On the Number of Critical Free Contacts of a Convex Polygonal Object Moving in Two-Dimensional Polygonal Space*

Daniel Leven ${ }^{1}$ and Micha Sharir ${ }^{1,2 *}$
${ }^{1}$ School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
${ }^{2}$ Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Abstract

We show that the number of critical positions of a convex polygonal object B moving amidst polygonal barriers in two-dimensional space, at which it makes three simultaneous contacts with the obstacles but does not penetrate into any obstacle is $O\left(k n \lambda_{s}(k n)\right)$ for some $s \leq 6$, where k is the number of boundary segments of B, n is the number of wall segments, and $\lambda_{s}(q)$ is an almost linear function of q yielding the maximal number of "breakpoints" along the lower envelope (i.e., pointwise minimum) of a set of q continucus functions each pair of which intersect in at most s points (here a breakpoint is a point at which two of the functions simultaneously attain the minimum). We also present an example where the number of such critical contacts is $\Omega\left(k^{2} n^{2}\right)$, showing that in the worst case our upper bound is almost optimal.

1. Introduction

Let B be a convex polygonal object having k vertices and edges, and free to move (translate and rotate) in a closed two-dimensional space V bounded by a collection of polygonal obstacles ("walls") having altogether n corners. The problem studied in this paper is to estimate the number of free critical positions of B at which it makes simultaneously three distinct contacts with the walls. More precisely, a free position is one at which B is fully contained in V, so that it can touch some obstacles, but not penetrate into any of them (this notation differs from that of [7], where such positions are called semifree). A critical free

[^0]

Fig. 1.
position Z is one at which there exist three distinct pairs (W_{1}, S_{1}), (W_{2}, S_{2}), (W_{3}, S_{3}), such that for each $i=1,2,3$ either W_{i} is a wall segment and S_{i} is a corner of B or W_{i} is a wall corner and S_{i} is a side of B, and such that at position $Z S_{i}$ touches W_{i}. See Fig. 1 for an illustration of such a critical contact. Note that this somewhat "liberal" definition also regards as critical, positions at which a corner of B touches a wall corner and another corner/side of B touches another wall edge/corner (including also placements at which a side of B overlaps a wall segment with an endpoint in common).

This problem is a major subproblem in the design and analysis of efficient algorithms for automatic planning of a continuous obstacle-avoiding motion of B within V between two specified positions. If B is a line segment (a "ladder"), then it is shown in [5] that the total number of such critical positions of B is $O\left(n^{2}\right)$, which consequently leads to an $O\left(n^{2} \log n\right)$ algorithm for the desired motion planning. If B is a convex polygonal object which is free only to translate in V but not to rotate, then the motion-planning problem becomes simpler and can be accomplished in time $O(n \log n)$ [4], [6]. This follows from the property, proved in [4] and related to the problem studied in the present paper, that the number of free positions of B (all having the same given orientation) at which it simultaneously touches two obstacles is only $O(n)$ (provided the obstacles are in "general position" [4]). If B is also allowed to rotate then, extending the motion-planning technique of [5], one obtains an algorithm whose complexity depends on the number of critical free positions of B at which it makes simultaneously three distinct contacts with the walls. Since each such contact is a contact of either a corner of B with a wall edge or of an edge of B with a wall corner, a crude and straightforward upper bound on the number of these critical positions of B is $O\left((k n)^{3}\right)$. Moreover, if B is nonconvex, then there are cases where the number of these critical positions of B is indeed $\Omega\left((k n)^{3}\right)$ (cf. a remark in [4]). However, in this paper we show that if B is convex, then the number of these critical triple contacts is only $O\left(k n \lambda_{s}(k n)\right)$, for some $s \leq 6$, where $\lambda_{s}(q)$ is the maximal number of "breakpoints" along the lower envelope (i.e., pointwise minimum) of a set of q continuous functions, each pair of which intersect in at most s points. Here a breakpoint is a point at which two of the functions simultaneously attain the minimum; note that between any two adjacent breakpoints the minimum is attained by a single function, thus $\lambda_{s}(q)+1$ is equal to the maximal number of connected graph portions composing the lower envelope of a collection of such functions. It is shown in [10] that $\lambda_{s}(q)=O\left(q \log ^{*} q\right)$
(where $\log ^{*} q$ is the length of the smallest exponential tower $2^{\mu^{2}}$ exceeding q, and where the constant of proportionality depends on s). A better asymptotic bound is given in [2] for the case $s=3$ and in [8] for larger values of s. These better bounds are roughly of the form $\lambda_{s}(q)=O\left(q \alpha(q)^{O\left(\alpha(q)^{s-3}\right)}\right)$, where $\alpha(q)$ is the functional inverse of Ackermann's function, and is thus extremely slowly growing. In short, for a fixed $s, \lambda_{s}(q)$ is nearly linear in q, although, as has been shown in [2] and [9], $\lambda_{s}(q)=\Omega\left(q \alpha^{l(s-1) / 2]}(q)\right)$, so that it is superlinear in q for $s \geqq 3$.

Finally, using these results, and modifying the technique of [5] to the case of an aribtrary convex polygonal moving body B, one can obtain an $O\left(k n \lambda_{s}(k n) \log (k n)\right)$ motion-planning algorithm for B. This algorithm will be described in full detail in a forthcoming companion paper [3].

