# ON THE NULLITY OF GRAPHS* 

BO $\mathrm{CHENG}^{\dagger}$ AND BOLIAN LIU ${ }^{\ddagger}$


#### Abstract

The nullity of a graph $G$, denoted by $\eta(G)$, is the multiplicity of the eigenvalue zero in its spectrum. It is known that $\eta(G) \leq n-2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $n K_{1}$. In this paper, we characterize the extremal graphs attaining the upper bound $n-2$ and the second upper bound $n-3$. The maximum nullity of simple graphs with $n$ vertices and $e$ edges, $M(n, e)$, is also discussed. We obtain an upper bound of $M(n, e)$, and characterize $n$ and $e$ for which the upper bound is achieved.


Key words. Graph eigenvalue, Nullity, Clique, Girth, Diameter.
AMS subject classifications. 05C50.

1. Introduction. Let $G$ be a simple graph. The vertex set of $G$ is referred to as $V(G)$, the edge set of $G$ as $E(G)$. If $W$ is a nonempty subset of $V(G)$, then the subgraph of $G$ obtained by taking the vertices in $W$ and joining those pairs of vertices in $W$ which are joined in $G$ is called the subgraph of $G$ induced by $W$ and is denoted by $G[W]$. We write $G-\left\{v_{1}, \ldots, v_{k}\right\}$ for the graph obtained from $G$ by removing the vertices $v_{1}, \ldots, v_{k}$ and all edges incident to them.

We define the union of $G_{1}$ and $G_{2}$, denoted by $G_{1} \cup G_{2}$, to be the graph with vertex-set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge-set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. If $G_{1}$ and $G_{2}$ are disjoint we denote their union by $G_{1}+G_{2}$. The disjoint union of $k$ copies of $G$ is often written $k G$. As usual, the complete graph and cycle of order $n$ are denoted by $K_{n}$ and $C_{n}$, respectively. An isolated vertex is sometimes denoted by $K_{1}$.

Let $r \geq 2$ be an integer. A graph $G$ is called $r$-partite if $V(G)$ admits a partition into $r$ classes $X_{1}, X_{2}, \ldots, X_{r}$ such that every edge has its ends in different classes; vertices in the same partition must not be adjacent. Such a partition $\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ is called a $r$-partition of the graph. A complete $r$-partite graph is a simple $r$-partite graph with partition $\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ in which each vertex of $X_{i}$ is joined to each vertex of $G-X_{i}$; if $\left|X_{i}\right|=n_{i}$, such a graph is denoted by $K_{n_{1}, n_{2}, \ldots, n_{r}}$. Instead of '2-partite' ('3-partite') one usually says bipartite (tripartite).

Let $G$ and $G^{\prime}$ be two graphs. Then $G$ and $G^{\prime}$ are isomorphic if there exists a bijection $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ with $x y \in E(G) \Longleftrightarrow \varphi(x) \varphi(y) \in E\left(G^{\prime}\right)$ for all $x, y \in V(G)$.

The adjacency matrix $A(G)$ of graph $G$ of order $n$, having vertex-set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the $n \times n$ symmetric matrix $\left[a_{i j}\right]$, such that $a_{i j}=1$ if $v_{i}$ and $v_{j}$ are adjacent and 0 , otherwise. A graph is said to be singular (non-singular) if its

[^0]adjacency matrix is a singular (non-singular) matrix. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(G)$ are said to be the eigenvalues of the graph $G$, and to form the spectrum of this graph. The number of zero eigenvalues in the spectrum of the graph $G$ is called its nullity and is denoted by $\eta(G)$. Let $r(A(G))$ be the rank of $A(G)$, clearly, $\eta(G)=n-r(A(G))$. The rank of a graph $G$ is the rank of its adjacency matrix $A(G)$, denoted by $r(G)$. Then $\eta(G)=n-r(G)$. Each of $\eta(G)$ and $r(G)$ determines the other.

It is known that $0 \leq \eta(G) \leq n-2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $n K_{1}$. In [3], L.Collatz and U.Sinogowitz first posed the problem of characterizing all graphs $G$ with $\eta(G)>0$. This question is of great interest in chemistry, because, as has been shown in [4], for a bipartite graph $G$ (corresponding to an alternant hydrocarbon), if $\eta(G)>0$, then it indicates the molecule which such a graph represents is unstable. The problem has not yet been solved completely; only for trees and bipartite graph some particular results are known (see [4] and [5]). In recent years, this problem has been investigated by many researchers([5], [7] and [8]).

