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A (hyper)graph G is called k-critical if it has chromatic number k, but every proper
sub(hyper)graph of it is (k — 1)-colourable. We prove that for sufficiently large k, every
k-critical triangle-free graph on n vertices has at least (k—o(k))n edges. Furthermore, we
show that every (k+ 1)-critical hypergraph on n vertices and without graph edges has at
least (k—3/V/k)n edges. Both bounds differ from the best possible bounds by o(kn) even
for graphs or hypergraphs of arbitrary girth.

1. Introduction

In this paper, we continue studying colour-critical graphs and hypergraphs
with few edges (cf. [10-12]).

A hypergraph G = (V,E) consists of a finite set V = V(G) of vertices
and a set F = F(G) of subsets of V, called edges, each having cardinality
at least two. An edge e with |e| =2 is called an ordinary edge. A graph is
a hypergraph in which each edge is ordinary. The degree dg(x) of a vertex
z in G is the number of the edges in G containing z. The subhypergraph
of G induced by X C V(@) is denoted by G[X], i.e. V(G[X]) = X and
E(G[X])={ecE(G)|eC X}; further, G- X =G[V(G) - X].
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Consider a hypergraph G and assign to each vertex x of G a set L(z) of
colours (positive integers). Such an assignment L of sets to vertices in G is
referred to as a colour scheme (or briefly, a list) for G. An L-colouring of G
is a mapping ¢ of V(G) into the set of colours such that ¢(z)€ L(zx) for all
x€V(G) and [{p(z)|z€e}|>2 for all e€ E(G). If G admits an L-colouring,
then G is said to be L-colourable. In case of L(z)={1,...,k} for all z€ V(G),
we also use the terms k-colouring and k-colourable, respectively. G is said
to be k-choosable or k-list-colourable if G is L-colourable for every list L
of G satisfying |L(z)| =k for all x € V(G). The chromatic number x(Q)
(choice number x;(G)) of G is the least integer k such that G is k-colourable
(k-choosable).

We say that a hypergraph G is L-critical where L is a given list for G if G
is not L-colourable but every proper subhypergraph of G is L-colourable. In
case of L(x)={1,...,k—1} for all x€V(G), we also use the term k-critical.
A hypergraph G is said to be k-list-critical if G is L-critical for some list L of
G where |L(x)|=k—1 for all z€V(G). Clearly, every k-critical hypergraph
is k-list-critical.

It is known (see, e.g. [6]) that for every integer k>3, there are infinitely
many k-critical graphs with average degree less than k. Our first result is
that this is not the case for triangle-free k-critical graphs provided that k is
large.

Theorem 1. Let G be a triangle-free graph on n vertices. If G is k-list-
critical, then G has at least (k —o(k))n edges. In particular, the average
degree of G is at least 2k —o(k).

The value 2k—o(k) is asymptotically tight (in k), since there are k-critical
graphs of arbitrary girth and with average degree at most 2(k—2) (see, e.g. [2,
3,9]).

For hypergraphs and large k, there is a large gap between lower and
upper bounds on the number of edges in a uniform k-critical hypergraph. It
was proved in [5,14-16] that, for given integers k>3, r >3 and n>k, every
k-critical r-uniform hypergraph on n vertices has at least max{1, (k—1)/r}n
edges. The hypergraphs obtained by the best known constructions (see [1,
3]) have about (k—2)n edges. We will prove that these constructions are
close to the truth for large k.

Theorem 2. Let G be a hypergraph on n vertices and without ordinary
edges. If G is k-list-critical, then G has at least k(1—3/vk)n edges.

Theorem 2 implies, in particular, that every (k+ 1)-critical hypergraph
on n vertices and without ordinary edges has at least k(1 —3/+v/k)n edges.
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Recently, it was proved in [9] that, for every k>3, r >3, g>3 and infinitely
many n, there are (k+1)-critical r-uniform hypergraphs on n vertices having
girth g and fewer than kn edges.

2. Proof of Theorem 1

The proof of Theorem 1 is mainly based on the following recent result of

A. Johansson [7].

Theorem 3. If G is a triangle-free graph with maximum degree at most
A, then x;(G)<o(A). |

By a hereditary graph property we mean a class P of graphs such that if
G is a member of P, then every graph isomorphic to some induced subgraph
of G is a member of P, too. Theorem 1 is an immediate consequence of
Theorem 3 and the following result.