2. Estimating the Number of Critical Free Contacts

In this section we prove our main result, namely (see Theorem 2.4) that the number of critical free contacts of B, as defined in the introduction, is $O\left(k n \lambda_{s}(k n)\right.$) for some $s \leq 6$. We assume that B and the set of obstacles are in general position. By this we mean that the shape of B and the positions of the obstacles are such that there does not exist a position of B at which it satisfies four independent constraints imposed on B by its possible contacts with obstacles. Each constraint of this form either requires a specific corner of B to touch a specific wall edge, or requires a specific side of B to touch a specific wall corner, or requires that the segment connecting two points of contact be perpendicular to the wall edge or to the side of B involved in one of these contacts. Furthermore, these constraints must be independent, in the sense that none of them is a consequence of the others in an arbitrary generic placement of B and the obstacles; for example, for a contact of a corner S of B against a wall corner W, only two out of the four possible constraints that can be associated with this contact (namely, S touching the two wall edges incident to W and W touching the two sides of B incident to S) can be independent, as is easily checked. Typical configurations in which the obstacles and B are not in general position are shown in Fig. 2; they involve respectively, from left to right, (i) four distinct points of simultaneous contact, (ii) three points of contact where one is of a corner of B against a wall corner (thus contributing two independent constraints), and (iii) two points of contact

Fig. 2.
where one is a corner-corner contact and where the segment connecting these points is perpendicular to a side of B.

Definition 2.1. (a) A (potential) contact pair O is a pair (W, S) such that either W is a (closed) wall edge and S is a corner of B or W is a wall corner and S is a (closed) side of B. The contact pair is said to be of type I in the first case, and of type II in the second case.
(b) An actual obstacle contact (i.e., a contact of B with an obstacle) is said to involve the contact pair $O=(W, S)$ if this contact is of a point on S against a point on W, and, furthermore, if this contact is locally free, i.e., the inner angle of B at S lies entirely on the exterior side of W if S is a corner of B, and the entire angle within the wall region V^{c} at W lies exterior to B if W is a wall corner.
(c) The tangent line T of a contact pair $O=(W, S)$ is either the line passing through W if W is a wall edge or the line passing through W and parallel to S if S is a side of B (in the second case T depends of course on the orientation of B).

It is clear from the above definition that there are $O(k n)$ possible contact pairs. Throughout this section we will use the same index i to refer to a contact pair O_{i}, to its corresponding wall element W_{i} and boundary element S_{i} of B, and to its tangent line T_{i}. Let Z be a free position of B at which it makes two simultaneous obstacle contacts involving the contact pairs O_{i}, O_{j} for which T_{i}, T_{j} are not parallel. Then $z_{i j}=z_{j i}$ will denote the intersection point of T_{i} and T_{j}, $x_{i j}$ (resp. $x_{j i}$) will denote the contact point of W_{i} with S_{i} (resp. W_{j} with S_{j}) at position Z, and $l_{i j}$ will denote the line passing through $x_{i j}$ and $x_{j i}$. Also $u_{i j}, v_{i j}$ will denote the endpoints of W_{i} if O_{i} is of type I or the endpoints of S_{i} when B is positioned at Z if O_{i} is of type II, such that $u_{i j}$ and $z_{i j}$ lie on the same side of $x_{i j}$ on T_{i}, and $v_{i j}$ lies on the other side of $x_{i j}\left(u_{j i}, v_{j i}\right.$ are defined similarly for $\left.O_{j}\right)$ (see Fig. 3).

An extreme situation arises when $x_{i j}=z_{i j}$, which is the case if W_{i} is a wall edge, W_{j} is a wall corner, and S_{i} is an endpoint of the side S_{j} of B. In this case $u_{i j}$ and $v_{i j}$ are not well defined, although $u_{j i}$ and $v_{j i}$ are. We will refer to this case by calling O_{i}, O_{j} adjacent contact pairs. Another extreme situation arises when a corner S of B touches a wall corner W; formally speaking (see also the discussion at the beginning of this section), this can be regarded as a double contact (e.g., of S against the two wall edges meeting at W). In this case we have $x_{i j}=x_{j i}=z_{i j}$, so that all four points $u_{i j}, v_{i j}, u_{i j}, v_{j i}$, as well as the line $l_{i j}$, are not

Fig. 3.
well defined. Although we will use such double contacts in our lower-bound example given at the end of the paper, we will ignore such singular contacts in our upper-bound analysis (as justified in a remark preceding Theorem 2.4).

Definition 2.2. Let O_{1}, O_{2} be two contact pairs. We say that O_{2} bounds O_{1} at the orientation Θ if there exists a (not necessarily free) position $Z=(X, \Theta)$ of B at which it makes two simultaneous obstacle contacts involving O_{1}, O_{2}, respectively, such that $B^{*}=\operatorname{conv}\left(S_{1} \cup S_{2}\right)$ always intersects W_{2} as we move B from Z without changing the orientation Θ along the tangent T_{1} in the direction of z_{12} until the last position at which S_{1} still touches W_{1}. (In case of adjacent contact pairs O_{1}, O_{2} with O_{1} of type I and O_{2} of type II, we have $z_{12}=x_{12}$ so that the direction of motion of B in this definition is not defined; moreover, in this case B^{*} is simply the segment S_{2}, which stops intersecting W_{2} immediately as we move it toward either endpoint of W_{1}. In this ill-defined case we prefer to regard O_{2} as not bounding O_{1} (note, however, that in this case O_{1} does bound O_{2} in accordance with the above definition).)

The crucial property on which our analysis depends is:
Proposition 2.1. Let O_{1}, O_{2} be two contact pairs for which there exists a position $Z=(X, \Theta)$ of B at which it makes two simultaneous obstacle contacts involving O_{1}, O_{2}, respectively. Then either O_{1} bounds O_{2} at Θ or O_{2} bounds O_{1} at Θ, except when the corresponding tangents T_{1}, T_{2} are coincident or parallel. (Typical degenerate cases of kind are: (a) W_{1}, W_{2} are both wall corners and $S_{1}=S_{2}$; (b) W_{1}, W_{2} are both wall corners and S_{1}, S_{2} are parallel sides of B; (c) W_{1}, W_{2} are parallel wall edges; and (d) W_{1} is a wall edge and S_{2} is a side of B parallel to W_{1}.)

Proof. In the nondegenerate case the tangents T_{1}, T_{2} must intersect at a single point. Using the terminology introduced above, we consider separately three possible subcases (see Fig. 4).

Fig. 4.
(1) W_{1}, W_{2} are both wall edges (Fig. 4(a)).

