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Abstract. We show that the number of critical positions of a convex polygonal 

object B moving amidst polygonal barriers in two-dimensional space, at which it 

makes three simultaneous contacts with the obstacles but does not penetrate into 

any obstacle is O(knAs(kn)) for some s < 6 ,  where k is the number of  boundary 

segments of B, n is the number of wall segments, and As(q) is an almost linear 

function of q yielding the maximal number of "breakpoints" along the lower 

envelope (i.e., pointwise minimum) of a set of q continueus functions each pair of 

which intersect in at most s points (here a breakpoint is a point at which two of 

the functions simultaneously attain the minimum). We also present an example 

where the number of  such critical contacts is ft(k2n2), showing that in the worst 

case our upper bound is almost optimal. 

1. Introduction 

Let  B be  a convex  po lygona l  object  having  k vert ices and  edges,  and  free to 

move ( t rans la te  and  rota te)  in a c losed two-d imens iona l  space  V b o u n d e d  by  a 

col lect ion o f  po lygona l  obs tac les  ( "wa l l s " )  having a l together  n comers .  The  

p rob lem s tud ied  in this  p a p e r  is to es t imate  the number  of free critical posi t ions  

o f  B at which  it makes  s imul taneous ly  three dis t inct  contacts  with the walls.  

More prec ise ly ,  a free pos i t ion  is one a t  which B is fully conta ined  in V, so that  

it  can t o u c h  some obstacles ,  b u t  not  pene t ra te  into any o f  them (this no ta t ion  

differs f rom that  o f  [7], where  such pos i t ions  are  ca l led  semifree). A crit ical  free 
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N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-83-20085, and by grants from 
the Digital Equipment Corporation, and the IBM Corporation. 
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position Z is one at which there exist three distinct pairs (WI, S~), (W2, $2), 

(W3, $3), such that for each i = 1, 2, 3 either W~ is a wall segment and S~ is a 

corner of B or W~ is a wall corner and $t is a side of  B, and such that at position 

Z S~ touches W~. See Fig. 1 for an illustration of such a critical contact. Note 

that this somewhat "liberal" definition also regards as critical, positions at which 

a comer of  B touches a wall corner and another corner/side of B touches another 

wall edge/corner  (including also placements at which a side of  B overlaps a wall 

segment with an endpoint in common). 

This problem is a major subproblem in the design and analysis of efficient 

algorithms for automatic planning of a continuous obstacle-avoiding motion of 

B within V between two specified positions. If B is a line segment (a "ladder"),  

then it is shown in [5] that the total number of such critical positions of B is 

O(n2), which consequently leads to an O(n 2log n) algorithm for the desired 

motion planning. If B is a convex polygonal object which is free only to translate 

in V but not to rotate, then the motion-planning problem becomes simpler and 

can be accomplished in time O(n log n) [4], [6]. This follows from the property, 

proved in [4] and related to the problem studied in the present paper, that the 

number of  free positions of B (all having the same given orientation) at which 

it simultaneously touches two obstacles is only O(n) (provided the obstacles are 

in "general position" [4]). If B is also allowed to rotate then, extending the 

motion-planning technique of [5], one obtains an algorithm whose complexity 

depends on the number of critical free positions of  B at which it makes simul- 

taneously three distinct contacts with the walls. Since each such contact is a 

contact of  either a comer  of B with a wall edge or of  an edge of  B with a wall 

comer,  a crude and straightforward upper bound on the number of  these critical 

positions of  B is O((kn)3). Moreover, if B is nonconvex, then there are cases 

where the number of  these critical positions of  B is indeed [~((kn) 3) (cf. a remark 

in [4]). However, in this paper we show that if B is convex, then the number of 

these critical triple contacts is only O(knAs(kn)), for some s-< 6, where As(q) is 

the maximal number of  "breakpoints" along the lower envelope (i.e., pointwise 

minimum) o f  a set of  q continuous functions, each pair of  which intersect in at 

most $ points. Here a breakpoint is a point at which two of  the functions 

simultaneously attain the minimum; note that between any two adjacent break- 

points the minimum is attained by a single function, thus As(q)+ 1 is equal to 

the maximal number of  connected graph portions composing the lower envelope 
of  a collection of such functions. It is shown in [10] that A,(q) = O(q log* q) 
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(where log* q is the length of the smallest exponential tower 2 2 exceeding q, 

and where the constant of  proportionality depends on s). A better asymptotic 

bound is given in [2] for the case s = 3 and in [8] for larger values of  s. These 

better bounds are roughly of the form As(q)= O(qot(q)°('~(q)'-~)), where or(q) is 

the functional inverse of  Ackermann's function, and is thus extremely slowly 

growing. In short, for a fixed s, As(q) is nearly linear in q, although, as has been 

shown in [2] and [9], hs(q)=Ft(qat(~-~)/2~(q)), so that it is superlinear in q for 

s - -3 .  

Finally, using these results, and modifying the technique of  [5] to the case of  

an aribtrary convex polygonal moving body B, one can obtain an 

O(knA~(kn) log(kn)) motion-planning algorithm for B. This algorithm will be 

described in full detail in a forthcoming companion paper [3]. 

