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Abst rac t  
We consider the following problem: Let s be a n-bit string with m ones and n - m 

zeros. Denote by CEt(s) the number of pairs, of equal bits which are within distance 
t apart, in the string s. What  is the minimum value of CEf( - ) ,  when the minimum is 
taken over all n-bit strings which consists of m ones and n - m zeros? 

We prove a (reasonably) tight lower bound for this combinatorial problem. 

Implications, on the cryptographic security of the least significant bit of a message 
encrypted by the RSA scheme, follow. E.g. under the assumption that the RSA is 
unbreakable; there exist no probabilistic polynomial-time algorithm which guesses the 
least significant bit of a message (correctly) with probability a t  least 0.725 , when 
given the encryption of the message using the RSA. This  is t h e  best  resul t  known 
concerning t h e  secur i ty  of RSA's least significant bit. 
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1. Introduction 

This paper conilincs a co~ribinatorial study with tfic applicaliori of its rcsrilts to 
Lhe analysis of a cryptologic,al question. (‘l‘he cornbinalorial problcrn is fully defined 
and solved in Scc. 2.) 

1.1. Cryptological  Background 

The importance of the notion of “partial information” to cryptographic research 
has gained wide recognition through the pionecring works of Blum and Micali [BM] and 
Goldwasser and Micali [GM). In this paper we consider a much more spccific question: 
the cryptographical security of !,he least significant bit of a message encrypted by the 
RSA scheme (hereafter referred to as RSA’s 1.s.b) . 

The RSA encryption scheme was presented by Ilivest, Shamir and Adlcman [RSA]. 
It is the best known implementation of the notion of a Public Key Cryptosystem, 
which was suggested by Diffie and Hellman (DH]. Encryption using the RSA is done by 
raizing the message to a known exponent, e, and reducing t h e  result modulo a known 
composite number, N, the factorization* of which is kept secret. The inverse of e in 
the multiplicative group Zi(,) is used for decryption and is kept secret. It is widely 
believed tha t  the RSA is hard to break. This means that  an adversary who does not 
know the secret (e-’ mod p(N)) will not be able to compute the message from its 
encryption (i.e. to invert the encryption function). 

However, even under this unbreakability assumption; it might be the case tha t  
the RSA leaks some “valuable” partial information. 1.e. it might be that  given the 
ciphertext, one can compute some function of half of the bits of the plaintext. Proving 
that, under the unbreakability assumption, this is infeasible will make the RSA much 
more attractive. This seems to  be a high tool. Research attempts are meanwhile focused 
at the feasibility of guessing correctly the least significant bit of the plaintext ( ie.  
RSA’s l.s.b.)2. 

By saying that  RSA’s 1.s.b i s  p-secure we mean that guessing i t  correctly with 
probability at least p is as hard as inverting the RSA. Consider an oracle tha t  when 
given the encryption (using the RSA) of a message guesses the least significant b i t  of 
the message correctly with probability p .  Such an oracle will be called a p-oracle for  
RSA’s 1.s.b . Clearly, the existence of a polynomial time algorithm that inverts the 
RSA using a poracle for RSA’s 1.s.b implies that  RSA’s 1.s.b is psecure. 

It is believed tha t  RSA’s 1.s.b is ( f  + €)-secure , for arbitrary small constant E .  

Proving this statement might be a major breakthrough on the way to proving tha t  any 
“valuable” partial information about the message encrypted by the RSA is as hard to  
get as inverting the RSX. Progress towards this goal has been slow but consistant, in 
the recent years. 

’ To be exact, N is the produce of two large prirncs, p and q. p(.) iy the Ruler’s totient function, 

’ Nrvcrthelcss, resulk have been actiievcd alw w.r. t .  othrr kinds of parLia1 information. For details 
t hus  P(Pd = (P - 1)(q - 1). 

consult [13CS] and v 2 ] .  
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‘ l h  first. stcp was taken by Goldwnsscr Micali and Tong ICM‘r] who proved that 
RSA’s 1.s.b is ( I  - --!-)-secure, whcrc IN1 is the size of the 1lSA’s modulus. 

Bcn-Or, Chor and Sharnir grcatly improved this result by proving that ItSA’s 1.s.b 
is ( 3  + c)-securc, where c is fixcd arid arbitrary small. Thcir papcr [BCS] contains an 
algorithm which invcrts thc RSA function. Thcir algorithm uses a (i + ()-oracle for 
RSA’s 1.s.b (in order) to dctxrrninc? the parities of ccrtain rnultiplcs of the original 
message. For further details consult [BCS] or (VV21. 