Consider the line l_{1} (resp. l_{2}) parallel to l_{12} passing through u_{12} (resp. u_{21}). Obviously either l_{1} intersects W_{2} or l_{2} intersects W_{1}. Suppose, without loss of generality, that l_{1} intersects W_{2}. But then as we move B along W_{1} from x_{12} until $S_{1} S_{2}$ reaches l_{1}, the segment $B^{*}=S_{1} S_{2}$ will always intersect W_{2}. Thus O_{2} bounds O_{1} at Θ.
(2) W_{1}, W_{2} are both wall corners (Fig. 4(b)).

Let l_{1} (resp. l_{2}) be the line parallel to l_{12} which passes through v_{12} (resp. v_{21}). Obviously either l_{1} intersects S_{2} or l_{2} intersects S_{1}. Suppose, without loss of generality, that l_{1} intersects S_{2}. Then, since B^{*} is convex, the entire trapezoid Δ bounded by l_{12}, l_{1}, S_{1}, and S_{2} is contained in B^{*} (in this position of simultaneous contact with W_{1} and W_{2}). Thus as we move B along T_{1} toward z_{12} until the endpoint v_{12} of S_{1} coincides with W_{1}, then throughout this motion W_{2} will intersect Δ, hence B^{*}, again showing that O_{2} bounds O_{1}.
(3) W_{1} is a wall edge and W_{2} is a wall corner (or symmetrically, W_{2} is a wall edge and W_{1} is a wall corner) (Fig. 4(c) and (d)).
If O_{1} and O_{2} are adjacent contact pairs, then obviously O_{1} bounds O_{2} (see a comment in Definition 2.2). Assume that this is not the case and let l_{1} (resp. l_{2}) be the line parallel to $S_{1} v_{21}$ passing through u_{12} (resp. through $x_{21}=W_{2}$). Obviously, either l_{1} intersects the line segment $x_{21} v_{21}$ or l_{2} intersects the line segment $x_{12} u_{12}$. But in the first case, observe that at the position of mutual contact the triangle $x_{12} x_{21} v_{21}$ is contained in B^{*}; thus if we move B along W_{1} until S_{1} meets u_{12}, then throughout this motion W_{2} must intersect this triangle, hence B^{*}, so that in this case O_{2} bounds O_{1}. In the second case if we translate B along T_{2} until v_{21} meets W_{2}, then throughout this motion the line segment $S_{1} v_{21}$ (and hence also B^{*}) will intersect W_{1} so that in this case O_{1} bounds O_{2}.

Remark. The proof of Proposition 2.1 actually implies that, for each double contact of B involving pairs O_{1}, O_{2}, there exists a critical orientation $\Theta_{O_{1} O_{2}}$ of B (for which the lines l_{1} and l_{2} coincide) such that at orientations greater than $\Theta_{O_{1} O_{2}}$ one of the contact pairs, say O_{1}, bounds O_{2} but O_{2} does not bound O_{1}, and at orientations smaller than $\Theta_{O_{1} O_{2}}$ the contact pair O_{2} bounds O_{1} but O_{1} does not bound O_{2}. (If O_{1}, O_{2} are adjacent, then on one side of $\Theta_{O_{1} O_{2}}$ one of these contact pairs, say O_{1}, always bounds O_{2}, whereas on the other side of $\Theta_{O_{1} O_{1}}$ no such double contact of B is possible.)

Let O_{1} be any contact pair and consider all contact pairs that bound O_{1} (at any orientation Θ). For each such pair O_{2} we define the function $F_{\mathrm{O}_{1} \mathrm{O}_{2}}(\Theta)$ over the domain $\Pi=\Pi_{O_{1} O_{2}}$ of orientations Θ of B in which O_{2} bounds O_{1}, to be the distance of x_{12} from v_{12} at the position $Z=(X, \Theta)$ in which B simultaneously makes two obstacle contacts involving O_{1}, O_{2}, respectively (see Fig. 5; note that v_{12} is always well defined whenever O_{2} bounds O_{1}).

Note that II need not in general be connected but may consist of several subintervals, such that, for orientations Θ outside these intervals, either two obstacle contacts involving O_{1}, O_{2}, respectively, cannot occur simultaneously, or O_{2} does not bound O_{1}. Nevertheless we have:

Fig. 5.
Lemma 2.2. $\Pi_{\mathrm{O}_{1} \mathrm{O}_{2}}$ consists of at most five intervals.
Proof. O_{2} bounds O_{1} at an orientation Θ of B if and only if the following four conditions hold:
(1) Θ lies on the appropriate side of the critical orientation $\Theta_{O_{1} O_{2}}$ which separates between the domain in which O_{2} bounds O_{1} and the domain in which O_{1} bounds O_{2} (see the remark following Proposition 2.1).
(2) There exists at orientation Θ a position of B at which S_{1} touches W_{1} and S_{2} touches W_{2} simultaneously.
(3) Suppose S_{1} is a corner of B and W_{1} is a wall. Then at this position of double contact, the inner angle of B at S_{1} lies entirely on the exterior side of W_{1}; if S_{1} is a side of B and W_{1} is a wall corner, then again the entire angle within the wall region V^{c} at W_{1} should lie exterior to B. Similar conditions should hold for the contact of S_{2} against W_{2}.
(4) The tangents T_{1}, T_{2} of O_{1}, O_{2}, respectively, are not parallel or coincident at Θ.

Thus the domain of definition of the function $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ is the intersection of the three domains I_{1}, I_{2}, I_{3} satisfying, respectively, conditions (1), (2), and (3) above. (Condition (4) pre-empts, regardless of the value of Θ, cases in which W_{1} and W_{2} are parallel or coincident, or S_{1} and S_{2} are parallel or coincident, or W_{1} and W_{2} are two wall corners touching the same side of B, etc. However, if the contact pairs O_{1}, O_{2} are of "mixed" types, e.g., O_{1} is of type I and O_{2} is of type II, then condition (4) defines an orientation Θ^{*} at which S_{2} becomes parallel to W_{1}; since at this orientation the corner v_{12} involved in the definition of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ changes discontinuously, we artificially split the domain of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ at Θ^{*} into two disjoint subdomains, and seek to prove the assertion of the lemma for each of these subdomains separately.)