2. Estimating the Number of Critical Free Contacts 

In this section we prove our main result, namely (see Theorem 2.4) that the 

number of  critical free contacts of  B, as defined in the introduction, is O ( knA, ( kn )) 
for some s -< 6. We assume that B and the set of obstacles are in general position. 
By this we mean that the shape of B and the positions of the obstacles are such 

that there does not exist a position of B at which it satisfies four independent 

constraints imposed on B by its possible contacts with obstacles. Each constraint 

of this form either requires a specific corner of B to touch a specific wall edge, 

or requires a specific side of B to touch a specific wall corner, or requires that 

the segment connecting two points of contact be perpendicular to the wall edge 

or to the side of  B involved in one of  these contacts. Furthermore, these constraints 

must be independent, in the sense that none of them is a consequence of the 

others in an arbitrary generic placement of  B and the obstacles; for example, for 

a contact of  a comer  S of  B against a wall corner W, only two out of  the four 

possible constraints that can be associated with this contact (namely, S touching 

the two wall edges incident to W and W touching the two sides of B incident 

to S) can be independent,  as is easily checked. Typical configurations in which 

the obstacles and B are not in general position are shown in Fig. 2; they involve 

respectively, from left to right, (i) four distinct points of simultaneous contact, 

(ii) three points of  contact where one-is o f  a comer  of  B against a wall comer 

(thus contributing two independent constraints), and (iii) two points of  contact 

Fig. 2. 
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where one is a comer-corner  contact and where the segment connecting these 

points is perpendicular to a side of  B. 

Definition 2.1. (a) A (potential) contac t  p a i r  0 is a pair ( W, S) such that either 

W is a (closed) wall edge and S is a comer  of  B or W is a wall corner and S 

is a (closed) side of  B. The contact pair is said to be of  type I in the first case, 

and of  type I I  in the second case. 

(b) An actual obs tac le  con tac t  (i.e., a contact of  B with an obstacle) is said to 

i nvo lve  the contact pair O = ( IV, S) if this contact is of  a point on S against a 

point on W, and, furthermore, if this contact is local ly  f ree ,  i.e., the inner angle 

of  B at S lies entirely on the exterior side of  W if S is a comer  of  B, and the 

entire angle within the wall region V c at W lies exterior to B if W is a wall comer. 

(c) The t a n g e n t  l ine T of  a contact pair O = ( W, S) is either the line passing 

through W if W is a wall edge or the line passing through W and parallel to S 

if S is a side of  B (in the second case T depends of course on the orientation 

of  B). 

I t  is clear from the above definition that there are O ( k n )  possible contact 

pairs. Throughout  this section we will use the same index i to refer to a contact 

pair Oi, to its corresponding wall element W~ and boundary element Si of  B, and 

to its tangent line T~. Let Z be a free position of B at which it makes two 

simultaneous obstacle contacts involving the contact pairs O ,  Oj for which T~, 

T i are not parallel. Then z o = zj~ will denote the intersection point of  T~ and T~, 

xo (resp. x~) will denote the contact point of  W~ with S~ (resp. Wj with Sj) at 

position Z, and l o will denote the line passing through x o and xj~. Also u~j, v U 

will denote the endpoints of  W~ if O~ is of  type I or the endpoints of  $~ when B 

is positioned at Z if Oi is of  type II,  such that u U and zo lie on the same side of 

x U on T~, and v o lies on the other side of  x U (uj~, vj~ are defined similarly for Oj) 

(see Fig. 3). 

An extreme situation arises when x~j = z~j, which is the case if W~ is a wall 

edge, W~ is a wall corner, and S~ is an endpoint  of  the side Sj o f  B. In this case 

u o and v o are not well defined, although uj~ and vj~ are. We will refer to this case 

by calling Oi, Oj a d j a c e n t  contact pairs. Another extreme situation arises when 

a comer  S of  B touches a wall comer  W; formally speaking (see also the 

discussion at the beginning of this section), this can be regarded as a double 

contact (e.g., of  S against the two wall edges meeting at W). In this case we have 

x o = xj~ = z o, so that all four points u~j, v o, u~, vj~, as well as the line l~j, are not 

V2t W2 

1 -  ~;.'=>z,2 

vl2 w I 

Fig. 3. 
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well defined. Although we will use such double contacts in our lower-bound 

example given at the end of  the paper, we will ignore such singular contacts in 

our upper-bound analysis (as justified in a remark preceding Theorem 2.4). 

Definition 2.2. Let O1, 02 be two contact pairs. We say that 02 bounds 01 at 

the orientation O if there exists a (not necessarily free) position Z -- (X, 0 )  of  B 

at which it makes two simultaneous obstacle contacts involving Oi, 02, respec- 

tively, such that B*=  conv(Sl u $2) always intersects WE as we move B from Z 

without changing the orientation @ along the tangent T1 in the direction of z~2 

until the last position at which $1 still touches W1. (In case of  adjacent contact 

pairs O1, O2 with O1 of  type I and 02 of type II, we have z!2 = x12 so that the 

direction of motion of  B in this definition is not defined; moreover, in this case 

B* is simply the segment $2, which stops intersecting W2 immediately as we 

move it toward either endpoint of W1. In this ill-defined case we prefer to regard 

02 as not bounding O1 (note, however, that in this case O1 does bound 02 in 

accordance with the above definition).) 