Theorem 4. Let P be a hereditary graph property such that x;(G)< f(A)
for every graph G € P with maximum degree at most A where f(k)=o(k).
Then every k-list-critical graph G € P on n vertices has at least (k—o(k))n
edges.

Proof. We may assume that f is a continuous and monotonically increas-
ing function where f(0) > 1. Consequently, there is function g such that
g(k)f(g(k))=k? for every integer k>1. Then it follows by an easy calcula-
tion that L
(1) (k= flg(k)(A = —==) = k = 2f(g(k))
g(k)
for every integer k > 1. Furthermore, because of f(k) = o(k), we conclude
that
f(g(k)) = o(k).

Next, consider a k-list-critical graph G € P on n vertices and m edges.
We show that if k is sufficiently large, then m > (k—2f(g(k)))n=(k—o(k))n.

Since G is k-list-critical, there is a list L for G such that G is L-critical
and |L(z)| = k—1 for every x € V = V(G). For x € V and U C V, let
d(xz:U) denote the number of vertices in U that are adjacent to = in G. Let
X={zeV|dg(x)>g(k)}, Y=V —X. We distinguish two cases.
Case 1. There exists a non-empty subset A of Y such that, for all a€ A,

(2) dla:V —A)<k—1—f(g(k))].
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Since G is L-critical, there is an L-colouring ¢ of G — A. For the induced
subgraph G’ = G[A4] of G, define the list L’ by L'(a) = L(a) — {¢(v) | av €
E(G)&veV—A} for every a€ A. From (2) it then follows that, for all a€ A,

[L'(a)] 2k —1—d(a:V —A) > [f(g(k))].
Furthermore, for all a € A, we have

der(a) < dg(a) < g(k).

Since G’ € P, this implies that G’ is L’-colourable and, therefore, G is L-
colourable, a contradiction.

Case 2. For every non-empty subset A of Y there exists an a € A such that

da:V —A)=k—[f(g(k)] = k= f(g(k)).

This implies, in particular, that there is an orientation of G such that for

the indegree of every vertex y € Y we have d™ (y) > k — f(g(k)). Clearly,
dt(z)+d (z) = dg(z) > g(k) for every z € X. Because of (1) and glfk)
f(g(k))=o0(k), we now conclude that if & is sufficiently large, then (1 g(k) )>

k
i) and, moreover,

k _
—U;—d* ”vezv(l_@)d )

> Y )+ (1- =5 )W

xEX yey
2k|X|+( = 2f(g(k))Y|
> (k—2f(g(k))n

This proves Theorem 4. |

Remark. Recently, Johansson [8] proved that for every positive integer r
there is a constant ¢, such that x;(G) < (¢, Aloglog A)/log A for every
K,-free graph G with maximum degree at most A > 2. Using this result,
Theorem 4 implies that if  is an positive integer, then every k-list-critical

K,-free graph on n vertices has at least (k—o(k))n edges.

3. Proof of Theorem 2

We need the Lovasz Local Lemma in general form (see e.g. [4, p.53-54]):
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Lemma 1. Let Aq,..., A, be events in an arbitrary probability space. A
directed graph D = (V,E) on the set of vertices V. ={1,...,n} is called a
dependency digraph for the events Ai,..., A, if for each i,1 < i <mn, the
event A; is mutually independent of all the events A; such that (i,j) ¢ E.
Suppose that D= (V,E) is a dependency digraph for the above events and

suppose there are real numbers x1,...,x, such that 0<z; <1 and
P(A4;) <z H (1—z)
(i.j)eE

for all 1<i<n. Then

In particular, with positive probability no event A; holds. |

The following technical observation will be also used.

Claim 1. Let k >0, 0 < b < 1/k and f(y) = e* % /(k—y). Then f is a
monotonically increasing function on the interval (0,k).

Proof. For y€(0,k) we have

—be" Wk —y)+ e  er%(1 — bk + by)
(k—y) (k —y)?