Note first that the domain I_{3} is always an angular interval. Note also that, since the angular range for Θ is circular, the domain I_{1} is not well defined. However, combining condition (1) with condition (3), we can define I_{1} as an angular interval, one of whose endpoints is $\Theta_{o_{1} O_{2}}$, and the other is the appropriate endpoint of I_{3}. In conclusion, $I_{1} \cap I_{3}$ is simply an angular interval.

The domain I_{2} of Θ satisfying (2) has a more complicated structure. The following arguments provide a crude analysis of this structure.

Suppose first that W_{1}, W_{2} are both wall edges. Then $B^{*}=\operatorname{conv}\left(S_{1} \cup S_{2}\right)$ is a straight segment. By continuity, if at Θ the segment B^{*} touches W_{1}, W_{2} at interior
points of these walls, and if, as we assume, W_{1} and W_{2} are not parallel, then B^{*} will continue to have a simultaneous contact with W_{1}, W_{2} at all orientations at a sufficiently small neighborhood of Θ. Hence, to find orientations on the boundary of I_{2}. it suffices to consider orientations at which either S_{1} touches an endpoint of W_{1} or S_{2} touches an endpoint of W_{2} at positions of B in which it makes the two contacts involving the pairs O_{1}, O_{2} simultaneously. Each one of these four kinds of touch can clearly occur in at most two orientations of B (corresponding to the two points at which the circle of radius $\left|S_{1} S_{2}\right|$ about the common corner of contact intersects the other wall edge). Thus altogether I_{2} has at most eight boundary orientations, and since it lies in the circular range of Θ, it follows that I_{2} consists of at most four disjoint angular intervals. (Although this is not essential for subsequent analysis, it should be observed that our assumption on general position of the obstacles rules out cases in which some of the eight critical orientations just defined are isolated points of I_{2}, or are interior points of I_{2}.)

Next suppose that W_{1}, W_{2} are both wall corners. In this case we can use the fact that the role of the boundary sides and corners of B and the role of the wall edges and corners are completely symmetrical in condition (2), so that, applying symmetric arguments to those used above, one can show that in this case too I_{2} consists of at most four intervals. (A similar idea is also used in the proof of Lemma 2.3 below.)

Finally, consider the case in which W_{1} is a wall edge and W_{2} is a wall corner (or the other way around). Here it can also be seen that if B makes at orientation Θ a simultaneous double contact involving the pairs O_{1}, O_{2} so that S_{1} touches an interior point of W_{1} and W_{2} touches an interior point of S_{2}, then such a simultaneous double contact would also be possible at all orientations sufficiently close to Θ. Thus similar arguments to those used above imply that in this case too I_{2} consists of at most four disjoint intervals.

Hence the required domain $\Pi=I_{1} \cap I_{2} \cap I_{3}$ consists of at most five intervals, as can be easily checked. This completes the proof of the lemma.

If $\Pi_{O_{1} O_{2}}$ is indeed not connected we will consider each connected portion of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ as a separate partially defined function. Clearly, the number of such functions is still at most $O(k n)$, for each fixed contact pair O_{1}.

Next recall that the definition of v_{12} (and thus also of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$) depends on the position of the intersection point of T_{1}, T_{2} relative to the contact point of S_{1} with W_{1}, and that v_{12} is one of the endpoints of W_{1} if O_{1} is of type I or one of the endpoints of S_{1} if O_{1} is of type II. Consequently, we partition the collection of "bounding functions" $F_{O_{1} O_{2}}$ for O_{1} into two classes A_{1}, A_{2} so that for all functions in A_{1}, v_{12} is the same endpoint of W_{1} (or of S_{1}), whereas for all functions in A_{2} it is the other endpoint. (Thus if O_{1}, O_{2} are contact pairs of mixed types, the domain of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ has to be split at the orientation Θ^{*} at which the side of B involved in one contact becomes parallel to the wall edge involved in the other contact, so that on one side of Θ^{*} the function $F_{O_{1} O_{2}}$ is in A_{1}, whereas on the other side of Θ^{*} it belongs to A_{2}.) Thus each contact pair O_{1} defines two "complementary" coordinate frames (Θ, ρ) which can be used to represent
positions of B at which it makes an obstacle contact involving O_{1}. Here Θ is the orientation of B and ρ is the distance between the contact point of the contact involving O_{1} and a designated endpoint v of either W_{1} or S_{1}. Within each frame, let $C_{O_{1}}$ denote the polar domain representing positions of B at which a contact involving O_{1} occurs. Consider one such coordinate frame for O_{1} and the corresponding collection A_{1} of bounding functions (for which the endpoint v_{12} coincides with the designated endpoint v for that coordinate frame). It follows from definition that if $F_{O_{1} O_{2}} \in A_{1},(\Theta, \rho) \in C_{O_{1}}, \rho_{0}=F_{O_{1} O_{2}}(\Theta)$ is defined, and $\rho>\rho_{0}$, then (Θ, ρ) is a nonfree position of B (because W_{2} intersects the interior of B in this position); in other words, the area of $C_{O_{1}}$ above each bounding function in A_{1} represents nonfree positions of B.