A natural question is how to characterize the extremal matrices attaining the upper bound $n-2$ and the second upper bound $n-3$. The following theorems answer this question.

Theorem 1.1. Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 2$. Then $\eta(G)=n-2$ if and only if $G$ is isomorphic to $K_{n_{1}, n_{2}}+k K_{1}$, where $n_{1}+n_{2}+k=n$, $n_{1}, n_{2}>0$, and $k \geq 0$.

Theorem 1.2. Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 3$. Then $\eta(G)=n-3$ if and only if $G$ is isomorphic to $K_{n_{1}, n_{2}, n_{3}}+k K_{1}$, where $n_{1}+n_{2}+n_{3}+k=$ $n, n_{1}, n_{2}, n_{3}>0$, and $k \geq 0$.

We now introduce the definition of maximum nullity number, which is closely related to the upper bound of $\eta(G)$. Let $\Gamma(n, e)$ be the set of all simple graphs with $n$ vertices and $e$ edges. The maximum nullity number of simple graphs with $n$ vertices and $e$ edges, $M(n, e)$, is $\max \{\eta(A): A \in \Gamma(n, e)\}$, where $n \geq 1$ and $0 \leq e \leq\binom{ n}{2}$.

This paper is organized as follows. Theorem 1.1 and Theorem 1.2 are proved in section 3. In order to prove them, we obtain some inequalities concerning $\eta(G)$ in section 2. In section 4 , we obtain an upper bound of $M(n, e)$, and characterize $n$ and $e$ for which the upper bound is achieved.
2. Some inequalities concerning $\eta(G)$. A path is a graph $P$ of the form $V(P)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $E(P)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\}$, where the vertices $v_{1}, v_{2}, \ldots, v_{k}$ are all distinct. We say that $P$ is a path from $v_{1}$ to $v_{k}$, or a $\left(v_{1}, v_{k}\right)$-path. It can be denoted by $P_{k}$. The number of edges of the path is its length. The distance $d(x, y)$ in $G$ of two vertices $x, y$ is the length of a shortest $(x, y)$-path in $G$; if no such path exists, we define $d(x, y)$ to be infinite. The greatest distance between any two vertices in $G$ is the diameter of $G$, denoted by $\operatorname{diam}(G)$.

Lemma 2.1. (see [6]) (i) The adjacency matrix of the complete graph $K_{n}, A\left(K_{n}\right)$, has 2 distinct eigenvalues $n-1,-1$ with multiplicities $1, n-1$ where $n>1$.
(ii) The eigenvalues of $C_{n}$ are $\lambda_{r}=2 \cos \frac{2 \pi r}{n}$, where $r=0, \ldots, n-1$.
(iii) The eigenvalues of $P_{n}$ are $\lambda_{r}=2 \cos \frac{\pi r}{n+1}$, where $r=1,2, \ldots, n$.

Lemma 2.2. (i) $r\left(K_{n}\right)= \begin{cases}0 & \text { if } n=1 \text {; } \\ n & \text { if } n>1 .\end{cases}$
(ii) $r\left(C_{n}\right)= \begin{cases}n-2, & \text { if } n \equiv 0(\bmod 4) ; \\ n, & \text { otherwise. }\end{cases}$
(iii) $r\left(P_{n}\right)= \begin{cases}n-1, & \text { if } n \text { is odd; } \\ n, & \text { otherwise. }\end{cases}$

Proof. (i) and (iii) are direct consequences from Lemma 2.1.
(ii) We have $\lambda_{r}=0$ if and only if $2 \cos \frac{2 \pi r}{n}=0$ if and only if $\frac{2 \pi r}{n}=\pi / 2$ or $3 \pi / 2$. Therefore $\lambda_{r}=0$ if and only if $r=n / 4$ or $r=3 n / 4$. Hence (ii) holds.

