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Abstract 

In this paper, it is shown that the problem of checking 
the solvability of a bilinear matrix inequality (BMI), 
is NP-hard. A matrix valued function, F ( X ,  Y ) ,  is 
called bilinear if it is linear with respect to each of its 
arguments, and an inequality of the form, F ( X ,  Y )  > 
0 is called a bilinear matrix inequality. Recently, it 
was shown that, the static output feedback problem, 
fixed order controller problem, reduced order '?P 
controller design problem, and several other control 
problems can be formulated as BMIs [4, 31. Based on 
the results of [4, 31, BMIs seem to be a potentially 
powerful tool for the formulation of some important 
control problems. But the main result of this paper 
shows that the problem of checking the solvability of 
BMIs is NP-hard, and hence it is rather unlikely to 
find a polynomial time algorithm for solving general 
BMI problems. As an independent result, it is also 
shown that simultaneous stabilization with static out- 
put feedback is an NP-hard problem, namely given 
n plants, the problem of checking the existence of a 
static gain matrix, K, which stabilizes all of the n 
plants, is NP-hard. 

1. Introduction 
In this paper, it is shown that the problem of checking 
the solvability of a general bilinear matrix inequality 
is NP-hard (See [2] for the definition of the com- 
plexity class NP-hard and related issues). A ma- 
trix valued function F ( X , Y )  is called bilinear if it 
is linear with respect to each of its arguments, and 
an inequality of the form F ( X , Y )  > 0, is called a 
bilinear matrix inequality. The main result of this 
paper is the NP-hardness of the problem of checking 
the existence of X, Y such that F ( X , Y )  is sym- 
metric and positive definite, i.e. F ( X ,  Y )  > 0. Re- 
sults of [4,3] show that some important control prob- 
lems, including the static output feedback problem, 
fixed order controller problem, and reduced order 3cw 
controller design problems, can be formulated using 
BMIs, and hence BMIs seem to be a potentially pow- 
erful tool for solving these control problems. But the 
NP-hardness of checking the solvability of BMIs im- 
ply that, it is rather unlikely to find a polynomial 
time solution procedure for general BMI problems. 
This result does not eliminate the possibility of con- 
servative approaches or efficient solution procedures 
for some special type of BMI problems, but shows 
that the general BMI problem is NP-hard. As an in- 
dependent result, it is also shown that simultaneous 
stabilization with static output feedback is NP-hard, 
namely given n plants, the problem of checking the 
existence of a static gain matrix, K ,  which stabilizes 
all of the n plants, is AfP-hard. This result does not 
give much information about the complexity of the 
static output feedback problem of a single plant, but 
shows that the this rationally decidable version of si- 
multaneous stabilization problem [I, 51 is NP-hard. 

2. Solvabilit of BMIs 
In this section, first it is sxown that the following 
version of the Knapsack problem [2], is NP-hard. 
Lemma 1: Given n integers a l ,  ..., a, E Z, the 
problem of checking the existence of n real numbers 
zl, ..., zn E IR, such that 

1 - a < ( z k 1 < 1 + a ,  k = l ,  ..., n, and 

l a 1 8 1  + ... + an2nl < P,  

, and p = $, is NP- 1 where = 
. .  5"(1+x;=1 Iwcl) 
hard. 
Proof : For agiven vector, a = [a1 ... a,IT E Z", the 
above problem has a solution if there exists a vector, 

Conversely, if the above problem has a solution, then 

3: = C+ Ax, where z k  E {-1, l}, IlA3:((, < a. 

Note that, a T f  is an integer, laTZl 5 Iu*zI -t 
IaTAzl, and 

E {-I, + I } ~  satisfying aTz  = 0. 

therefore aT5 = 0. 
This shows that the above problem has a solution iff 
the integer Knapsack problem [2] has a solution. By 
the NP-hardness of the integer Knapsack problem, 
NP-hardness of the above problem follows. 0 
The following lemma shows that, given an affine ma- 
trix subspace, the problem of checking the existence of 
a stable matrix in that affine subspace, is NP-hard. 
Lemma 2: Given (n+l) real matrices, MO, ..., Mn, 
the problem of checking the existence of n real num- 
bers 21, ..., zn, such that MO + zlM1 + ... + z,M, 
is stable, is NP-hard. 
Proof: For a given vector a = [ai  ... a,IT E Z", 
define LY = l n  and p = Q, 

5"(l+xk=1 14)' 

A l , k ( X )  = -(I -k a) - 2 k , A z , k ( Z )  = -(I + a) -k Z k ,  

and A,.(z) = diag(A,l(z  , ..., A~,"(z)), T = 1,2,3. 
Note that, the existence o r' a real vector, z, such that 