Our goal is to estimate the number of critical free positions of B at which it makes three simultaneous obstacle contacts, or, more precisely, as defined in the introduction. Let $Z=(X, \Theta)$ be such a position and let the corresponding contact pairs involved in the simultaneous contacts be $O_{i}=\left(W_{i}, S_{i}\right), i=1,2,3$. For each pair $i \neq j=1,2,3$, either O_{i} bounds O_{j} or O_{j} bounds O_{i} at the orientation Θ of B (unless one of the degenerate situations listed in Proposition 2.1 occurs). Hence, in general, the position Z is represented by points lying on the graphs of some of the bounding functions $F_{O_{1} O_{j}}$. Suppose, without loss of generality, that it lies on $F_{O_{1} O_{2}} \in A_{1}$. Then, since Z is free, we must have

$$
F_{O_{1} O_{2}}(\Theta)=\min \left\{F_{O_{1} O}(\Theta): F_{O_{1} O} \in A_{1}\right\} ;
$$

in other words, Z is represented by a point on the lower envelope $\phi_{O_{1} A_{1}}$ of the functions in A_{1}. (Note that the converse does not necessarily hold, i.e., a position represented by a point lying on $\phi_{O_{1} A_{1}}$ may be nonfree, because B might intersect, at this position, obstacles whose contacts with B involve pairs that do not bound O_{1} at Θ.) Furthermore, since at Z the object B also makes an obstacle contact involving the pair O_{3}, we must have one of the following situations:
(i) O_{3} also bounds O_{1} at Θ and $F_{\mathrm{O}_{1} \mathrm{O}_{3}}$ (over some neighborhood of Θ) also belongs to A_{1}. In this case Z is represented by an intersection point of $F_{O_{1} O_{2}}$ and $F_{O_{1} O_{3}}$ on $\phi_{O_{1} A_{1}}$ (we will refer to such a point as a break-point of $\phi_{O_{\mathrm{I}} A_{1}}$) (Fig. 6(a)).

Fig. 6. Schematic illustration of the representation of various types of critical contact.
(ii) O_{3} also bounds O_{1} at Θ, but $F_{O_{1} O_{3}}$ (over some neighborhood of Θ) belongs to A_{2}. Let $\tilde{\phi}_{O_{1} A_{2}}$ denote the lower envelope of the functions in A_{2}, reflected into the coordinate frame (Θ, ρ) in which the functions in A_{1} are represented (since this transformation is a reflection of the ρ-axis, $\tilde{\phi}_{O_{1} A 2}$ will be the upper envelope of the reflections $\tilde{F}_{O_{1} O}$ of the functions $F_{O_{1} O}$ in A_{2}). Then in this case Z is represented as an intersection point of $\phi_{O_{1} A_{1}}$ with $\tilde{\phi}_{\mathrm{O}_{1} A_{2}}$ (Fig. 6(b)).
(iii) O_{3} does not bound O_{1} at Θ, and moreover, no two of these contact pairs simultaneously bound the third pair at Θ, but two of these pairs, say O_{1}, O_{3}, have parallel or coincident associated tangents (Fig. 7(a)).
(iv) As in (iii), no two of these contact pairs simultaneously bound the third one, and further, the degenerate cases in (iii) above do not arise. In this case we can assume, without loss of generality, that O_{1} does not bound O_{2}, O_{2} does not bound O_{3}, and O_{3} does not bound O_{1} at Θ. But then by Proposition 2.1 it must be the case that O_{2} bounds O_{1}, O_{3} bounds O_{2}, and O_{1} bounds O_{3} at Θ, so that Z is represented by a point on $F_{O_{1} O_{2}}$, a point on $F_{\mathrm{O}_{2} \mathrm{O}_{3}}$ and a point on $\mathrm{F}_{\mathrm{O}_{3} \mathrm{O}_{1}}$, each lying in a corresponding lower envelope (Fig. 7(b)).
We now proceed to estimate separately the number of critical contacts of each of these four types.

Type (i) Critical Contacts

Let O_{1} be a contact pair and consider the lower envelope $\phi=\phi_{O_{1} A_{1}}$ of one of the collections A_{1} of bounding functions for O_{1}. To estimate the number of breakpoints along ϕ, we first extend each function in A_{1} over the complete range of Θ as follows (see also [1]). Suppose a function $F_{O_{1} O_{2}} \in A_{1}$ is defined over an interval (θ_{1}, θ_{2}) of Θ. We then extend $F_{O_{1} O_{2}}$ leftward from θ_{1}, in a continuous manner along a ray of slope $-K$ and similarly extend it rightward from θ_{2} along a ray of slope $+K$ for some large $K>0$. Obviously, if we choose K uniformly for all functions in A_{1} to be sufficiently large, then the sequence of functions of A_{1} as they appear along the lower envelope ϕ will not change under this extension. Therefore if one can show that each pair of (extended) functions in A_{1} intersect in at most some fixed number s of points, then by the results reviewed in the

Fig. 7. Critical contacts of types (iii) and (iv).
introduction, the number of such intersections lying on the graph of ϕ is bounded by $\lambda_{s}(O(k n))=O\left(\lambda_{s}(k n)\right)$.

To show that each pair of our functions does indeed intersect in at most some fixed number s of points, we use the following lemma, and the observations that each intersection of two (unextended) functions $F_{\mathrm{O}_{1} \mathrm{O}_{2}}, F_{\mathrm{O}_{1} \mathrm{O}_{3}} \in A_{1}$ represents a position of B in which it simultaneously makes three contacts involving the pairs O_{1}, O_{2}, O_{3}, respectively, and that the extended portions of these functions can contribute at most two additional intersection points for each such pair of functions.

Lemma 2.3. Let O_{1}, O_{2}, O_{3} be three distinct contact pairs. Then there are at most four positions of B at which it makes simultaneously three contacts involving O_{1}, $\mathrm{O}_{2}, \mathrm{O}_{3}$, respectively.