The following result is straightforward.
Lemma 2.3. (i) Let $H$ be an induced subgraph of $G$. Then $r(H) \leq r(G)$.
(ii) Let $G=G_{1}+G_{2}$, then $r(G)=r\left(G_{1}\right)+r\left(G_{2}\right)$, i.e., $\eta(G)=\eta\left(G_{1}\right)+\eta\left(G_{2}\right)$.

In the remainder of this section, we give some inequalities concerning $\eta(G)$.
Proposition 2.4. Let $G$ be a simple graph on $n$ vertices and $K_{p}$ be a subgraph of $G$, where $2 \leq p \leq n$. Then $\eta(G) \leq n-p$.

Proof. Immediate from Lemma 2.2(i) and Lemma 2.3(i).
A clique of a simple graph $G$ is a subset $S$ of $V(G)$ such that $G[S]$ is complete. A clique $S$ is maximum if G has no clique $S^{\prime}$ with $\left|S^{\prime}\right|>|S|$. The number of vertices in a maximum clique of G is called the clique number of G and is denoted by $\omega(G)$. The following inequality is clear from the above result.

Corollary 2.5. Let $G$ be a simple graph on $n$ vertices and $G$ is not isomorphic to $n K_{1}$. Then $\eta(G)+\omega(G) \leq n$.

Proposition 2.6. Let $G$ be a simple graph on $n$ vertices and let $C_{p}$ be an induced subgraph of $G$, where $3 \leq p \leq n$. Then
$\eta(G) \leq \begin{cases}n-p+2, & \text { if } p \equiv 0(\bmod 4) ; \\ n-p, & \text { otherwise } .\end{cases}$
Proof. This follows from Lemma 2.2(ii) and Lemma 2.3(i).
The length of the shortest cycle in a graph $G$ is the $\operatorname{girth}$ of $G$, denoted by $\operatorname{gir}(G)$. A relation between $\operatorname{gir}(G)$ and $\eta(G)$ is given here.

Corollary 2.7. If $G$ is simple graph on $n$ vertices and $G$ has at least one cycle, then
$\eta(G) \leq \begin{cases}n-\operatorname{gir}(G)+2, & \text { if } \operatorname{gir}(G) \equiv 0(\bmod 4) ; \\ n-\operatorname{gir}(G), & \text { otherwise } .\end{cases}$

Proposition 2.8. Let $G$ be a simple graph on $n$ vertices and let $P_{k}$ be an induced subgraph of $G$, where $2 \leq k \leq n$. Then
$\eta(G) \leq \begin{cases}n-k+1, & \text { if } k \text { is odd } ; \\ n-k, & \text { otherwise } .\end{cases}$
Proof. This is a direct consequence of Lemma 2.2(iii) and Lemma 2.3(i).
Corollary 2.9. Suppose $x$ and $y$ are two vertices in $G$ and there exists an $(x, y)$-path in $G$. Then
$\eta(G) \leq \begin{cases}n-d(x, y), & \text { if } d(x, y) \text { is even; } \\ n-d(x, y)-1, & \text { otherwise. }\end{cases}$
Proof. Let $P_{k}$ be the shortest path between $x$ and $y$. Suppose $v_{1}, v_{2}, \ldots, v_{k}$ are the vertices of $P_{k}$. Then $G\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is $P_{k}$. From Proposition 2.8, we have $\eta(G) \leq \begin{cases}n-d(x, y), & \text { if } d(x, y) \text { is even; } \\ n-d(x, y)-1, & \text { otherwise. }\end{cases}$

Corollary 2.10. Suppose $G$ is simple connected graph on $n$ vertices. Then $\eta(G) \leq \begin{cases}n-\operatorname{diam}(G), & \text { if } \operatorname{diam}(G) \text { is even } ; \\ n-\operatorname{diam}(G)-1, & \text { otherwise. }\end{cases}$
3. Extremal matrices and graphs. For any vertex $x \in V(G)$, define $\Gamma(x)=$ $\{v: v \in V(G)$ and $v$ is adjacent to $x\}$. We first give the following lemma.

Lemma 3.1. Suppose that $G$ is a simple graph on $n$ vertices and $G$ has no isolated vertex. Let $x$ be an arbitrary vertex in $G$. Let $Y=\Gamma(x)$ and $X=V(G)-Y$. If $r(G) \leq 3$, then
(i) No two vertices in $X$ are adjacent.
(ii) Each vertex from $X$ and each vertex from $Y$ are adjacent.