Vazirani and Vazirani [VVI] have presented a very sophisticated modification of 
thc algorithmic proccdurc uscd by Ben-Or, Chor and Shamir. The themc of their 
modification is a much better use of the oracle answers. They showed that  their 
modiGcation is guaranteed to succeed when given access to a 0.741-oracle for RSA’s 
1.s.b. Recently, they have improved their analysis by showing that their modification 
is guaranteed to succeed cven if it uses a 0.732-oracle. 

Using the combinatorial results obtained in this paper, we show that the Vazirani 
and Vazirani algorithm is guaranteed to succeed when it uses a 0.725-oracle for RSA’s 
1.s.b. Other observations w.r.t the Vazirani and Vazirani algorithm as well as w.r.t 
other inverting algorithms are also implied. 

IN1 

1.2. Our Resul t s  

The following problem occured to us when trying to improve Ben-Or, Chor and 

Let s be a n-bit string with m ones and n - m zeros. Two bits in the string s 
are said to  be t-close if they are within distance t apart. Denote by CEt(s) the 
number  of pa i r s  of equal  t-close bits in t h e  s t r ing s . What is the minimum 
value of CEt(.), over all n-bit strings which consists of m ones and n - m zeros? 

In Sec.2 we prove a (reasonably) tight lower bound on this combinatorial problem. 
With respect to  proving the “amount” of security of the least significant bit of the 
RSA, this is a double-edged-sword: 

(1) It provides a powerful tool for analyzing ccrtain algorithms for inverting the 
RSA using an (4 + 6)-oracie for RSA’s 1.s.b . 
For example t h e  a lgo r i thm proposed by Vazirani and  Vazirani Vl] is shown 
to  work when i t  uses  any 0.725-oracIe for RSA’s 1.s.b (i.e. 6=0.225). This 
establishes the best result known conserning the security of RSA’s 1.s.b . 

(2) It points  out the weakness  of various proof techniques for determining the 
cryptographic security of RSA’s 1.s.b . 
For example the Vazirani and Vazirani algorithm [Wl] may fail to invert if it uses a 
$-oracle for RSA’s 1.s.b . 

These implications will be discussed in Sec. 3 . We believe that the combinatorial 
result has also other implications. 

Shamir’s result [BCS]: 
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2. The Coiiibinatorial Results 

I n  this section we give a formal definition of the  rombinat.oria1 problem, discussed 
in the introduction, and prove a (reasonably) tight lower bound on it. 

2.1. Ihlinitions 

Let. s = (so, sl, sa, .., ~ 1 . ~ 1 . -  ,) be a binary string of length IsI. We denote by sh;(s) 
the string which result from s by the application of i left cyclic shifts. 1.e: 

sh i (s )  = (Si,s;+i,Sit2,..,SitIs/-I) 9 

where indices are considered modulo Is I .  
Define the i-overlap of a string, s, to be the number of positions which agree in s and 
shils). Thc i-overlap of s will be denoted by overi(s) , i.e. 

over;(s) = Ilamming(s E sh;(s)) , 
where G denotes the bit by bit equal operation and Hamming(s) denotes the number 
of ones in s . Note tha t  overi(s) = l { j :  0 5 j < Is1 A s j  = sj+i}l . 
Denote by AverOver(s,t) the  average over the i-overlaps of s for i E {1,2, .., t} .  1.e. 

We remind the reader tha t  CEt(s) was used to denote the number of pairs, of equal 
bits which are within distance t apart, in the string s . 1.e. 

C E ~ ( S )  = l { ( i , j ) :  0 < - i < j < n A S; = sj A j - i 5 t}l , 

where n = I s I. 
Clearly, CEt(s)=Cf=,l{j: 0 5 j < n A s j  = s j+; } l .  Thus, 

CEt(s) = t .AverOver(s,t) . 
When evaluating CE,(s) consider “lines” which connect equal t-close bits in s (i.e. 
positions tha t  contain equal values and are less than t bits apart in the string s). These 
lines are hereafter called overlines. Note that  CEl(s) is nothing but the number of 
overlines in the string s. 