Proof. By the analysis in [7] it follows that the curve $\gamma_{\mathrm{O}_{1} \mathrm{O}_{2}}$ traced by some reference point on B as B makes simultaneously two obstacle contacts involving the pairs O_{1}, O_{2} is either a straight segment, or part of an ellipse, or part of a quartic algebraic curve. Hence, if one of the contact pairs, say O_{3}, is of type I then we can take S_{3} to be the reference point on B, so that the desired positions of triple contact of B correspond to the intersection points of $\gamma_{O_{1} O_{2}}$ with the straight segment W_{3}. Since $\gamma_{o_{1} O_{2}}$ is at most quartic, there are at most four such intersections, thus at most four positions of B at which this triple contact can occur. If all three contact pairs are of type II then we can consider a coordinate frame in which B is stationary and the obstacles move in a collectively rigid manner. Then the desired positions of triple contact correspond to positions in this coordinate frame of the moving triangle $W_{1} W_{2} W_{3}$ at which its vertices touch simultaneously the three segments S_{1}, S_{2}, S_{3}, respectively. Hence this case can be treated in much the same way as the case in which all contact pairs are of type I, and the preceding argument implies that there are at most four positions of triple contact in this case too.

Remark. If all contact pairs are of type I (or, symmetrically, all are of type II) then (see [7]) $\gamma_{\mathrm{O}_{1} \mathrm{O}_{2}}$ is either a straight segment or part of an ellipse, so that in these cases there exist at most two positions of such a triple contact. In the two remaining cases of triple contact, the curves $\gamma_{O_{3}, O}$ are more complex and we do not know whether the number of desired positions of triple contact is also two in these cases. We conjecture that this is indeed the case.

Hence the number of points of intersection of each pair of extended functions $F_{O_{1} O_{2}}, F_{\mathrm{O}_{1} \mathrm{O}_{3}}$ is at most six (or four if the above conjecture is true). Thus, summing the number of such critical break-points, over all contact pairs O_{1}, we conclude that there are at most' $O\left(k n \lambda_{s}(k n)\right)$ critical contacts of type (i), for some fixed (but unfortunately still unknown) constant $s \leq 6$.

Remark. Note that Lemma 2.3 states that there are at most four positions of B at which it makes a triple contact involving the contact pairs O_{1}, O_{2}, O_{3}. However, it is not clear whether all these positions can appear on the same lower envelope
for O_{1}, so that it is conceivable that the actual s might even be smaller than the above estimate.

Type (ii) Critical Contacts

Let O_{1} be a contact pair. We wish to estimate the number of intersections of the lower envelope $\phi_{O_{1} A_{1}}$ with the reflected envelope $\tilde{\phi}_{O_{1} A_{2}}$. For this, consider the collection of all orientations Θ at which either $\phi_{O_{1} A_{1}}$ or $\tilde{\phi}_{O_{1} A_{2}}$ has a break-point. Clearly, there are $O\left(\lambda_{s}(k n)\right)$ such orientations which partition the angular range of Θ into $O\left(\lambda_{s}(k n)\right)$ disjoint intervals. Let I be one of these intervals. Then there are two contact pairs O_{2}, O_{3} such that $\phi_{O_{1} A_{1}} \equiv F_{O_{1} O_{2}}$ and $\phi_{O_{1} A_{2}} \equiv F_{O_{1} O_{3}}$ on I. Hence each intersection point of the envelopes $\phi_{O_{1} A_{1}}$ and $\tilde{\phi}_{O_{1} A_{2}}$ within I is an intersection of $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$ and the reflection of $F_{\mathrm{O}_{1} \mathrm{O}_{3}}$. But since each such intersection corresponds to a position of B at which it makes simultaneously three contacts involving O_{1}, O_{2}, O_{3}, Lemma 2.3 and the discussion following it imply that the total number of intersections of these functions is at most $s \leq 6$. Thus on each such interval $I, \phi_{O_{1} A_{1}}$ and $\tilde{\phi}_{O_{1} A_{2}}$ intersect only in $O(1)$ points, so that the total number of their intersection points is at most $O\left(\lambda_{s}(k n)\right)$. Summing over all contact pairs O_{1}, it follows that there are at most $O\left(k n \lambda_{s}(k n)\right)$ critical contacts of type (ii).

Type (iii) Critical Contacts

Let Θ be an orientation of B at which it makes simultaneously three contacts involving the pairs O_{1}, O_{2}, O_{3}, such that no two of them bound simultaneously the third pair at Θ, and such that two of these contact pairs, say O_{1}, O_{2}, satisfy at Θ one of the degenerate conditions listed in Proposition 2.1. Since we assume that B and the obstacles are in general position, it can be checked that none of these degenerate cases can arise (at Θ) also for O_{1}, O_{3} or for O_{2}, O_{3}. Since by assumption O_{1}, O_{2} do not both bound O_{3}, it then follows that O_{3} bounds one of them, say O_{1}. Hence this critical contact is represented as a point on one of the envelopes for O_{1}. But it is easily seen that there are only $O(k n)$ orientations Θ of B in which it can make a contact involving O_{1} and another contact involving O_{2} in one of those degenerate manners. Moreover, since the critical type (iii) contact that we consider must be represented by a point lying on an envelope for O_{1}, it follows that each such Θ can determine only one critical contact of the above form, represented by the point at orientation Θ on that envelope of O_{1} that coincides with $F_{O_{1} O_{3}}$ at Θ. Hence, summing over all possible contact pairs O_{1}, we obtain at most $O\left(k^{2} n^{2}\right)$ (which is also $O\left(k n \lambda_{s}(k n)\right)$) critical contacts of type (iii).