Proof. (i) Suppose $x_{1} \in X, x_{2} \in X$, and $x_{1}$ and $x_{2}$ are adjacent. Since $x_{1} \in X$, $x_{1}$ and $x$ are not adjacent. Similarly we have $x_{2}$ and $x$ are not adjacent. Since $G$ has no isolated vertex, $x$ is not an isolated vertex. Then $Y$ is not an empty set. Select any vertex $y$ in $Y$. Then $G\left[x_{1}, x_{2}, y\right]$ is isomorphic to $K_{2}+K_{1}, K_{1,2}$ or $K_{3}$.

If $G\left[x_{1}, x_{2}, y\right]$ is isomorphic to $K_{2}+K_{1}$, then $G\left[x, x_{1}, x_{2}, y\right]$ is isomorphic to $P_{2}+P_{2}$. Since $r\left(P_{2}+P_{2}\right)=r\left(P_{2}\right)+r\left(P_{2}\right)=2+2=4$ by Lemma 2.3, we have $r(G) \geq 4$, a contradiction.

If $G\left[x_{1}, x_{2}, y\right]$ is isomorphic to $K_{1,2}$, then $G\left[x, x_{1}, x_{2}, y\right]$ is isomorphic to $P_{4}$. Therefore $r(G) \geq r\left(P_{4}\right)=4$, a contradiction.

If $G\left[x_{1}, x_{2}, y\right]$ is isomorphic to $K_{3}$, then using the fact that neither $x_{1}$ nor $x_{2}$ is adjacent to $x$, we can verify that $r\left(G\left[x, x_{1}, x_{2}, y\right]\right)=4$, a contradiction.

Therefore no two vertices in $X$ are adjacent.
(ii) Suppose not, then there exist $x_{1} \in X$ and $y_{1} \in Y$ such that $x_{1}$ and $y_{1}$ are not adjacent. Since $x$ and $y_{1}$ are adjacent, we have $x$ and $x_{1}$ are distinct. Due to the fact that $G$ has no isolated vertex, we can choose a vertex $z$ in $G$ which is adjacent to $x_{1}$. By (i) we see $z \in Y$. Then $x$ and $z$ are adjacent.

If $y_{1}$ and $z$ are not adjacent, then $G\left[x, x_{1}, y_{1}, z\right]$ is isomorphic to $P_{4}$. Hence $r\left(G\left[x, x_{1}, y_{1}, z\right]\right)>3$, a contradiction.

If $y_{1}$ and $z$ are adjacent, then using the fact that neither $y_{1}$ nor $x$ is adjacent to $x_{1}$, we can verify that $r\left(G\left[x, x_{1}, y_{1}, z\right]\right)=4$, a contradiction. Thus each vertex from $X$ and each vertex from $Y$ are adjacent.

In order to prove Theorem 1.1, we prove the following lemma.
Lemma 3.2. Suppose that $G$ is a simple graph on $n$ vertices $(n \geq 2)$ and $G$ has no isolated vertex. Then $\eta(G)=n-2$ if and only if $G$ is isomorphic to a complete bipartite graph $K_{n_{1}, n_{2}}$, where $n_{1}+n_{2}=n, n_{1}, n_{2}>0$.

Proof. The sufficiency is clear.
To prove the necessity, choose an arbitrary vertex $x$ in $G$. Let $Y=\Gamma(x)$ and $X=V(G)-Y$. Since $G$ has no isolated vertex, $x$ is not an isolated vertex. Then $Y$ is not an empty set. Since $x \in X, X$ is not empty.

We now prove any two vertices in $Y$ are not adjacent. Suppose that there exist $y_{1} \in Y$ and $y_{2} \in Y$ such that $y_{1}$ and $y_{2}$ are adjacent. Then $G\left[x, y_{1}, y_{2}\right]$ is a triangle. By Proposition 2.4, we have $\eta(G) \leq n-3$, a contradiction.