. We denote Let n and m be integers such that 0.5n 5 m < n. Let 6 = 7 
by S t  the set of n-bit binary strings with m=(0.5 + 6)n ones (and n - m zeros). 

Denote by Aver(n,h,t) the minimum value of Averover(.$) divided by n, when 
minimized over all strings in Si. 1.e. 

m-0.5n 

Aver(n,6,t)= rninaEs: { AverOver(s,t) }. 

It is straightforward to see tha t  for every s E Si, AverOver(s,n)=(O.Ei + 2b2)n.  

results, as the surprising fact  that  Aver(n,O,t) converges to fi - 1 NN 0.414 , when 
and t are large enough. 

In this section we study Aver(n,b,t) for arbitrary t, t<n. We obtain non-trivial 
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2.2. I’ropouitions 

We will assume throughout this section that t 5 f(n - 2) . We will arialyze’Aver(n,6,t) 
as follows: Erst we will show tha t  the minimum of Ck‘t(.) is achieved by strirfgs which 
belong to a restricted subset of Sf,; and next we will niiriiriiixc C E t ( - )  over th i s  subset. 
This will establish a lower bound on Aver(n,b,t). The uppcr bound will bc implied 
by the proof of the lower bound, since this proof specifies a string s E S i  for which 
CEt(s) = nt .Aver(n,b,t). 

2.2.1. Reduct ion  i n t o  a res t r ic ted  subset 

In this subsection we will show that  when analysing Avcr(n,b,t) it is enough to consider 
strings in St, which have the following property: 

The string contains no “short 3-alternations substring”. A short 3-alternations 
substring is a substring of the form o ~ + u + r  and length less than 2 + 2, where 
o # r E (0,l). (Here, and throughout this paper, u+ denotes a non-empty string 

Proposi t ion 1: overi(s)  = over;(shj(s))  

of U ’ S . )  

Prop. 1 follows directly from the definitions which consider strings as if they were 
cycles. From this point on, we also take the liberty of doing so. 

The proofs of the following propositions are omitted; they can be found in the full 
version of this paper ([GEM]). 

Proposi t ion 2: Let oj E {0,1}, for 1 5 j 5 2t. Let a be a binary string. Let 
n,,,, = C E ~ ( U ~ U ~ - .  -ot~l~ot+irt+2. q t a )  . Then n10 - 

Note that  switching q and 72 in the string ol0.1. - .utr1r2‘20t+1oi+~...apta results in 
the string oluz-. - ~ t ~ q o t + l o ~ + 2 .  a -02ta. The latter string has more overlines (than the 
former one) only if 01 = 72 # q = Q,,. Note that the latter string has less overlines 

Proposi t ion 3: Let Q be a binary string and let z, y, 2, u be integers such that  

= 2(01 - o2t). 

if u1 = q # q = Qn. 

z + y 2 t but y + z < t. Then: 

(i) CEt(o~~oYr~-~ora) 5 CEt(orZuYrzua). 
(ii) C E ~ ( U T ~ C T Y T ~ - ~ C T U ~ - ~  r t--’ OQ) < CEt(rr2uY.rzuurf-u Uff). 

(iii) CEt(0~~oYor”a) 5 CEt(oTra’rzoa). 
Proposi t ion 4: Let s E St be a binary string such that CEt(s) = n-t-Aver(n,d,t). 

(1.e. s is a string with minimum number of overlines among all strings in 5’: .) Then 
there exist a string, s’ E S6,, such that : 

(i) The string s‘ contains a substring of the form 10+1+0 the length of which is 

(ii) CEt(s’) < CEt(s) + t’. 
at least  t + 2.3 

Wc remind ~ l i c  rcadcr that  u+ denotes a nori-empty string of us. 
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I'roposition 5: Let s' f Sf, be a string, with minimum number of overlines, 
which satisfies Prop. 4 . Then with no loss of generality, thc string s' contains no 
substring of the form I O + 1  + O  thc length of which is lcss t h a n  1 + 2. Ihrlhcrmorc, the 
string s' contains at most one substring of lhc form 01+0+1 the length of which i s  

lcss than t + 2. 
We remind the reader tha t  CJ&(s') < nlAver{n,b,l)+t3 and that s' E S:,. 

s" E Sg such that: 
Proposition 6: Lct s' E Sf, bc ;1 slring as in Prop. 5. Then there exist a string 

(i) The string s" contains no substring of the form 10+ 1 the length of which 

(ii) The string s" 'contains no substring of the form 01+0"1 the length of which 

(iii) C E ~ ( S " )  < C E ~ ( S ' )  + t2 .  