The crucial property on which our analysis depends is: 

Proposition 2.1. Let 01, 02 be two contact pairs for which there exists a position 

Z = (X, O) orB at which it makes two simultaneous obstacle contacts involving 01, 

02, respectively. Then either 01 bounds 02 at 0 or 02 bounds 01 at O, except 

when the corresponding tangents Tt , T2 are coincident or parallel. ( Typical degenerate 

cases of  kind are: (a) Wt, W2 are both wall corners and St =$2; (b) W1, W2 are 

both wall corners and $1, $2 are parallel sides of B; (c) W1, W2 are parallel wall 

edges; and (d) W1 is a wall edge and $2 is a side of  B parallel to WI .) 

Proof. In the nondegenerate case the tangents T1, T2 must intersect at a single 

point. Using the terminology introduced above, we consider separately three 

possible subcases (see Fig. 4). 

' V21 
U21 t I I 

W1 
(a) (b) 

W 1 "¢1 t2 

v2,  
..~ u12 

Wl 22 "tl 

Fig. 4. 

(c) (d) 
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(1) Wt, W2 are both wall edges (Fig. 4(a)). 

Consider the line 11 (resp. /2) parallel to I12 passing through un (resp. u21). 
Obviously either 11 intersects W2 or 12 intersects W1. Suppose, without loss of 

generality, that I~ intersects W2. But then as we move B along WI from x12 until 

$1S2 reaches 1~, the segment B* = S~$2 will always intersect W2. Thus O2 bounds 

Oi at O. 

(2) W1, W2 are both wall corners (Fig. 4(b)). 

Let 11 (resp. 12) be the line parallel to 112 which passes through v~2 (resp. v21). 

Obviously either 11 intersects $2 or I2 intersects $1. Suppose, without loss of 

generality, that/1 intersects $2. Then, since B* is convex, the entire trapezoid A 
bounded by 112, I~, $1, and $2 is contained in B* (in this position of simultaneous 

contact with W1 and W2). Thus as we move B along T~ toward z!2 until the 

endpoint v12 of $1 coincides with W1, then throughout this motion W2 will 

intersect A, hence B*, again showing that 02 bounds O~. 

(3) W1 is a wall edge and W2 is a wall corner (or symmetrically, W2 is a wall 

edge and W~ is a wall comer) (Fig. 4(c) and (d)). 

If Ot and 02 are adjacent contact pairs, then obviously O~ bounds 02 (see a 

comment in Definition 2.2). Assume that this is not the case and let 11 (resp./2) 

be the line parallel to $1v21 passing through u12 (resp. through x2~ = W2). 

Obviously, either l~ intersects the line segment x2~v21 or 12 intersects the line 

segment x12u12. But in the first case, observe that at the position of mutual contact 

the triangle x12x21v21 is contained in B*; thus if we move B along WI until S~ 

meets u12, then throughout this motion W2 must intersect this triangle, hence 

B*, so that in this case O2 bounds O1. In the second case if we translate B along 

T2 until v21 meets W2, then throughout this motion the line segment $Ir21 (and 

hence also B*) will intersect Wt so that in this case O1 bounds 02. [] 

Remark. The proof of Proposition 2.1 actually implies that, for each double 

contact of B involving pairs O1, O2, there exists a critical orientation O0~ch of 

B (for which the lines 11 and/2 coincide) such that at orientations greater than 

O0,ch one of the contact pairs, say O1, bounds 02 but 02 does not bound O1, 

and at orientations smaller than 001o2 the contact pair 02 bounds O1 but O1 

does not bound 02. (If O1, 02 are adjacent, then on one side of O01ch one of 

these contact pairs, say O1, always bounds 02, whereas on the other side of 

O010, no such double contact of B is possible.) 

Let O1 be any contact pair and consider all contact pairs that bound O1 (at 

any orientation O). For each such pair 02 we define the function F010~(O) over 

the domain II = IIo, o~ of orientations 0 of B in which 02 bounds O1, to be the 
distance of xl, from v12 at the position Z = (X, O) in which B simultaneously 

makes two obstacle contacts involving O1, 02, respectively (see Fig. 5; note that 

v12 is always well defined whenever 02 bounds 01). 
Note that II need not in general be connected but may consist of several 

subintervals, such that, for orientations @ outside these intervals, either two 

obstacle contacts involving O1, 02, respectively, cannot occur simultaneously, 

or O2 does not bound O1. Nevertheless we have: 
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Lemma 2.2. Holo2 consists of  at most five intervals. 