From Lemma 3.1, we know that
(i) any two vertices in $X$ are not adjacent, and
(ii) any vertex from $X$ and any vertex from $Y$ are adjacent. Hence $G$ is isomorphic to a complete bipartite graph. $\square$

Theorem 1.1 is immediate from the above lemma.
Two matrices $A_{1}$ and $A_{2}$ that are related by $B=P^{-1} A P$ where $P$ is a permutation matrix, are said to be permutation similar. Graphs $G_{1}$ and $G_{2}$ are isomorphic if and only if $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ are permutation similar.

We denote by $J_{p, q}$ the $p \times q$ matrix of all 1 's. Sometimes we simply use $J$ to denote an all 1's matrix of appropriate or undetermined size. Similar conventions are used for zeros matrices with $O$ replacing $J$. Let $A_{1}$ and $A_{2}$ be two matrices. Define $A_{1} \oplus A_{2}=\left[\begin{array}{cc}A_{1} & O \\ O & A_{2}\end{array}\right]$ and $A_{1} \oplus A_{2}=\left[\begin{array}{cc}A_{1} & J \\ J & A_{2}\end{array}\right]$.

Then Theorem 1.1 can be written in the following equivalent form.
Theorem 3.3. Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 2$. Then $\eta(G)=n-2$ if and only if $A(G)$ is permutation similar to matrix $O_{n_{1}, n_{1}} \oplus O_{n_{2}, n_{2}} \oplus$ $O_{k, k}$, where $n_{1}+n_{2}+k=n, n_{1}, n_{2}>0$, and $k \geq 0$.

Some lemmas are given before we prove Theorem 1.2.
Lemma 3.4. Let $A$ be a symmetric $n \times n$ matrix and let the rank of $A$ be $k$. Then there exists a nonsingular principal minor of order $k$.

Lemma 3.5. Suppose that $G$ is a simple graph on $n$ vertices $(n \geq 3)$ and $G$ has no isolated vertex. Then $\eta(G)=n-3$ if and only if $G$ is isomorphic to a complete tripartite graph $K_{n_{1}, n_{2}, n_{3}}$, where $n_{1}, n_{2}, n_{3}>0$.

Proof. If $G$ is isomorphic to a complete tripartite graph, then $A(G)$ is permutation similar to $O \oplus O \oplus O$. Thus we can verify that $r(G)=3$, i.e., $\eta(G)=n-3$. The sufficiency follows.

To prove the necessity, choose an arbitrary vertex $x$ in $G$. Let $Y=\Gamma(x)$ and $X=V(G)-Y$. Since $G$ has no isolated vertex, $x$ is not an isolated vertex. Then $Y$ is not an empty set. Since $x \in X, X$ is not empty.

By Lemma 3.1, we have the following results.
Claim 3.6. Any two vertices in $X$ are not adjacent.
Claim 3.7. Any vertex from $X$ and any vertex from $Y$ are adjacent.
We now consider $G-X$, and prove
Claim 3.8. $r(G-X) \leq 2$.
Proof. Suppose $r(G-X)>2$. Due to the fact that $r(G-X) \leq r(G)=3$, we see $r(G-X)=3$. By Lemma 3.4, there exists an induced subgraph $H$ of $G-X$ such that $H$ is order 3 and $r(H)=3$. Then $H$ is a triangle. Since $x$ is adjacent to each vertex of $H, K_{4}$ is a subgraph of $G$. Therefore $\eta(G) \leq n-4$, a contradiction.

Furthermore, we can show
Claim 3.9. $r(G-X)=2$.
Proof. Suppose $r(G-X)<2$, then $r(G-X)=0$. Hence $G-X=O$. Therefore $r(G)=2$, which contradicts $\eta(G)=n-3$.

By Theorem 1.1, $G-X$ is isomorphic to $K_{n_{1}, n_{2}}+k K_{1}$, where $n_{1}, n_{2}>0$, and $k \geq 0$.

If $k>0$, then $A(G)$ is permutation similar to

$$
\left[\begin{array}{llll}
O & J & J & J \\
J & O & J & O \\
J & J & O & O \\
J & O & O & O
\end{array}\right] .
$$

Then $r(G)=4$, a contradiction. Thus $k=0$. So $G-X$ is isomorphic to $K_{n_{1}, n_{2}}$.
By Claim 3.6 and 3.7, we see $G$ is isomorphic to a complete tripartite graph $K_{n_{1}, n_{2}, n_{3}}$, where $n_{1}, n_{2}, n_{3}>0$.