We remind the reader tha t  our objective is to given a good lower bound on 
Avcr(n,b,t)=min,ELy; $CEt(s). Note that  we have restricted our attention to  strings 
that donot have short balternations substrings; i.e. substrings of the form 01+0+1 
or 10+1+0 which have length less than t + 2. This is sufficient since there exist such 
a string, namely s", tha t  has approximately the minimun number of overlines. 1.e. 
CEf(s") < ntAver(n,b,t)+2ta. Formally we define R6, to be the set of strings which 
belong to S i  and do not have short %alternating substrings. Aver,l(n,b,t) will denote 
minrEH5 h C ~ t ( r ) .  Clearly, 

is less than t + 2. 

is less than t + 2. 

Prop 0 s  it ion 7: Aver ( n ,b , t )  5 Aver 13 (n,b , t ) < Aver( n ,6, t )  + $ . 
Let us define even a more restricted subset of S:: The set MRf is the subset of 

strings which belong to Ri and do not have long homogenous substrings; i.e. substring of 
the form of+', where o E ( 0 , l ) .  Also, AverMR(n,b,t) will denote minrEMR; &c&(r). 
Let us first give a tight lower bound on AverMR(n,b,t) and only later prove tha t  this 
bound is approximately also a bound for Aver,<(n,b,t). 

2.2.2. Lower bound for AverMR(n,b,t) 

Recall that  each of the strings in MR; C S: has the following properties: 

(i) The string contains no short %alternating substrings. 

(ii) The string contains no long homogenous substrings. 

We will relay on the above properties of the strings in MR: in order to bound 
AverMn(n,b,t). Given a string r E MR; we will introduce an expression, for CEt(r), 
which depends only on the numbers of bits in each maximal substrings of consecutive 
equal bits. In other words, we will introduce a localized counting of CEt(r). 
Definition: We say tha t  6 is a block (an all-a block) of the string 7 if it is a maximal 
substring of equal bits. 1.e. b = a+ and r = T ~ T Q ,  where r # a and (Y is an arbitrary 
string. 
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13enotations: Let q denote the nurnbcr of all-zrro (illl-on~] blocks in r .  ljcginning from 
an arbilrary position between an all-onc block and an all-zero block and going cyclically 
from left to right; number thc blocks of coasccutive zrros [onrs] by 0,1,2, ...,(q - 1) . 
Denote by t; the number of zeros in the i - th  all-zero-block and by y; the number of 
ones in the i-th all-oiie-block. Le., r = O ” ~ ~ l ~ ~ l O ” ~ l ~ r O ~ ~ l ~ ~ ~ ~ ~ O ~ ~ - ~ l ~ ~ - ~ .  

Propos i t ion  8: Overlines occur ( in  r )  only e i ther  within a block or bctwrcn two 
consecutive blocks (of the same bit). 

Remark: Note that  Prop. 8 holds even iF r E Ry,. 
This suggests to evaluate the number of overlines (in r )  by counting the 

“contribution” of each (homogeneous) block to it. This counting is hereafter referred 
as the Block-Localized Counting (BLC) and procreds as follows: 

Block-Localized Counting (with rcspcct to a block of length I in r): 

(i) The number of overlines wi th in  t h e  block, denoted II. 
(ii) The number of overlines between bits of the blocks neighbouring this block 

(i.e the first block on its left and the first block on its right), denoted B1. 
Note that  I1 and Bl are easy to evaluate and can be used to express CEt(r). Namely, 

Propos i t ion  9: 

(i) CEt(r) = Z:z-,((Iy, + By,) + (I2, + &,)), where r = O’OlYOO’’  1 Y 1 .  . .0+11+1. 
(ii) For 1 < t, I1 = (i) and Bf = x:21 i. 
(iii) For 1 = t ,  I1 = (i) and Br = 0. 