Proof. 02 bounds Ot at an orientation O of B if  and only if the following four 
conditions hold: 

(1) O lies on the appropriate side of the critical orientation Oo~o~ which 

separates between the domain in which 02 bounds O1 and the domain in 

which O1 bounds 02 (see the remark following Proposition 2.1). 
(2) There exists at orientation O a position of  B at which St touches WI and 

S2 touches W2 simultaneously. 

(3) Suppose $1 is a comer of B and W1 is a wall. Then at this position of 

double contact, the inner angle of B at S1 lies entirely on the exterior side 

of W1; if $1 is a side of B and W1 is a wall corner, then again the entire 
angle within the wall region V c at W1 should lie exterior to B. Similar 

conditions should hold for the contact of $2 against W2. 

(4) The tangents T1, 7"2 of O1, 02, respectively, are not parallel or coincident 

at O. 

Thus the domain of definition of the function Fo, o~ is the intersection of the 

three domains I1, I2,/3 satisfying, respectively, conditions (1), (2), and (3) above. 
(Condition (4) pre-empts, regardless of the value of O, cases in which W1 and 

W2 are parallel or coincident, or $1 and $2 are parallel or coincident, or W1 and 

W2 are two wall comers touching the same side of  B, etc. However, if the contact 

pairs O!, O2 are of "mixed" types, e.g., O1 is of type I and O2 is of type II, then 
condition (4) defines an orientation O* at which $2 becomes parallel to W~; since 

at this orientation the comer v~ involved in the definition of Fo~o~ changes 

discontinuously, we artificially split the domain of Folo~ at O* into two disjoint 

subdomains, and seek to prove the assertion of  the lemma for each of these 

subdomains separately.) 
Note first that the domain /3  is always an angular interval. Note also that, 

since the angular range for O is circular, the domain I1 is not well defined. 

However, combining condition (1) with condition (3), we can define I1 as an 

angular interval, one of whose endpoints is Oolo2, and the other is the appropriate 

endpoint o f /3 .  In conclusion,/1 c~/3 is simply an angular interval. 
The domain 12 of O satisfying (2) has a more complicated structure. The 

following arguments provide a crude analysis of this structure. 

Suppose first that W1, W2 are both wall edges. Then B* --- conv(S1 u S2) is a 
straight segment. By continuity, if at O the segment B* touches WI, W2 at interior 
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points of  these walls, and if, as we assume, Wt and W2 are not parallel, then B* 

will continue to have a simultaneous contact with WI, W2 at all orientations at 

a sufficiently small neighborhood of O. Hence, to find orientations on the 

boundary of  12. it suffices to consider orientations at which either S~ touches an 

endpoint of  W~ or $2 touches an endpoint of  W2 at positions of B in which it 

makes the two contacts involving the pairs Or, 02 simultaneously. Each one of 

these four kinds of  touch can clearly occur in at most two orientations of B 

(corresponding to the two points at which the circle of radius IS~S2J about the 

common comer  of  contact intersects the other wall edge). Thus altogether 12 has 

at most eight boundary orientations, and since it lies in the circular range of O, 

it follows that 12 consists of  at most four disjoint angular intervals. (Although 

this is not essential for subsequent analysis, it should be observed that our 

assumption on general position of  the obstacles rules out cases in which some 

of  the eight critical orientations just defined are isolated points of  12, or are 

interior points o f /2 . )  

Next suppose that Wt, W2 are both wall corners. In this case we can use the 

fact that the role of the boundary sides and comers of B and the role of the wall 

edges and comers are completely symmetrical in condition (2), so that, applying 

symmetric arguments to those used above, one can show that in this case too 12 

consists of  at most four intervals. (A similar idea is also used in the proof  of 

Lemma 2.3 below.) 
Finally, consider the case in which W1 is a wall edge and W2 is a wall comer 

(or the other way around). Here it can also be seen that if B makes at orientation 

O a simultaneous double contact involving the pairs O1, 02 so that S~ touches 

an interior point of  W1 and W2 touches an interior point of  $2, then such a 

simultaneous double contact would also be possible at all orientations sufficiently 

close to O. Thus similar arguments to those used above imply that in this case 

too I2 consists of  at most four disjoint intervals. 
Hence the required domain II = It c~ 12 c~/3 consists of at most five intervals, 

as can be easily checked. This completes the proof  of  the lemma. [] 

I f  IIo, o~ is indeed not connected we will consider each connected portion of 

Fo~o~ as a separate partially defined function. Clearly, the number of  such 

functions is still at most O(kn), for each fixed contact pair Or. 

