1997.
[13] M. Jazayeri, A. Ran, P. Van der Linden, “Software
Architecture For Product Families: Putting Research into
Practice“, Addison-Wesley, May 2000.
[14] K. C. Kang, S. G. Cohen, J. A. Hess, W.E. Novak,
A.S. Peterson, “Feature Oriented Domain Analysis
(FODA) Feasibility Study“, Technical report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegy Mel-
lon University, Pittsburgh, PA.
[15] K.C. Kang, “FORM: a feature-oriented reuse method
withdomain-specific architectures“, in Annals of Software
Engineering, V5, pp. 354-355.
[16] B. Keepence, M. Mannion, “Using Patterns to Model
Variability in Product Families“,in IEEE Software, July/
August 1999, pp 102-108.
[17] P.B. Kruchten, “The 4+1 View Model of Architec-
ture“, in IEEE Software, November 1995, pp. 42-50.
[18] Mozilla website, http://www.mozilla.org/.
[19] Netscape website, http://www.netscape.com/.
[20] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum,
A.L. Wolf, “Self-Adaptive Software: An Architecture-
based Approach”, in IEEE Intelligent Systems, 1999.
[21] D. C. Rine, N. Nada, “An empirical study of a soft-
ware reuse reference model“, in Information and Software
Technology, nr 42, pp. 47-65, Elsevier, 2000.
[22] D. C. Rine, R. M. Sonnemann, “Investments in reus-
able software. A study of software reuse investment suc-
cess factors“, in The journal of systems and software, nr.
41, pp 17-32, Elsevier, 1998.
[23] M. Svahnberg, J. Bosch, “Evolution in Software
Product Lines: Two Cases”, in Journal of Software Main-
tenance - Research and Practice, 11(6), pp. 391-422,
1999.
[24] M. Svahnberg, J. Bosch, “Characterizing Evolution in
Product Line Architectures”, in Proceedings of the 3rd
annual IASTED International Conference on Software
Engineering and Applications, IASTED/Acta Press, Ana-
heim, CA, pp. 92-97, 1999.
[25] P. Zave, M. Jackson, “Four Dark Corners of Require-
ments Engineering“, ACM Transactions on Software Engi-
neering and Methodology, Vol. 6. No. 1, Januari 1997, p.
1-30.


	On the Notion of Variability in Software Product Lines
	Jilles van Gurp, Jan Bosch
	Department of Mathematics and Computing Science, University of Groningen, PO Box 800, 9700 AV The...

	Mikael Svahnberg
	Department of Software Engineering & Computer Science, Blekinge Technical University, 372 25 Ronn...
	msv@ipd.hk-r.se, http://www.ipd.hk-r.se/msv
	Abstract
	1 Introduction
	1.1 Software Product Lines
	1.2 Problem statement
	Figure 1�� The Variability Funnel with early and delayed variability


	1.3. Related work
	Software Product Lines
	Variability Patterns
	Requirements
	Feature Modeling
	Feature interaction
	Methodology
	1.4 Remainder of the paper
	2 Features: increments of evolution
	Figure 2�� Example feature graph

	3 Variability
	3.1 Abstraction levels
	Figure 3�� Representation & transformation processes

	3.2 Variation point properties
	3.3 Recurring patterns of variability
	Single variant.
	Optional variant
	Multiple parallel variants


	4 Variability management
	Identification of variability.
	Constraining variability.
	Implementing variability.
	Managing the variants

	5 Case study: Mozilla
	5.1 Mozilla features
	Themes
	Figure 4�� Theme support in Mozilla

	Security
	Security in Mozilla is handled through a component called Personal Security Manager (PSM). This i...
	Figure 5�� Mozilla’s Personal Security Manager

	Network
	Figure 6�� Necko

	Java Support
	Figure 7�� Java support in Mozilla


	5.2 The underlying techniques
	The broker pattern
	Blackbox components
	Dynamic binding
	Scripting
	Domain specific languages

	5.3 Summary

	6 Conclusion