Type (iv) Critical Contacts

Finally, consider the case of type (iv) contacts. Consider first the set C of all critical orientations at which some envelope $\phi_{O A}$ has a break-point. Without loss
of generality we can assume that each $\Theta \in C$ is defined by a unique triple of contact pairs. (Otherwise, if some $\Theta \in C$ is induced by more than one triple of contact pairs, then, applying an infinitely small perturbation to the obstacle configuration, we can split Θ into several orientations, infinitely close to one another, each now induced by a unique triple of contact pairs; see [7] for details on this perturbation technique.) By the preceding arguments, C consists of $O\left(k n \lambda_{s}(k n)\right.$) orientations, which partition the angular range for Θ into $O\left(k n \lambda_{s}(k n)\right)$ disjoint noncritical intervals. Consider one such interval I. For each contact pair O_{1}, each of the envelopes $\phi_{O_{1} A_{1}}, \phi_{O_{1} A_{2}}$ is equal over I to a single bounding function in A_{1}, A_{2}, respectively. Suppose I contains an orientation Θ_{0} at which a type (iv) critical contact occurs, which involves O_{1} and two additional contact pairs O_{2}, O_{3}. Also, without loss of generality, assume that O_{2} bounds O_{1}, O_{3} bounds O_{2}, and O_{1} bounds O_{3} at Θ_{0}. Then throughout I, one of the lower envelopes for O_{1} coincides with $F_{\mathrm{O}_{1} \mathrm{O}_{2}}$, one of the lower envelopes for O_{2} coincides with $\mathrm{F}_{\mathrm{O}_{2} \mathrm{O}_{3}}$, and one of the lower envelopes for O_{3} coincides with $\mathrm{F}_{\mathrm{O}_{3} \mathrm{O}_{1}}$. It follows that to find all possible triples $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$ of contact pairs which include a specific contact O_{1}, and which can induce a type (iv) free contact at some orientation within I, one simply has to consider the two contact pairs whose bounding functions appear on the lower envelopes for O_{1} over I, then obtain, for each of these contact pairs O_{2}, the two contact pairs representing the two lower envelopes for O_{2} over I, and finally check that O_{1} is a contact pair representing one of the envelopes for such a third contact pair O_{3}. Hence there exist at most four such triples of contact pairs (involving a specific O_{1}), so that altogether the lower envelopes over I induce at most $O(k n)$ critical orientations at which a type (iv) contact can occur. (Note that not all these induced orientations necessarily lie in I; but even if such an orientation Θ lies outside I, it can still realize the corresponding free type (iv) critical contact, because the functions appearing in the corresponding lower envelopes over I may still appear there also over the noncritical interval containing Θ.)

Now let I^{\prime} be an interval adjacent to I, and let Θ^{*} be their common endpoint. Θ^{*} is a critical orientation at which, by assumption, B makes a unique triple obstacle contact involving three contact pairs $O_{1}^{*}, O_{2}^{*}, O_{3}^{*}$. This implies that as we cross through Θ^{*} from I to I^{\prime}, only the functions appearing in the lower envelopes for $O_{1}^{*}, O_{2}^{*}, O_{3}^{*}$ can change. But the preceding arguments then implies that only O (1) new critical contacts of type (iv) can be induced by the various lower envelopes over I^{\prime}, in addition to those that were already induced by the envelopes over I. In other words, each noncritical interval can contribute only $O(1)$ additional potential contacts of type (iv), so that altogether there can be at most $O\left(k n \lambda_{s}(k n)\right)$ critical contacts of type (iv).

Remark. So far we have been ignoring critical contacts involving a contact pair O_{1} of a corner S_{1} of B against a wall corner W_{1} (since O_{1} involves two independent constraints on the position of B, we seek here critical contacts involving O_{1} and jusi one more contact pair O_{2}). Such double critical contacts however are quite easy to analyze. Indeed, for such a contact pair O_{1}, the only degree of freedom
left for B as it makes the contact involving O_{1} is rotation about the common point of contact S_{1} against W_{1}. During this rotation, each additional contact involving some pair $O_{2}=\left(W_{2}, S_{2}\right)$ can occur in at most two orientations, so that there are only $O(k n)$ potential critical orientations at which a critical contact involving O_{1} can occur. Hence, sorting these orientations in circular order, and processing them one at a time in this order, it is easy to determine which of these orientations yields a free critical contact of the sort we seek; we leave details of this straightforward procedure to the reader. Thus altogether there are at most $O\left(k^{2} n^{2}\right)$ critical contacts of this form, and they can all be calculated in time $O\left(k^{2} n^{2} \log (k n)\right)$.

Similar remarks apply to the case in which a side S_{1} of B overlaps a wall edge W_{1}. Again this condition leaves only one degree of freedom to vary (namely that of sliding S_{1} along W_{1}), and one can show in the same manner as above that only $O(k n)$ critical contacts involving O_{1} are possible, and that they can all be found in $O(k n \log (k n))$ time. Thus there are at most $O\left(k^{2} n^{2}\right)$ singular contacts of this second kind, and they can all be found in time $O\left(k^{2} n^{2} \log (k n)\right)$.

All this gives us the following main theorem.

Theorem 2.4. The number of critical free triple contacts of a convex k-sided polygonal object B moving amidst polygonal obstacles composed of n walls is $O\left(k n \lambda_{s}(k n)\right)$ for some $s \leq 6$.

Remark. The preceding analysis can be used to obtain an efficient procedure for calculating all critical contacts of B. Roughly, this procedure first calculates all lower envelopes for contact pairs. This can be done, using a divide-and-conquer approach, in time $O\left(k n \lambda_{s}(k n) \log (k n)\right)$ as outlined, e.g., in [2]. Then type (ii) and type (iv) critical contacts can be calculated by a "sweeping process" which iterates over the noncritical intervals of Θ, and maintains a priority queue of potential critical contacts, which requires a constant number of updates as we cross from one noncritical interval to an adjacent one. Hence, altogether this process also requires $O\left(k n \lambda_{s}(k n) \log (k n)\right)$ time. Type (iii) critical contacts are even easier to calculate. Hence all critical free contacts of B can be calculated in time $O\left(k n \lambda_{s}(k n) \log (k n)\right)$. More details on this procedure, and on the overall efficient motion-planning algorithm which is based on this procedure, is given in a forthcoming companion paper [3].

3. A Lower Bound on the Number of Critical Contacts

We conclude this paper by giving an example in which the number of critical free contacts of a convex k-gon B with a collection of polygonal obstacles having n corners altogether, is $\Omega\left(k^{2} n^{2}\right)$, thus showing that, in the worst case, our upper bound is close to optimal.