Next recall that the definition of  vl: (and thus also of Fo~o~) depends on the 

position of  the intersection point of  Tt, T2 relative to the contact point of  St 

with W1, and that vl: is one of the endpoints of W1 if OK is of  type I or one of 

the endpoints of $1 if O1 is of type II. Consequently, we partition the collection 

of  "'bounding functions" Fo~o~ for OK into two classes A1, A2 so that for all 

functions in At,  012 is the same endpoint of WI (or of S~), whereas for all 

functions in A2 it is the other endpoint. (Thus if Or, 02 are contact pairs of 

mixed types, the domain of  F01c~ has to be split at the orientation O* at which 

the side of  B involved in one contact becomes parallel to the wall edge involved 

in the other contact, so that on one side of  O* the function Fo, o~ is in At,  whereas 

on the other side of  O* it belongs to A2.) Thus each contact pair O1 defines two 

"complementary" coordinate frames (O, p) which can be used to represent 
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positions of B at which it makes an obstacle contact involving O1. Here O is the 
orientation of B and p is the distance between the contact point of the contact 

involving O1 and a designated endpoint v of either WI or $1. Within each frame, 

let Co, denote the polar domain representing positions of B at which a contact 

involving O1 occurs. Consider one such coordinate frame for O1 and the corre- 

sponding collection AI of bounding functions (for which the endpoint v12 

coincides with the designated endpoint v for that coordinate frame). It follows 

from definition that if Fo~o~At ,  (O, p)E Co,, po = Fo, o~(O) is defined, and 
p > po, then (O, p) is a nonfree position of B (because W2 intersects the interior 

of B in this position); in other words, the area of Co, above each bounding 

function in A1 represents nonfree positions of B. 

Our goal is to estimate the number of critical free positions of  B at which it 

makes three simultaneous obstacle contacts, or, more precisely, as defined in the 

introduction. Let Z = (X, O) be such a position and let the corresponding contact 

pairs involved in the simultaneous contacts be O~ = ( W~, S~), i = 1, 2, 3. For each 
pair i # j  = 1, 2, 3, either O~ bounds Oj or Oj bounds O~ at the orientation O of 

B (unless one of the degenerate situations listed in Proposition 2.1 occurs). Hence, 

in general, the position Z is represented by points lying on the graphs of some 

of the bounding functions Fo, oj. Suppose, without loss of generality, that it lies 

on Fo, o2~ AI.  Then, since Z is free, we must have 

170102(0) = min{ Fo~o( ® ): 17o, o ~ A1); 

in other words, Z is represented by a point on the lower envelope ¢bo, A, of the 
functions in A1. (Note that the converse do.es not necessarily hold, i.e., a position 

represented by a point lying on ~bo, A~ may be nonfree, because B might intersect, 

at this position, obstacles whose contacts with B involve pairs that do not bound 
O1 at O.) Furthermore, since at Z the object B also makes an obstacle contact 

involving the pair 03, we must have one of the following situations: 

(i) Oa also bounds O1 at O and Fo, o~ (over some neighborhood of O) also 

belongs to A]. In this case Z is represented by an intersection point of 

Fo, o~ and Fo, o3 on ~bo~A, (we will refer to such a point as a break-point 
of d~o~A,) (Fig. 6(a)). 

e 

o 1 0 2 

FO I o 3 

P 
8 

(o) (b) 

Fig. 6. Schematic illustration of the representation of various types of critical contact. 
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(ii) 03 also bounds O1 at O, but Fo~o~ (over some neighborhood of O) belongs 

to A2. Let ~o, a2 denote the lower envelope of the functions in A2, reflected 

into the coordinate frame (O, p) in which the functions in AI are represen- 

ted (since this transformation is a reflection of the p-axis, 4~OIA2 will be 

the upper envelope of the reflections Fo, o of  the functions Fo, o in A2). 

Then in this case Z is represented as an intersection point of 4)O,A, with 

~bO, A2 (Fig. 6(b)). 
(iii) 03 does not bound Oi at O, and moreover, no two of  these contact pairs 

simultaneously bound the third pair at O, but two of  these pairs, say O1, 

03, have parallel or coincident associated tangents (Fig. 7(a)). 

(iv) As in (iii), no two of  these contact pairs simultaneously bound the third 

one, and further, the degenerate cases in (iii) above do not arise. In this 

case we can assume, without loss of  generality, that O1 does not bound 

02,  02 does not bound 03, and 03 does not bound Ot at O. But then 

by Proposition 2.1 it must be the case that 02 bounds O1, 03 bounds 

02, and O1 bounds 03 at O, so that Z is represented by a point on Fo~o:, 
a point on Fo2o3 and a point on Fo~o~, each lying in a corresponding 

lower envelope (Fig. 7(b)). 

We now proceed to estimate separately the number of critical contacts of each 

of these four types. 

Type (i) Critical Contacts 

Let O1 be a contact pair and consider the lower envelope 4) = f~O1A 1 of one of 

the collections A1 of bounding functions for O1. To estimate the number of 

breakpoints along ~b, we first extend each function in A1 over the complete range 

of  0 as follows (see also [1]). Suppose a function Fo, o~e AI is defined over an 

interval (01, 02) of  O. We then extend Fo, o~ leftward from 01, in a continuous 

manner along a ray of  slope - K  and similarly extend it rightward from 02 along 

a ray of  slope + K  for some large K > 0. Obviously, if we choose K uniformly 

for all functions in A1 to be sufficiently large, then the sequence of  functions of  

A1 as they appear along the lower envelope qb will not change under this extension. 