Remark: Note tha t  for 1 > t ,  It = (i) + ( I  - t)t and Bt = 0. (Note that for k > 0, 
CEt(ot+k) = CE&7*+1 ) + t = CEt(ot) + kt.) However such substrings donot exist 
in a string which belongs to MR6,. 
Evaluating I1 + Br we get 

Propos i t ion  10: The contribution (to the BLC) of one I-bit long block (in r )  is: 

f ( l )  = i2 - ( t  + 1)1 + + . 
Note that  the contribution of all the all-zero blocks to the number of overlines (in r )  
only depends on the way the zeros are partitioned among the all-zero blocks. (1.e. it 
is independent of the way the ones are partitioned among the all-one blocks.) This 
contribution amounts to: 

g(z0, 21, .., 29--1) = E::: !(ti) 9 

where r = O z O I Y O O ~ ~ l Y 1  . .. O z q - l l l ’ q - l .  

Note tha t  g(., ., - . -, 0 )  is a quadratic form and therefore 

Propos i t ion  11: For fixed q, t and k ,  the minimum value of the function 
g(zo,zi,..,zq-l) subject to the constraint k = z!lizi, is obtained a t  zo = 21 = 
... = Zq-1 = - . k 

B 
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Thus, l f ie niinirnnm number of ovcbrlincs is aciiicvcd if all lhe all-zero-blocks (all-one- 
blocks] are of thc same size. This yields 

Proposition 12: Let Q = ( q  E Integers: 1; 5 q 5 n - m}. Then: 

ntiIveril,,f(n,E,t) 2 min,,c~~{q . ( f (y)  + I(’?))} . 
We rcniind thc reader that  m = (0.5 + 6)n . 
Elaborating the r.h.s. expression of Prop. 12 we get 

ProposiLion 13: Aver h,li(n,c5,t) 2 rninqEQ{h&(q)}, where 

t t  1 (0.5t26’)n I t t l  . q + t-. - - __ h&) = 9 f .  

Note that 

Proposi t ion 14: The minimum of the function hff(.) is obtained at: 

and the minimum value, h:(q,;,), is: 

Thus, AverM,t(n,6,t)> v f .  All that  is left is to derive a lower bound for AverR(n,b,t). 

2.2.3. Lower bound  for AverR(n,6,t) and Aver(n,b,t) 

In this subsection we show that  a string, ro E R;, with minimum overlines can be 
transformed into a string fo E M R Z ,  such that n’ = n, 6’ GZ 6 and CE(rb) NN CEt(ro). 
We conclude by using this fact and the lower bound for AverMR(n,b,t), to introduce a 
lower bound for AverR(n,b,t). 

Proposi t ion 15: Let ro E Rt be a string with minimum number of overlines; i.e. 
CEt(r0) = ntAverH(n,d,t). Then: 

(i) For D E (0, l}, either ro contains no substring of more than t consecutive 0’s 
or ro contains no block of less than t consecutive LT’S.  Futhermore, w.l.o.g, ro 
contains atmost one substring of more than t consecutive 6’s. 

(ii) If t > then ro has no substring of the form v2*. 
2-  

(iii) If t 5 then Aver(n,b,t)=26. 
P -6 

(iv) If t > then there exist a k < t ,  a 6’ 2 6 and a rb E MRf+k such that  
2 

CEt(70) 2 CEt(#o) - kt . 
We conclude by using Prop. 15(iv) and the lower bound for AverMR(n,b,t), to introduce 
lower bounds for AverR(n,6,t) and Aver(n,d,t). 
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’ + I 5  Propos i t ion  16: II‘ t > i -2 then 

Aver/L(n,b,t) >Aver n,,t(n + k,6‘,t)-t . 
( i )  There exist 0 5 k < t and 6’ 2 6 such that 

(ii) Avcr/{(n,b,t)>vf - . 

(iii) hver(n,6,t)>vf - $ . 

2.3. Thc Main llesults 

Throughout this section we assume that ft6 < t < - : (TI  - 2) %-6 

Lower Bound  Lcmma:  Aver(n,6,t) is 2+ least 

(d(2 +862) . k! - Q’) - % . 
t t 

The proof follows immediately from Prop. 14 and 16(i;i) . 
Upper B o u n d  Lemma: Aver(n,b,t) is at most 

( 4 m - y )  + 7 t+ l  + 3 .  1 

The proof follows from observing that  the proof of the lower bound specifies the 
structure of a string which achieves minimum C&(.) among all strings in MR;. The 
only problem in constructing such a string is that  non-integer numbers, of blocks and 
block sizes, may appear. However, the overlap added by the round-up of the number 
of blocks is less than G; while the  overline added by the round-up of the blocks’ sizes 
is less than &. For details see the full version of this paper. 