Theorem 1.2 is immediate from the above lemma. Theorem 1.2 also has the following equivalent form.

Theorem 3.10. Suppose that $G$ is a simple graph on $n$ vertices and $n \geq 3$. Then $\eta(G)=n-3$ if and only if $A(G)$ is permutation similar to matrix

$$
O_{n_{1}, n_{1}} \oplus O_{n_{2}, n_{2}} \oplus O_{n_{3}, n_{3}} \oplus O_{k, k}
$$

where $n_{1}+n_{2}+n_{3}+k=n, n_{1}, n_{2}, n_{3}>0$, and $k \geq 0$.
4. Maximum nullity number of graphs. In the first section, we define

$$
M(n, e)=\max \{\eta(A): A \in \Gamma(n, e)\}
$$

where $\Gamma(n, e)$ is the set of all simple graphs with $n$ vertices and $e$ edges. In this section an upper bound of $M(n, e)$ is given. Let $g(m)=\max \{k: k \mid m$ and $k \leq \sqrt{m}\}$, where $m$ is a positive integer, e.g., $g(1)=1, g(2)=1, g(4)=2$.

Theorem 4.1. The following results hold:
(i) $M(n, 0)=n . M\left(n,\binom{n}{2}\right)=0$.
(ii) $M(n, 1)=n-2$ for $n \geq 2$.
(iii) $M\left(n,\binom{n}{2}-1\right)=1$ for $n>2$.
(iv) $M(n, e) \leq n-2$ for $e>0$.
(v) $M(n, e)=n-2$ if $e>0$ and $g(e)+e / g(e) \leq n$.
(vi) $M(n, e) \leq n-3$ if $e>0$ and $g(e)+e / g(e)>n$.

Proof. (i) and (ii) are immediate from the definition.
(iii) Suppose $G \in \Gamma\left(n,\binom{n}{2}-1\right)$. Then $G$ is isomorphic to $K_{n}$ with one edge deleted. Thus there exist two identical rows (columns) in $A(G)$. Therefore $A(G)$ is singular and $\eta(G) \geq 1$.

Since $G$ contains $K_{n-1}$, by Proposition 2.4, we have $\eta(G) \leq 1$. Hence $\eta(G)=1$. Therefore $M\left(n,\binom{n}{2}-1\right)=1$.
(iv) From the fact that $\eta(G) \leq n-2$ if $G$ is a simple graph on $n$ vertices and $G$ is not isomorphic to $n K_{1}$, we see that $M(n, e) \leq n-2$ for $e>0$.
(v) Let $n_{1}=g(e), n_{2}=e / g(e)$ and $k=n-n_{1}-n_{2}$. Then $G=K_{n_{1}, n_{2}}+k K_{1} \in$ $\Gamma(n, e)$ and $\eta(G)=n-2$. Hence $M(n, e)=n-2$.
(vi) Suppose $M(n, e)>n-3$. Since $M(n, e) \leq n-2$, we have $M(n, e)=n-2$. Then there exists $G \in \Gamma(n, e)$ such that $\eta(G)=n-2$. Hence $G=K_{n_{1}, n_{2}}+k K_{1}$. Therefore $n_{1} \times n_{2}=e$ and $n_{1}+n_{2}+k=n$. Without loss of generality, we may assume $n_{1} \leq n_{2}$. Then $n_{1} \leq \sqrt{e}$. Since $n_{1} \mid n, n_{1} \leq g(e)$.

Since $n_{1} \leq \sqrt{e}$ and $g(e) \leq \sqrt{e}, g(e) n_{1} \leq e$. Then $1-\frac{e}{g(e) n_{1}} \leq 0$.
Since

$$
\begin{gathered}
g(e)+e / g(e)-n_{1}-n_{2}=g(e)-n_{1}+e / g(e)-n_{2}=g(e)-n_{1}+e / g(e)-e / n_{1} \\
=g(e)-n_{1}+e \frac{n_{1}-g(e)}{g(e) n_{1}}=\left(g(e)-n_{1}\right)\left(1-\frac{e}{g(e) n_{1}}\right) \leq 0 \\
g(e)+e / g(e) \leq n_{1}+n_{2} \leq n, \text { which contradicts to } g(e)+e / g(e)>n .
\end{gathered}
$$

The following immediate corollary gives an upper bound for $M(n, e)$ and characterizes when the upper bound is achieved.