Therefore if one can show that each pair of  (extended) functions in AI intersect 

in at most some fixed number s of points, then by the results reviewed in the 

k £, 

SI 

Wl 

Fig. 7. Critical contacts of  types (iii) and (iv). 
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introduction, the number of such intersections lying on the graph of tk is bounded 

by A,(O(kn))= O(As(kn)). 

To show that each pair of  our functions does indeed intersect in at most some 

fixed number  s of  points, we use the following lemma, and the observations that 

each intersection of  two (unextended) functions Fo, o2, Fo~03e A~ represents a 

position of B in which it simultaneously makes three contacts involving the pairs 

O1, 02, 03, respectively, and that the extended portions of  these functions can 

contribute at most two additional intersection points for each such pair of  

functions. 

Lemma 2.3. Let 01, 02, 03 be three distinct contact pairs. Then there are at most 
four positions of B at which it makes simultaneously three contacts involving 0~, 

O2, O3, respectively. 

Proof By the analysis in [7] it follows that the curve Yo,~ traced by some 

reference point on B as B makes simultaneously two obstacle contacts involving 

the pairs O~, 02 is either a straight segment, or part of  an ellipse, or part of  a 

quartic algebraic curve. Hence, if  one of the contact pairs, say 03, is of  type I 

then we can take $3 to be the reference point on B, so that the desired positions 

of  triple contact of  B correspond to the intersection points of  ~'o~o~ with the 

straight segment W3. Since yo~o~ is at most quartic, there are at most four such 

intersections, thus at most four positions of  B at which this triple contact can 

occur. I f  all three contact pairs are of  type II then we can consider a coordinate 

frame in which B is stationary and the obstacles move in a collectively rigid 

manner. Then the desired positions of triple contact correspond to positions in 

this coordinate frame of the moving triangle W~ W2 W3 at which its vertices touch 

simultaneously the three segments $1, $2, $3, respectively. Hence this case can 

be treated in much the same way as the case in which all contact pairs are of 

type I, and the preceding argument implies that there are at most four positions 

of  triple contact in this case too. [] 

Remark. I f  all contact pairs are of type I (or, symmetrically, all are of type II)  

then (see [7]) Yo~o2 is either a straight segment or part of  an ellipse, so that in 

these cases there exist at most two positions of  such a triple contact. In the two 

remaining cases of  triple contact, the curves Yo,o, are more complex and we do 

not know whether the number of  desired positions of  triple contact is also two 

in these cases. We conjecture that this is indeed the case. 

Hence the number of  points of  intersection of each pair of  extended functions 

Fo~o~, Fo, o~ is at most six (or four if the above conjecture is true). Thus, summing 

the number of  such critical break-points, over all contact pairs O~, we conclude 

that there are at most" O(knhs(kn)) critical contacts of type (i), for some fixed 

(but unfortunately still unknown) constant s-< 6. 

Remark. Note that Lemma 2.3 states that there are at most four positions of B 

at which it makes a triple contact involving the contact pairs O~, 02, Oa. However, 

it is not clear whether all these positions can appear on the same lower envelope 
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for O~, so that it is conceivable that the actual s might even be smaller than the 

above estimate. 

Type (ii) Critical Contacts 

Let 0~ be a contact pair. We wish to estimate the number of  intersections of  the 

lower envelope tko~A, with the reflected envelope ~o~A2.. For this, consider the 

collection of  all orientations 0 at which either dPo, A, or d~O,A 2 has a break-point. 

Clearly, there are O(A~(kn)) such orientations which partition the angular range 

of  0 into O(A~(kn)) disjoint intervals. Let I be one of  these intervals. Then there 

are two contact pairs 02, 03 such that ~O,A, -- Folo~ and d~o, A2 -=" Fo~o~ on I. Hence 

each intersection point of the envelopes ~bo, A1 and ~bolA: within I is an inter- 

section of  Fo, o~ and the reflection of Fo~o~. But since each such intersection 

corresponds to a position of B at which it makes simultaneously three contacts 

involving 0~, 02, O3, Lemma 2.3 and the discussion following it imply that the 

total number of  intersections of  these functions is at most s <- 6. Thus on each 

such interval I, ~O,A, and ~O~A2 intersect only in O(I )  points, so that the total 

number of  their intersection points is at most O(As (kn)). Summing over all contact 

pairs O1, it follows that there are at most O(knA~(kn)) critical contacts of  type (ii). 

Type (iii) Critical Contacts 

Let O be an orientation of B at which it makes simultaneously three contacts 

involving the pairs Or, O2, O3, such that no two of  them bound simultaneously 

the third pair at O, and such that two of  these contact pairs, say O~, 02, satisfy 

at O one of  the degenerate conditions listed in Proposition 2.1. Since we assume 

that B and the obstacles are in general position, it can be checked that none of 

these degenerate cases can arise (at O) also for 01, 03 or for 02, 03. Since by 

assumption Or, O2 do not both bound 03, it then follows that O3 bounds one 

o f  them, say O~. Hence this critical contact is represented as a point on one of 

the envelopes for O~. But it is easily seen that there are only O(kn) orientations 

O of  B in which it can make a contact involving O1 and another contact involving 

02 in one o f  those degenerate manners. Moreover, since the critical type (iii) 

contact that we consider must be represented by a point lying on an envelope 

for 01, it follows that each such O can determine only one critical contact of 

the above form, represented by the point at orientation O on that envelope of 

O1 that coincides with Folo~ at O. Hence, summing over all possible contact pairs 
2 2 • • Or, we obtain at most O(k n ) (which is also O(knAs(kn))) critical contacts of 

type (iii). 