M(3:)  = diag(Al(z),Az(x),A3(3:), -P - uT3:, -P + uT3:), 
is stable, is equivalent to the solvability of the prob- 
lem of Lemma 1. Since M z) characterizes an 
affine matrix subspace, by the hP-hardness result of 



Lemma 1, it follows that the problem of checking the 
existence of a stable matrix in a given affine matrix 
subspace, is an NP-hard problem. 0 
Remark 1: Given n real matrices, M I ,  ..., M,, the 
problem of checking the existence of n real numbers 
$1, ..., z,,, such that xlM1 + ... + x,M, is stable, 
is also NP-hard. Because, given (n + 1) matri- 
ces MO, ..., M,, define Nk = diag(Mk,-bk,o), for 
k = 0, ..., n. Then, there exists n real numbers 
xi, ..., a!,,, such that MO + xlM1 + ... z,M, is sta- 
ble, iff there exists (n + 1) real numbers 20, ..., x, 
such that xoN0 + ... + c,N,  is stable. By the NP- 
hardness result of Lemma 2, it follows that, given 
a matrix subspace, the problem of checking the exis- 
tence of a stable matrix in that subspace, is NP-hard 
too. 
Theorem 1: Given a matrix valued bilinear form 
F(., e ) ,  the problem of checking the existence of (real) 
matrices X ,  Y such that F ( X ,  Y )  > 0, is n/P-hard. 
- Proof Given ( n  + 1) matrices MO, ..., M,, define 

ZoMo + ... + znMn, s ( P )  = ( P  + PT)/2,  and 
M ( X )  = MO + q M 1  + ... + z,M,, N ( 2 )  = 

0 F ( x ,  P )  = 

Then if there exists a real x and P such that 
F ( z , P )  > 0, then t o  # 0, and $N(z) is stable, 
therefore there exist n real numbers 21, ..., a!, such 
that MO + z l M l  + ... + x,M, is stable. Conversely, 
if there exist such n real numbers, then the BMI, 
F ( x ,  P) > 0, is solvable. This shows that the prob- 
lem of Lemma 2 polynomially reduces to the problem 
of solvability of BMIs, therefore checking the solvabil- 
ity of a BMI is an NP-hard problem. 
3. Simultaneous stabilization with static 

output feedback 
In this section, it is shown that given n plants, the 
problem of checking the existence of a (real) static 
gain matrix, K ,  which stabilizes all of the n plants, 
is NP-hard. Simultaneous stabilizability of n plants 
with static output feedback, is rationally decidable 
[I, 51, but Theorem 2 shows that this problem is NP- 
hard, namely although the problem can be solved 
(possibly in doubly exponential amount of time) using 
only rational operations, it is rather unlikely to find 
a polynomial time solution procedure for that prob- 
lem. This result does not give information about the 
computational complexity of the static output feed- 
back problem of a single plant, but shows that the 
simultaneous version of the problem is NP-hard. 
Theorem 2: Given n plants with state space real- 
izations, (Ah, Bk, Ck), k = 1, ..., 71, the problem of 
checking the existence of a (real) static gain matrix, 
I<, such that Ak + BkI<Ck is stable for k = 1, ..., n, 
is ”P-hard. 
Proof: For a given vector, U = [UI ... u,IT E Z”, 

for k = 1, ..., n, and A ~ ( z )  = -/3 - uTx, As(a!) = 
-p  4- uTx. Note that A3,k is stable iff 0 < x k  < 
or a!k > 2. Therefore, there exists a real vector, x, 
such that 

are stable for h = 1, ..., n,iff the problem of Lemma 1 
has a solution. Furthermore, the above A(x)  func- 
tions are of the form A+BI<C for some real A, B,  C, 
and K = X. Therefore, given n plants, the problem 
of checking the existence of a static gain matrix which 
stabilizes all of the n plants, is NT-hard. 

4. Concluding remarks 
In this paper, it was shown that the problem of check- 
ing the solvability of a general bilinear matrix in- 
equality, is NP-hard. Although BMIs can be used 
to formulate some important control problems [4, 31, 
and hence seems to be a potentially powerful tool, 
the main result of this paper shows that it is rather 
unlikely to find both efficient and nonconservative so- 
lution procedures for general BMI problems. As an 
independent result, it was also shown that, simulta- 
neous stabilization with static output feedback prob- 
lem is also AfP-hard. This shows that simultaneous 
version of the static output feedback problem is NP- 
hard. 
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