Corollary 4.2. Suppose $e>0$. Then $M(n, e) \leq n-2$ and the equality holds if and only if $g(e)+e / g(e) \leq n$.

Here we give a necessary condition for $M(n, e)=n-3$.
Theorem 4.3. If $M(n, e)=n-3$, then $e \leq n^{2} / 3$.
Proof. Due to the fact that $M(n, e)=n-3$, there exists $G \in \Gamma(n, e)$ such that $\eta(G)=n-3$. Hence $G=K_{n_{1}, n_{2}, n_{3}}+k K_{1}$. Therefore $n_{1}+n_{2}+n_{3} \leq n$ and $n_{1} n_{2}+n_{2} n_{3}+n_{1} n_{3}=e$.

Since

$$
\begin{aligned}
& \left(n_{1}+n_{2}+n_{3}\right)^{2}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+2\left(n_{1} n_{2}+n_{2} n_{3}+n_{1} n_{3}\right) \\
& \quad \geq n_{1} n_{2}+n_{2} n_{3}+n_{1} n_{3}+2\left(n_{1} n_{2}+n_{2} n_{3}+n_{1} n_{3}\right)=3 e
\end{aligned}
$$

then $n^{2} \geq 3 e$, i.e., $e \leq n^{2} / 3$.
The following corollary is immediate.
Corollary 4.4. If $n^{2} / 3<e \leq\binom{ n}{2}$, then $M(n, e) \leq n-4$.
Finally we give a table for the exact values of $M(n, e)$, where $1 \leq n \leq 5$.

| $n$ | $e=0$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | - | - | - | - | - | - | - | - | - | - |
| 2 | 2 | 0 | - | - | - | - | - | - | - | - | - |
| 3 | 3 | 1 | 1 | 0 | - | - | - | - | - | - | - |
| 4 | 4 | 2 | 2 | 2 | 2 | 1 | 0 | - | - | - | - |
| 5 | 5 | 3 | 3 | 3 | 3 | 2 | 3 | 2 | 2 | 1 | 0 |

$M(5,5)=2$ is obtained by Theorem $4.1(\mathrm{vi})$ and the fact that $\eta\left(K_{1,1,2}+K_{1}\right)=2$. $M(5,7)=2$ is from Theorem $4.1(\mathrm{vi})$ and the fact that $\eta\left(K_{1,1,3}\right)=2$, and $M(5,8)=2$ is from Theorem $4.1(\mathrm{vi})$ and the fact that $\eta\left(K_{1,2,2}\right)=2$.

Acknowledgment. The authors would like to thank the referee for comments and suggestions which improved the presentation.

## REFERENCES

[1] N. L. Biggs, Algebraic Graph Theory. Cambridge University Press, Cambridge, 1993.
[2] R. A. Brualdi and H. J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cambridge,1991.
[3] L. Collatz and U. Sinogowitz. Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg, 21:63-77, 1957.
[4] D. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, New York, 1980.
[5] S. Fiorini, I. Gutman, and I. Sciriha. Trees with maximum nullity. Linear Algebra Appl., 397:245-251, 2005.
[6] A. J. Schwenk and R. J. Wilson. On the eigenvalues of a graph. Selected Topics in Graph Theory, (L. W. Beineke and R. J. Wilson, eds.), pp 307-336, Academic Press, 1978.
[7] I. Sciriha. On the construction of graphs of nullity one. Discrete Math., 181:193-211, 1998.
[8] I. Sciriha and I. Gutman. On the nullity of line graphs of trees. Discrete Math., 232:35-45, 2001.


[^0]:    ${ }^{*}$ Received by the editors 21 September 2006. Accepted for publication 21 January 2007. Handling Editor: Richard A. Brualdi.
    ${ }^{\dagger}$ Department of Mathematics and Statistics, School of Informatics, Guangdong University of Foreign Studies, Guangzhou, P. R. China (bob.cheng@tom.com).
    ${ }^{\ddagger}$ Corresponding author. Department of Mathematics, South China Normal University, Guangzhou, P. R. China (liubl@scnu.edu.cn). Supported by NSF of China (No.10331020).