Evaluating the expressions in the above lemmas we get 

Corollary 1: 

(i) f i - l - O ( j )  < Aver(n,O,t) < & - l + O ( ~ ) + O ( ~ ) .  

(ii) For t 2 2500 and n > 300000 - t ,  Aver(n10.177,t) > f + 0.0001 . 
(iii) For t 2 500 and n > 10000 . t ,  Aver(n,0.225,t) > 0.55 + 0.0001 . 
(iv) For every 2500 < t < 
(v) For every 500 < t < & and 6 5 0.224 , Aver(n,C,t) < 1 - 26 . 

and 6 5 0.176 , Aver(n,h,t) < 4 . 

2.4. Add i t iona l  Defini t ions and Resul ts  

In this section we define a different, yet related, combinatorial problem. Instead 
of considering the average overlap over all  mall^'^ shifts; we consider the  maximum 
overlap obtained by one of the “small” shifts. 

Let us define an i-overline t o  be a line which connects a pair of equal bits which 
are (exactly) at distance i apart. 

‘ Ilere, “smaII” mcans not grcater tlian t .  



Dcnotc by MaxOver(s,t) the maximum over the i-overlaps of s for i E {1 ,2 ,  .., t } .  1.e. 

MaxOver(s,t)=rnazl<;<t - -  { oves;(s) } . 
Denote by Max(n,b,t) the minimum value of MaxOver(s,l) divided by n, when minimized 
over all strings in S; . 1.e. 

Max(n,6,1)= rnin,Es!, { . MaxOver(s,t) }. 
Clearly, 

Proposition 17: Max(n,d,t) 2 Avcr(n,G,t). 

This establishes a trivial lower bound on Max(n,b,t). We donot bcleivc that this bound 
is tight; however we failed to prove a better one. On the other hand the following 
proposition yields an upper bound on Max(n,O,t). 

Proposition 18: (( i )  is folklore and ( i i )  appears in van Lint[L)) 

(i) For every De-Bruijn Sequence5, s, of length 2k  and every i, i E {1,2, .., k - 1) 

ouer;(s) = -2- 1 . 2k . 

(ii) For every k there exists a Shortened De-Bruijn Sequence', s, of length 2' - 1 

over;(s) = 2'-' - 1 cz + - (zk - 1) . 
such that  for every i, i E {1,2, .., 2k - 2) , 

Using Prop. 18 we also obtain an upper bound on Max(n,6,t); i.e. 

Proposition 18: [Here g is an integer.] 

(i) For t + 1 = I = 2k - 1, n = ql and 6 = v, Max(n,6,t) 5 4 +6 - iTT+si- 

(ii) Max(n,b,t) <Max(n,b,t + 1). 
(iii) Max(n,b,t)< 4 + 6 + O(i). 

The proof appears in the full version of this paper. 

The Zk-bit long slring ( a g , a l , a z ,  ..., u 2 k - , )  is a DcBruijn Sequence if (when considered in circular 

A Shortencd DcI3ruijn Scqucnce, of length 2' - 1 ,  is o 2'-1ong DcJ3ruijn Scqucnce in which a zero 
order) it contain as substrings all possible bibstrings of length k. 

has bccn omitted from the all-zero block or length k . 
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3. On the Cryptographic Security of the RSA’s L.S.B 

I n  this scction we apply the rcsulls of the privious section to the analysis of 
algorithms which irtvert thc liS.4 encryption function when given access to  an oracle 
for the  lrrtsl significant bit of the encrypted oicssage. This implies results (concerning 
the security of I1SA:s 1.s.b.) which fall into thc following three categories: 

(i) A 0.725-security result (for RSA’s 1.s.b) 

(ii) Conditional improvements of the above result. I.c. resulls which will hold if 

(iii) Rounds on the possibility of improvcrnents using current techniques. 

some conjecture is proven. 

3.1. Specific Background  

Our 0.725-security result is based on Vazirani and Vazirani work [Wl], which is 
an improvement of Ben-Or Chor and Shamir [BCS] work. In this subsection we sketch 
some of the ideas used in these nice works. 