Type (iv) Critical Contacts 

Finally, consider the case of type (iv) contacts. Consider first the set C of  all 

critical orientations at which some envelope ~boA has a break-point. Without loss 
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of  generality we can assume that each O ~ C is defined by a unique triple of 

contact pairs. (Otherwise, if some O ~ C is induced by more than one triple of  

contact pairs, then, applying an infinitely small perturbation to the obstacle 

configuration, we can split O into several orientations, infinitely close to one 

another, each now induced by a unique triple of  contact pairs; see [7] for details 

on this perturbation technique.) By the preceding arguments, C consists of  

O(knAs(kn)) orientations, which partition the angular range for ® into 

O(knA,(kn)) disjoint noncritical intervals. Consider one such interval I. For each 

contact pair 0~, each of the envelopes CkolA,, $O~A~ is equal over I to a single 

bounding function in A1, A2, respectively. Suppose I contains an orientation Oo 

at which a type (iv) critical contact occurs, which involves O~ and two additional 

contact pairs 02, O3. Also, without loss of generality, assume that O2 bounds 

0~, 03 bounds 02, and O~ bounds O3 at ®o. Then throughout L one of the 

lower envelopes for O1 coincides with Fo, o2, one of the lower envelopes for O2 

coincides with Fo2o, and one of  the lower envelopes for O3 coincides with Fo, o,. 

It follows that to find all possible triples Or, 02, 03 of  contact pairs which 

include a specific contact O1, and which can induce a type (iv) free contact at 

some orientation within I, one simply has to consider the two contact pairs whose 

bounding functions appear on the lower envelopes for O1 over I, then obtain, 

for each of  these contact pairs 02, the two contact pairs representing the two 

lower envelopes for O2 over I, and finally check that O~ is a contact pair 

representing one of the envelopes for such a third contact pair 03. Hence there 

exist at most four such triples of contact pairs (involving a specific Or), so that 

altogether the lower envelopes over I induce at most O(kn) critical orientations 

at which a type (iv) contact can occur. (Note that not all these induced orientations 

necessarily lie in I ;  but even if such an orientation ® lies outside I, it can still 

realize the corresponding free type (iv) critical contact, because the functions 

appearing in the corresponding lower envelopes over I may still appear there 

also over the noncritical interval containing O.) 

Now let I '  be an interval adjacent to I, and let ®* be their common endpoint. 

O* is a critical orientation at which, by assumption, B makes a unique triple 

obstacle contact involving three contact pairs O*, O*, O*. This implies that as 

we cross through O* from I to I ' ,  only the functions appearing in the lower 

envelopes for 0", 0", O* can change. But the preceding arguments then implies 

that only O(1) new critical contacts of  type (iv) can be induced by the various 

lower envelopes over I', in addition to those that were already induced by the 

envelopes over I. In other words, each noncritical interval can contribute only 

O(1) additional potential contacts of  type (iv), so that altogether there can be 

at most O(knAs(kn)) critical contacts of type (iv). 

Remark. So far we have been ignoring critical contacts involving a contact pair 

01 of a corner St of B against a wall comer W1 (since 01 involves two independent 

constraints on the position of  B, we seek here critical contacts involving O~ and 

just one more contact pair 02). Such double critical contacts however are quite 

easy to analyze. Indeed, for such a contact pair O~, the only degree of  freedom 
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left for B as it makes the contact involving O1 is rotation about the common point 

of  contact S~ against W~. During this rotation, each additional contact involving 

some pair 02 = ( W2, $2) can occur in at most two orientations, so that there are 

only O(kn) potential critical orientations at which a critical contact involving 

O1 can occur. Hence, sorting these orientations in circular order, and processing 

them one at a time in this order, it is easy to determine which of these orientations 

yields a free critical contact of  the sort we seek; we leave details of  this straightfor- 

ward procedure to the reader. Thus altogether there are at most O(k2n 2) critical 

contacts o f  this form, and they can all be calculated in time O(k2n 2 log (kn)). 
Similar remarks apply to the case in which a side S~ of  B overlaps a wall edge 

WI. Again this condition leaves only one degree of  freedom to vary (namely that 

of  sliding $1 along W1), and one can show in the same manner as above that 

only O(kn) critical contacts involving 01 are possible, and that they can all be 

found in O(kn log(kn)) time. Thus there are at most O(k2n 2) singular contacts 

of  this second kind, and they can all be found in time O(k2n :" log(kn)). 

All this gives us the following main theorem. 

