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We count the number of complete graphs of order 4 contained in certain graphs. 

1. INTRODUCTION 

Let GCp’ be a graph of p vertices and let @” be its complement. Let 
k,(G’“‘) be the number of complete subgraphs of order m contained in Go”. 
Let 

T,(p) = min(k,(G’P’) + k,(G”“)). 

where the minimum is taken over all graphs of p vertices. All of our 
terminology is now fairly standard and is to be found in either [ 2] or [ 8 ]. 
Erdos 141, using a simple counting argument, proved that 

and conjectured that 

lim T,(p) 
p-cc 
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In particular this would imply that 

&(PP& ; . ( 1 
Erdos comments on the difficulty of finding graphs G which give values of 
k,(G) + k,(G) as small as (:)/32. 

Goodman [6] calculated T,(p) exactly and showed that 

up) > P(P - up - 5)/24. (4) 

The degree sequence of G (p) determines k,(GfP’) + kj(GCP)) which is why the 
exact calculation of T,(p) proved to be a tractable and simple problem. The 
fact that this no longer holds true is the intrinsic reason why any such exact 
calculation of T,,,(p) (m > 3) is likely to be very difficult. Write w(p) = 
(&I - l)(p - 5)(p - 17)/24)/32. We prove that if p is prime and p = 
4u2 + 1 for some integer u, then 

T,(P) < W(P)* 

In view of (4), one might have suspected that 

(5) 

T,(P) a W(P) (6) 

for general p. However, Thomason [lo] has shown that this is false. The 
reader familiar with Ramsey theory will notice another pretty way of 
expressing w(p). Write rS = r(K,) - 1, where r(K,) is the Ramsey number of 
K,. Then 

W(P) = (((P - r,>(p - rd(p - TAP - r,)Y24W 

To prove (5) we need to calculate k,(G(p)) (see Theorem 1) for a certain 
well-known self-complementary graph G(p). The calculations depend on 
some well-known techniques in number theory involving quadratic residues. 
In this context Proposition 3 may well be of independent interest. 

2. MAIN THEOREM 

Let p = 4k + 1 be a prime number. Let G(p) be the graph with vertices 
(0, 1,2 ,..., p - 1 }mod p and edges defined by 

ijEEoi-jER, 

where R is the set of quadratic residues modulo p. This is the so-called Paley 
graph. This graph was used by Greenwood and Gleason [ 71 to show that 
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r(K4) = 18. Let H = (R) be the subgraph of G(p) induced by R. Let R 1 be 
the set of vertices in H which are neighbours of 1, i.e., x E R, if and only if 
xER and x-1ER. Write H,=(R,). It is well known [3] that IR,l= 
k - 1. Write 

f(~) = lWf,)I. 

PROPOSITION 1. k,(W)) = (P(P - 1 f fhw24. 

Prooj Since G(p) is vertex transitive 

k,(W)) = (P . k,(W)/4 (7) 

and since H is also vertex transitive 

k,(H) = (I fW)l . k,W,))P 

= ((P - llf(~))/6. (8) 

The result follows from (7) and (8). Notice that G(p) and H are both vertex 
transitive since for any vertex a of G(p) and any b E R the map x H a + bx 
is an automorphism of G(p). 1 

COROLLARY. T,(P) G (P(P - 1) f(P))/ 12. 

ProoJ: This follows immediately from Proposition 1 since G(p) is self- 
complementary. I 

Remark and Notation. The real difficulty now is to evaluate J(p). We 
first of all (Proposition 2) express f(p) in terms of a formula involving 
quadratic residues. For the relevant information about quadratic residues we 
recommend any elementary book on number theory, for example [3], 
together with [ l]. 

Let d(n) denote the Legendre symbol (n/p). Let 

p-l P-l 

s = \‘ \‘ d(1 -xl) f$(l - y*) @(xl - J’l). 
Eo y=o 

Write p = a’ + b* where b is odd. Let a = 2n and b = 2m - 1. Then 

k=n’+m(m- 1). (9) 

PROPOSITION 2. f(p)=(S f (P- l)(P- 19) +60)/h4. 
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Proof: Let Zp* denote the non-zero elements of the Galois field GF(p). 
Let 

X={(x,y)EZ,XXZ,*:x,y#il;x#fy}. 

s, = \’ 
(X.-;iE.Y 

cp( 1 - x’) qq 1 - y’) #(x2 - y’). 

Write v(x) = q5( 1 -x2). We define subsets Ai of X by the following table: 

Subset v(x) W(Y) ‘dxy-‘) 

Al 
A2 
A3 
A4 
A5 
A6 
A, 
All 

1 1 1 
1 1 -1 
1 -1 I 
1 -1 -1 

-1 1 1 
-1 1 -1 
-1 -1 1 
-1 -1 -1 

Thus, for example, (x, y) E A, if and only if (A Y) EX and V(X) = 
W( Jl) = -1, w(xq’-‘) = 1. Let ai = ]AiJ. We have, by definition, 

WP) = aI. (10) 

It is well known that (see, for example, [3]) 

l{x:x~Z,*,W(x)=1}1=2(k-l). (11) 

Using (11) we easily obtain 

a, + a2 = a, + a3 = 4(k - l)(k - 2), 

a,+a,=a,+a,=a,+a,=a,+a, 

=a,+a,=a,+a,=4k(k-1). 