3.1.1. A Sketch  of Ben-Or  Chor and  Shami r  AIgorithmic Procedure  

The essence of the  lnve r t ing  Algorithm: 

The plaintext is reconstructed , from its encryption, by running a g.c.d procedure 
on two multiples7 of it. The values of these multiples (as well as the values of dl 
multiples discussed hereafter) are “small”*. A Modified Binary G.C.D algorithm 
is used. To operate, this algorithm needs to know the parity of multiples of the 
plaintext. Thus, it is provided with a subroutine that  determines the parity of 
these multiples.(see [BCS]) 

Determining Parity using an Oracle  which may  err: 

The subroutine determines the parity of a multiple ,kz, of the plaintext ,z, by 
using an (4 + 6)-oracle for RSA’s 1.s.b as follows. I t  picks a random 7 and asks 
the oracle for the parity (i.e. 1.s.b) of both FZ and r z  + kz feeding it in turn with 
E(Fz)  = E(r)E(z) and E((r  + k)x) = E(r + ~ ) E ( z ) ~  . The oracle’s answers are 
processed according to the following observation. Since kz is “small” with very 
high probability r z  < r z  + k x  . Then, the parity of kz is equel to 0 if the parities 
of r z  and r z  + kz are identical; and equal to  1 otherwise. This is repeated many 
times; every repetition (instance) is called a kz-measurement (or a toss of the 
kz-coin). Note tha t  the outcome of a kx-measurement is correct if the oracle W ~ S  

correct on both F Z  and r z  + kx , The outcome is correct also if the oracle wu 
wrong on both queries (but this fact is not used in [BCS]). 

’ All integers and operations are considered modulo , N ,  the RSA’s modulus. 
llere and throughout thc  rest of thc  papcr ‘‘small” means bounded by a vcry small fraction of the 

E ( M )  dcnoks  the  RSA encryplion function. Reeall tha t  E ( M )  = M e  (mod N), where N and c 
RSA’s modulus. 

are respectively the ItSA’s Inodulus and cxponciit. 
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(Trivial) Mcasurcmcnt  Analysis: 

A kz-coin toss is correct with probability a t  Icast 26 . 
(This suficcs if 6 = f + c , see [UCS]) 

3.1.2. A Sketch of Vazirani  a n d  Vazirarii Modification of t he  BCS-Procedure 

Distinguishing a Good Coin  from a Bad one: 

For 6 < {; if when running a Monte-Carlo experiment on a kz-coin toss, more 
than a 1-26 fraction of the answers agree on some value, t hen  this is the correct 
value.(ln such a case the coin is said to be distinguishably good. See [Wl]) 

Using Distinguishably G o o d  Coins: 

Let t be a fixed constant and K be a set of cardinality O(1ogN). If for every k E K 
there ezist a 1 5 j 5 t such that the ( j  . kz)-coin is distinguishably good then one 
can determine the parity of kz. (This is done by replacing every kz-measurement, 
of the subroutine, by a set of O(log log N) measurements, see [Wl]). (The above 
condition will be referred to as the Distinguishability Condition.) 

Vazirani and Vazirani combined the above sketched ideas to an algorithm that  inverts 
the RSA using a (l + 6)-oracle. It remained to be shown that when given certain 
oracles for RSA’s 1.s.b the Distinguishability Condition holds. In [Wl] Vazirani and 
Vazirani proved that  the Distinguishability Condition holds for any 0.741-oracle for 
RSA’s 1.s.b.; in [ W 2 ]  they improved their analysis and showed that this condition 
holds for any 0.732-oracle. 

3.2. Cryp tograph ic  Impl ica t ions  of our Combinatorial Results 

It is easy to show tha t  the Distinguishability Condition is equivalent to the 
following condition, hereafter referred to as the Big-Advantage Condition : for some 
fixed t, Max(N,C,t)> 1 - 26 + E . 
(Use oracle transformation through multiplication by the inverse of kz mod N .  Note 
that if the inverse does not exist it is feasible to factor N and inverting the RSA 
becomes easy.) This was also observed by Vazirani and Vazirani [ W B ] .  
Thus, we can summerize Vazirani and Vazirani’s pl] work by the following 

W - T h e o r e m :  Let N be the RSA’s modulus and t be a fixed constant. If 
Max(N,G,t)>l - 26 + E then any  ( g  + 6)-oracle for RSA’s 1.s.b can be used to 
efficiently invert the RSA. (In other words: if the Big Advantage Condition holds 
for 6 then RSA’s 1.s.b is ( f  + 6)-secure.) 