Theorem 2.4. The number of critical free triple contacts of a convex k-sided 
polygonal object B moving amidst polygonal obstacles composed of n walls is 
O(knA~(kn)) for some s <- 6. 

Remark. The preceding analysis can be used to obtain an efficient procedure 

for calculating all critical contacts of  B. Roughly, this procedure first calculates 

all lower envelopes for contact pairs. This can be done, using a divide-and-conquer 

approach,  in time O(knAs(kn)log(kn)) as outlined, e.g., in [2]. Then type (ii) 

and type (iv) critical contacts can be calculated by a "sweeping process" which 

iterates over the noncritical intervals of  O, and maintains a priority queue of 

potential critical contacts, which requires a constant number of  updates as we 

cross from one noncritical interval to an adjacent one. Hence, altogether this 

process also requires O(knAs(kn)log(kn)) time. Type (iii) critical contacts are 

even easier to calculate. Hence all critical free contacts of  B can be calculated 

in time O(knA~(kn)log(kn)). More details on this procedure, and on the overall 

efficient motion-planning algorithm which is based on this procedure, is given 

in a forthcoming companion paper [3]. 

3. A Lower Bound on the Number of  Critical Contacts 

We conclude this paper  by giving an example in which the number  of  critical 

free contacts of  a convex k-gon B with a collection of  polygonal obstacles having 

n comers  altogether, is f~(k2n2), thus showing that, in the worst case, our upper  

bound is close to optimal. 

Let n and k be given. The moving body B is defined as follows. Let z be the 

center of  a circle with radius l~, and let x l , . . . ,  Xk be k equally spaced points 
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arranged in counterclockwise order along an arc o f  that circle. The angle ~b = 

/_x~zx~+l, for  all i =  1 , . . . ,  k - l ,  is chosen so that k~b<< ~r/n. Since d(z, x.,x~+0 = 

l~ cos(~b/2)< l~, for  each i =  1 , . . . ,  k - 1 ,  it follows that for sufficiently small 

e2 > el > 0 there exists a sufficiently small go > 0 so that  for all points y at distance 

/2 < go from z we have 

d( y, x)) > 11 - el > 11- e2 > d( y, xjx~+l) (,) 

for all j. 

Let y ~ , . . . ,  Yk be k points arranged in counterclockwise order along a circle 

o f  radius /2 about  z, for some 12<8o, so that  they all lie on the convex hull 

conv{x l , . . . ,Xk ,  y~ , . . . , yk} .  Define B to be that hull, so that B is a convex 

(2k)-gon (see Fig. 8(a)). 

Next  we define the obstacles to consist o f  just the following 2n corners (see 

Fig. 8(b)): The  first n comers  u ~ , . . . ,  u, are taken to be points equally spaced 

(at angles z r /n  apart)  on a semicircle centered at the origin O whose radius is 

rl = !1 -  (e2+ e2)/2. There exists 8 > 0 such that for  each point  w at distance 8 

from O we have 

11-e1> d(w, u i ) >  i l - e2  

for all i = 1 . . . .  , n. The last n comers  v ~ , . . . ,  v, are then defined so that each v~ 

lies on the segment Out at distance 8 from O. 

We claim that if we choose 8o<<-zrS/n, then for  each obstacle corner vj, 

j =  1, . . . ,  n, and for each pair  of  a segment xpx~+l, p =  1 , . . . ,  k - l ,  and a comer  

yq, q = 1 , . . . ,  k~, there are l l (n )  obstacle comers  u~ for which there exists a free 

position of  B at which it makes the two contacts o f  xvxp+~ with u,- and of  yq with 

vj simultaneously. 

Indeed,  place yq at vj and rotate B about  this common  point  o f  contact. It is 

easy to see that,  by the choice of  4) and 80, B can be rotated in this way almost 

180 ° without touching any other corner Yr. Thus, during this rotation B will meet 

Yz Y4 

&u5 

Iu4 ~,u3 

V4 V~ 

V~ 1'4 V2 

V64 ~ I~Vl 

~2 

~lUl 

(a) (bl 
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f~(n) comers us, and our choice of ~b implies that, at any position during this 

rotation, B cannot meet two such comers simultaneously. Finally, it follows from 

the inequalities (*) that every side xpx,+l of  B will touch such a comer us as B 

rotates in this manner, and that every such contact will necessarily be at a free 

position of  B. 

Hence in this example we have [l(k2n 2) distinct free double contacts of  B 

with the obstacles, each involving three simultaneous contact pairs, namely the 

contacts of  xrxp+l with u ,  of  yq_lyq with vj, and of  Yd'q+~ with vj, thus yielding 

the desired lower bound. 

Remark. We do not have a similar example in which a convex k-gon B makes 

l)(kEn 2) free critical contacts with a collection of  polygonal obstacles having n 

comers altogether, in such a way that in each of  these critical contacts B touches 

the obstacles at three distinct points. It is easy, however, to obtain (by modifying 

the above example or otherwise) examples in which B makes 12(kn 2) (or, sym- 

metrically, [l(k2n)) free critical contacts, each at three distinct points. 
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