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ON THE NUMBER OF DIFFERENT PRIME DIVISORS
OF ELEMENT ORDERS

ALEXANDER MORETÓ

(Communicated by Jonathan I. Hall)

Abstract. We prove that the number of different prime divisors of the order
of a finite group is bounded by a polynomial function of the maximum of the
number of different prime divisors of the element orders. This improves a
result of J. Zhang.

1. Introduction

Given a finite group G, let ρ(G) be the number of different prime divisors of
|G| and let α(G) be the maximum number of different prime divisors of the orders
of the elements of G. It was proved by J. Zhang in [6] that if G is solvable, then
ρ(G) is bounded by a quadratic function of α(G) and that for arbitrary G, ρ(G)
is bounded by a superexponential function of α(G). The result for solvable groups
was improved by T. M. Keller in [3], where he proved that ρ(G) is bounded by a
linear function of α(G). The purpose of this short note is to provide a proof of a
better bound in the case of arbitrary finite groups.

Theorem A. There exist universal (explicitly computable) constants C1 and C2

such that for every finite group G > 1 the inequality

ρ(G) ≤ C1α(G)4 log α(G) + C2

holds.

The proof relies on the classification of simple groups, as in Zhang’s paper. Ac-
tually, the case where we improve on Zhang’s argument is in the case of alternating
groups. This polynomial bound has been used in [4].

2. Proof

First, we prove that for simple groups there is an essentially cubic bound. We
begin with the alternating groups.

Lemma 2.1. There exists a constant C1 such that ρ(An) ≤ C1α(An)2 for every
n ≥ 5.
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Proof. Let pj be the jth prime number. Let k be the maximum integer such that

4 +
k∑

j=2

pj ≤ n.

It is clear that the elements of An that can be written as the product of two 2-cycles,
one p2-cycle, one p3-cycle,. . . , one pk−1-cycle and one pk-cycle, with all these cycles
pairwise disjoint, are divisible by α(An) = k different primes. It follows from p. 190
of [5], for instance, that pj ≤ 10j log j. Therefore

α(An) ≥ max{l | 4 + 10
l∑

j=2

j log j ≤ n} ≥ max{l | 4 + 10l2 log l ≤ n} = t.

In particular, we have that n < 4 + 10(t + 1)2 log(t + 1). By p. 160 of [5], for
instance, we have that ρ(An) is bounded by a quadratic function of t. The result
follows. �

All the inequalities that appear in this proof have reversed inequalities of the
same order of magnitude. This implies that there exists a constant K1 such that
ρ(An) ≥ K1α(An)2 for every n ≥ 5.

Next, we consider the simple groups of Lie type.

Lemma 2.2. There exists a constant C2 such that ρ(G) ≤ C2α(G)3 log α(G) when-
ever G is a simple group of Lie type.

Proof. It suffices to argue as in the proof of Lemma 5 of [6], using the proof of
Lemma 2.1 instead of the proof of Lemma 4 of [6]. �

Now, we are ready to prove Theorem A.

Proof of Theorem A. We know by [3] that there exists n0 > 1 such that if H is solv-
able and α(H) ≥ n0, then ρ(H) < 5α(H). We consider groups G with α(G) = k ≥
n0 and we want to prove that ρ(G) ≤ Ck4 log k, where C = 10 max{C1, C2, C3, 5}
and C3 is defined in such a way that ρ(G) ≤ C3k

3 whenever α(G) = k < n0 or G
is sporadic.

Let G be a minimal (nonsolvable) counterexample. We define the series 1 =
S0 ≤ R1 < S1 < R2 < S2 < · · · < Rm < Sm ≤ Rm+1 = G as follows: R1 is the
largest normal solvable subgroup of G, and for any i ≥ 1, Si/Ri is the socle of G/Ri

and Ri+1/Si is the largest normal solvable subgroup of G/Si. Note that for i ≥ 1,
Si/Ri is a direct product of nonabelian simple groups.

We claim that m ≤ 5k. In order to see this, we will first prove that there exists
a prime divisor qi of |Si/Ri| that is coprime to |G/Si||Ri| for i = 1, . . . , m. This
argument is due to Zhang [6]. Let P be a Sylow 2-subgroup of Si. By the Frattini
argument, G = SiNG(P ). Put T = RiNG(P ). Then T is a proper subgroup of G. If
every prime divisor of |Si/Ri| divides |G/Si||Ri|, then we would have ρ(T ) = ρ(G).
Since the theorem holds for T , it also holds for G. This contradiction implies that
such qi exists.

Now, let Qm be a qm-Sylow subgroup of G. We have that Qm acts coprimely
on Rm and using Glauberman’s Lemma (Lemma 13.8 of [2]), we deduce that there
exists Qm−1 ∈ Sylqm−1

(Rm) that is Qm-invariant. Now, we consider the action of
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Qm−1Qm on Rm−1 and conclude that there exists a Qm−1Qm-invariant Sylow qm−2-
subgroup of G. In this way, we build a solvable subgroup H = QmQm−1 . . . Q1. By
[3], we have that m ≤ 5α(H) ≤ 5α(G), as claimed.

Using Lemmas 2.1 and 2.2 together with [3], one can see that

ρ(Si/Si−1) ≤ (C/5)k3 log k.

Finally we deduce that

ρ(G) ≤ m · max
i

ρ(Si/Si−1) ≤ Ck4 log k.

This contradiction completes the proof. �
After this paper was submitted for publication, Keller informed us that he had

independently obtained this bound. The result appears stated, but without proof,
in Remark 16.19(b) of [1].
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