By our results, the Big-Advantage Condition holds for S 2 0.225 . Namely, using the 
W-Theorem, Prop. 17 and Corollary l(;i;) we get 

Corol lary 2: Any 0.725-oracle for the least significant bit of the RSA can be 
efficiantly used to invert the RSA. 
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In  other words 

Theorem: IISA’s 1.s.b. is 0.725-secure. 

Note that the result of corollary l(;iil i s  tight. Thus under the  condi t ion 
Aver(n,6,1)> 1 - 26 + c , the rcsult of Corollary 2 is  optimal. fiowevcr, 
Aver(n,b,t)> 1 - 26 + t , is more than is nwded to satisfy thr Big-Advantage Condition. 
(liecall that the Big-Advantage Condition rcqiiircs only that Max(n,B,t)> I - 26 + E.) 
Thus, any improvement or the current lower bound on !vlMax(n,S,t) will yield an 
improvement of tlic result of Corollary 2. We bcleive that hlax(n,6,t)>hvcr(n,6,t) and 
thus thal such an improvement is possible. Furthermore we conjecture that 

Conjecture  1: Max(n,6,t)x it + 6 . 
Combined with the VV-Theorem this implies 

Corollary 3: If Conjecture 1 is valid then RSA’s 1.s.b. is ( $  + €)-secure, for 
arbitrary small fixed E .  

Note that unde r  t h e  Big-Advantage Condition the  ‘‘result” of Corol lary 3 is 
optimal. This is due to Prop. 19(;;i) which states that Max(n,6,t)< 1 + 6 . Thus, 
using the W-Theorem (or any proof technique which requires that the Big-Advantage 
Condition holds) one cannot hope to prove that RSA’s 1.s.b is :-secure. 

Let us conclude by pointing out that the full power of the results obtained in 
section 2.3 was not used; however, we conjecture that it can be used. Namely, 

Conjec ture  2: Let N be the RSA’s modulus and t < < N .  If Aver(N,6,t)>i + t  

then any (4 + 6)-oracle for RSA’s 1.s.b can be used to efficiently invert the RSA. (In 
other words: if Aver(N,6,t)> 1 + E then RSA’s 1.s.b is ( 4  + stsecure.) 

The condition of the statement of Conjecture 2 is hereafter referred to as the Average- 
Advantage Condition. By Corollary l(i;) , the Average-Advantage Condition is satisfied 
by 6 = 0.177; thus 

Corollary 4: If Conjecture 2 is valid then the RSA’s 1.s.b is 0.677-secure. 

Note that 6 = 0.177 is the minimum for which the Average-Advantage Condition 
is satisfied. Thus no progress beyond the 6 = 0.177 point can be made through the 
Average-Advantage Condition; i.e. when relying on it one cannot hope to prove that 
RSA’s 1.s.b is 0.676-secure. 

Note that in Corollary 4 the missing part to reach the stated result is the 
algorithm that will use the analysis. (The analysis of the question which oracles 
satisfy the Avarage-Advantage Condition is complete!) However, in the case of the 
Big-Advantage Condition improved results can still be achieved (just) by improving 
the analysis of the combinatorial problem (see Corollary 3). 



4. Conclusion 

We have solved a combinatorial problem and have shown how to use this solution 
to irriprovc knowlcdgc 0 1 1  the security of RSA’s 1.s.b . We have also pointed out possible 
directions for further improvement of our result. Improved results can be obtained by 
either conducting a better cornbinatorid analysis of Max(.,-,-) or by suggesting an 
inverting algorithm based on the Average-Advantage Condition. 

However such irnprovcments will not suffice to show that RSA 1.s.b. is $-secure. 
We believe that a n y  improvement in the results concerning the security of RSA’s 1.s.b , 
beyond the $ point (which is still out of reach), must make use of additional properties 
of the RSA. 

5 .  Epilogue 

Meanwhile, Schnorr and Alexi [SA84] proved that RSA 1.s.b is ( d  + €)-secure, for 
every fixed e .  Thus, the above coclusions are no longer of interest. 

Schnorr and Alexi’s proof is based on guessing the parity of O(1og log N) randomly 
selected positions and using these positions in all measurements of Ben-Or, Chor and 
Shamir’s algorithmic procedure. Thus, the oracle is queried only about one end-point 
of each measurement and the analysis is w.r.t single positions rather than being w.r.t 
pairs of close positions. 

Further improvement was achieved by Chor and Goldreich [CG84], who proved 
that RSA 1.s.b is (4  + &)-secure, for every fixed c. 
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