Since w(x) = tq(x-‘), 

(12) 

(13) 

a3 = a, ; a4=a6. 

Moreover 

so = \’ ‘Y(x) W(Y) v(xY-‘) CX.siGX 

(14) 

= a, - a, - a3 + a4 - as + a6 + a, - as. (15) 
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Hence, from (10) and (12)-(15) 

S, = 64/(p) + 8(k - 1)(7 - 2k). 

Now 

s=s,+2 

=s,+2 

=&so-4 

(16) 

(17) 

The result follows from (16) and (17). 1 

PROPOSITION 3. S=Z(p + 1)-4~‘. 

Proof. We have 

s=\‘\‘~((x-l)(y-1)(x- y))(l+Q(x)}(l +$(y>}=A+2B+C (18) -- 
. T Y  

where 

A = \‘ \‘ @((x - I)(y - 1)(x - y)), -- 
XY 

B = \‘ \‘ #((x - l)(y - 1)(x - y)x), -I 
XY 

c = \‘ \‘ $q(x - l)(J, - 1)(x - y)xy). -- 
JY 

It is easy to see that A = 0, B = 1. Now 

so 

Set 

C+2= \‘\’ $j -I *. Y&o ( 
x+l. 

? 
+. (y-x)). 

xtyt-I 

xs 1 1’ + 1 
t= 

I’ ’ 
u=L 

x ’ 
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SO 

ttl u+l 
x=-, 

ut - 1 
y=-. 

ut - 1 

Then 

= \’ \‘ #(tu(u - t)(ut - 1)). -- U.lf- 1 

Thus 

c = \‘ \’ qqtu(u - t)(ut - 1)). 13 
u.t&l 

Replace t by t/u to obtain 

c = $ q+(t) #(t - 1) 1 &u> $(u’ - t>. 
u 

Let x be a character (mod p) of order 4 and consider the Jacobi sum K(j) = 

C, x(n) #Cl - n). F or suitably chosen signs of a and b, Kk) = b + ai. The 
Jacobsthal sum 2, d(u) d(u’ - t) equals 2((t) Kk) +X(C) K(X). Since 
at) 4(f) = x(t)3 

C=K(+&)#(t- 1) +K@)x:(t)ti(l- 1) 
I 

= Kh)’ + K(j)* 

= (b + ai)’ + (b - ai) 

= 2(b2 -a’). (19) 

The result now follows from (18) and (19). 1 

Remark. The idea for the transformation (x, y) + (1, u) came from a 
paper of the Lehmers [9]. The well-known relation between Jacobsthal and 
Jacobi sums is proved, for example, by Berndt and Evans [l] in 
Theorem 2.7. The formula Kk) = b + ai is proved, e.g., in Theorem 3.9 of 
this paper. A. Selberg has evaluated a sum more general than C, namely, 

c C.r,wiF,q~ Xl Cv)x2((l - ~)(l -x)>& - Y>? where x1 7 x2, x3 are 
characters on the finite field GF(q) with q odd. For details, see IS]. 

PROPOSITION 4. f(p)= ((p- 9)2 -4a2)/64. 

Proof. This follows from Propositions 2 and 3. ! 
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THEOREM 1. k,(W)) = (P(P - l)((~ - 9)’ - 4a2))/1 536. 

ProojI This follows from Propositions 1 and 4. 1 

THEOREM 2. Suppose p is prime and p = 4u2 + 1 for some integer u. 
?-hen k,(G(p)) = ((P(P - ~I(P - ~)CP - 17))/24)/64. 

Proof: In Theorem 1 put a* = p - 1. 1 

THEOREM 3. Suppose p is prime and p = 4~’ + 1 for some integer u. 
Z-hen T,(P) < w(p). 

Proof This follows from Theorem 2, Proposition 1 and its Corollary. 1 

3. FINAL REMARKS 

Character sums can be very delicate. We were lucky that C was tractable. 
Let D = C, C, $((x + l)(y + 1)(x + y)xy) be the sum obtained from C 
(defined below (18)) by simply changing the minusses to plusses. It appears 
to be surprisingly difficult to evaluate D. We have made the following 
conjecture, based on computer calculations. 

Conjecture. Let p be any odd prime, and write p = c2 + 2d2 if p = 1 or 3 
(mod 8). Then 

if p E 5 or 7 (mod 8). 
(20) 

= -p + 4c’ if p=lor3(modS). 

Using the transformation (x, y) --t (t, u) in 191, Emma Lehmer has proved 
(20) in the case p = 5 or 7 (mod 8). No elementary proof of the case p = 1 
or 3 (mod 8) appears to be known. 
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