Let n and k be given. The moving body B is defined as follows. Let z be the center of a circle with radius l_{1}, and let x_{1}, \ldots, x_{k} be k equally spaced points
arranged in counterclockwise order along an arc of that circle. The angle $\phi=$ $\angle x_{i} z x_{i+1}$, for all $i=1, \ldots, k-1$, is chosen so that $k \phi \ll \pi / n$. Since $d\left(z, x_{i} x_{i+1}\right)=$ $l_{1} \cos (\phi / 2)<l_{1}$, for each $i=1, \ldots, k-1$, it follows that for sufficiently small $\varepsilon_{2}>\varepsilon_{1}>0$ there exists a sufficiently small $\delta_{0}>0$ so that for all points y at distance $l_{2}<\delta_{0}$ from z we have

$$
\begin{equation*}
d\left(y, x_{j}\right)>l_{1}-\varepsilon_{1}>l_{1}-\varepsilon_{2}>d\left(y, x_{j} x_{j+1}\right) \tag{*}
\end{equation*}
$$

for all j.
Let y_{1}, \ldots, y_{k} be k points arranged in counterclockwise order along a circle of radius l_{2} about z, for some $l_{2}<\delta_{0}$, so that they all lie on the convex hull $\operatorname{conv}\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$. Define B to be that hull, so that B is a convex ($2 k$)-gon (see Fig. 8(a)).

Next we define the obstacles to consist of just the following $2 n$ corners (see Fig. 8(b)): The first n corners u_{1}, \ldots, u_{n} are taken to be points equally spaced (at angles π / n apart) on a semicircle centered at the origin O whose radius is $r_{1}=l_{1}-\left(\varepsilon_{2}+\varepsilon_{2}\right) / 2$. There exists $\delta>0$ such that for each point w at distance δ from O we have

$$
l_{1}-\varepsilon_{1}>d\left(w, u_{i}\right)>l_{1}-\varepsilon_{2}
$$

for all $i=1, \ldots, n$. The last n corners v_{1}, \ldots, v_{n} are then defined so that each v_{i} lies on the segment $O u_{i}$ at distance δ from O.

We claim that if we choose $\delta_{0} \leq \pi \delta / n$, then for each obstacle corner v_{j}, $j=1, \ldots, n$, and for each pair of a segment $x_{p} x_{p+1}, p=1, \ldots, k-1$, and a corner $y_{q}, q=1, \ldots, k_{1}$, there are $\Omega(n)$ obstacle corners u_{i} for which there exists a free position of B at which it makes the two contacts of $x_{p} x_{p+1}$ with u_{i} and of y_{q} with v_{j} simultaneously.

Indeed, place y_{q} at v_{j} and rotate B about this common point of contact. It is easy to see that, by the choice of ϕ and δ_{0}, B can be rotated in this way almost 180° without touching any other corner v_{1}. Thus, during this rotation B will meet

Fig. 8.
$\Omega(n)$ corners u_{i}, and our choice of ϕ implies that, at any position during this rotation, B cannot meet two such corners simultaneously. Finally, it follows from the inequalities (*) that every side $x_{p} x_{p+1}$ of B will touch such a corner u_{i} as B rotates in this manner, and that every such contact will necessarily be at a free position of B.

Hence in this example we have $\Omega\left(k^{2} n^{2}\right)$ distinct free double contacts of B with the obstacles, each involving three simultaneous contact pairs, namely the contacts of $x_{p} x_{p+1}$ with u_{i}, of $y_{q-1} y_{q}$ with v_{j}, and of $y_{q} y_{q+1}$ with v_{j}, thus yielding the desired lower bound.

Remark. We do not have a similar example in which a convex k-gon B makes $\Omega\left(k^{2} n^{2}\right)$ free critical contacts with a collection of polygonal obstacles having n corners altogether, in such a way that in each of these critical contacts B touches the obstacles at three distinct points. It is easy, however, to obtain (by modifying the above example or otherwise) examples in which B makes $\Omega\left(\mathrm{kn}^{2}\right)$ (or, symmetrically, $\Omega\left(k^{2} n\right)$) free critical contacts, each at three distinct points.

References

1. M. Atallah, Dynamic computational geometry, Proceedings of the 24 h Symposium on Foundations of Computer Science, 92-99, 1983.
2. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 175-201.
3. K. Kedem and M. Sharir, An Efficient Motion-Planning Algorithm for a Convex Polygonal Object in Two-Dimensional Polygonal Space, Technical Report 253, Computer Science Department, Courant institute, 1986.
4. K. Kedem, R. Livne, J. Pach, and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986), 59-71.
5. D. Leven and M. Sharir, An efficient and simple motion-planning algorithm for a ladder moving in two-dimensional space amidst polygonal barriers, Proceedings of the ACM Symposium on Computational Geometry, 221-227, 1985 (also to appear in J. Algorithms).
6. D. Leven and M. Sharir, Planning a Purely Translational Motion for a Convex Object in Two-Dimensional Space Using Generalized Voronoi Diagrams, Technical Report 34/85, The Eskenasy Institute of Computer Science, Tel Aviv University, 1985 (also to appear in Discrete Comput. Geom.).
7. J. T. Schwartz and M. Sharir, On the piano movers' problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers, Comm. Pure Appl. Math. 36 (1983), 345-398.
8. M. Sharir, Almost Linear Upper Bounds on the Length of Generalized Davenport-Schinzel Sequences, Technical Report 29/85, The Eskenasy Institure of Computer Science, Tel-Aviv University, 1985 (also to appear in Combinatorica 7 (1987).)
9. M. Sharir, Improved Lower Bounds on the Length of Davenport-Schinzel Sequences, Technical Report 204, Computer Science Department, Courant Institute, 1986.
10. E. Szemeredi, On a problem by Davenport and Schinzel, Acta Arith. 25 (1974), 213-224.

Received October 2, 1985, and in revised form September 2, 1986.

[^0]: * Work on this paper by the second author has been supported by Office of Naval Research Grant N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation.