Proof of Theorem 2. Let G=(V,E) be a hypergraph on n vertices and
without ordinary edges, and let L be a list for G such that |L(z)| =k for
all z € V. Assume that G is L-critical. Let z = v/k. We have to show that
|E|>k(1-3/2)|V|. For <3, this is evident. Now, asssume z > 3. Define the
function g from the set of positive integers into the set of real numbers by

fly) = > 0. 1

® o) = {3m i = 2

In order to count the number of edges in G, consider the following Procedure:
Step 0: Let Vo=V, Eg=FE. If we have

(4) wo(v) == > gllel) <k(1—3/2)

{e€Ep|vee}

for every veVj, then stop. Otherwise, choose a vertex vy € Vjy for which (4)
does not hold and go to Step 1.
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Step t (t>1): If t=n, then stop. Otherwise, let V;=V;_; —{v;} and let
E; denote the family of all non-empty sets eNV; where e€ E. If we have

() wi(v) = Y g(le]) <k(l—3/z)

{e€Et|vee}

for every v € V4, then stop. Otherwise, choose a vertex v,y € Vi for which
(5) does not hold and go to Step ¢+ 1.

First, suppose that the Procedure terminates in Step n. Then V =
{v1,...,v,} and w;—1(v;) >k(1—3/z) for i=1,...,n. Let

S=Swa)= Y glehtt X gl
=1

ecEp,v1€e e€E,_1,un€e

On the one hand, we have S >k(1—3/2)|V|. On the other hand, we infer
that

S = Zl—l/z—{—ZQl "/2) <Y 1=|El
eckE ecll
Consequently, |E|>k(1-3/2)|V]|.

Now, suppose that the Procedure terminates in Step h, where h <n. In
the sequel let V=V, E=FE), and e=enV for every e € E. Note that_ E is
the family of all non-empty sets € where e € E. For every vertex v € V let
F, denote the set of all edges e € E such that e={v}, and let a, =|F,|. Let
F={ecE||¢|>2}. Since the Procedure stopped in Step h, for every veV,
we have

(6) Z g(le]) = ax(1—1/2) + Z g(le]) < k(1 —3/2)
eGE',UEe ecFvee

and, therefore,
(7) ay < k(1 —=3/2)/(1 —1/2) < k(1 —2/z).

Since GG is L-critical, there is an L-colouring ¢ of G — V. To arrive at a
contradiction we shall show that ¢ can be extended to some L-colouring of G.

For every edge e € E such that e#¢, let v(e) denote an arbitrary vertex
of e—€ and let ¢(e)=¢(v(e)). Define a list L for V by

L(v) = L(v) \ {p(e) | e € F}
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for every ve V. From (7) it then follows that
(8) IL(W)| > |L)| —ay =k —ay >k — k(1 —2/2) =2k/2z > 1

for every v € V. Consider a random L- colouring of V, that is, each vertex
veV is coloured independently of all other vertices with a colour ¢, EL( )
and with equal probability 1/|L(v)|. We say that such a random colouring
v is e-bad for some e € F' if all vertices of € receive the same colour ¢ and, in
case of €#e, we have c=(e). Clearly, if v is not e-bad for all e € F', then
U~ is an L-colouring of G.

Let Yo =,z L(v) and y.=|Y.|. For every e€ F, denote by A, the event
that our random colouring is e-bad. Then it follows immediately that, for
e#e, we have

Mes(k —as)™" if ple) € Y,
) P(4e) < {0 otherwise,
and, for e=e, we have
(10) P(A.) < yeH(k—av)_l.

vEe

In order to show that P(A.cpAe) >0, we apply the Local Lemma. For
every e€ F, let £, =2""1¢l /kz and F(e)={¢' € F| ¢/Ne#0}. Clearly, for each
e€F, . <1 and the event A, is mutually independent of all the events A
such that ¢ € F(e). In what follows, consider some edge e € F' with |e]=m.
Then m>2 and

X(e) =z, H (1 —xe)

e’'eF(e) vee (e/€Fvee’)

Hexp{ 2 ﬁ}

vEe (e’eFvee’) z

21 m 9117 }
H exp Z _
vEe { (e’eFvee’) zk — 1/2
_olom S 22k S 21-1¢/
k2 exp « 22k — 1 zk

vEe (e’eFvee’)

(1 _$e’) >

21m

Vv

Y

ol-m 22k

(1€'])
" ke eXp{_Zsz—l 2 gk }

vEe (e’eFvee’)
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From (6) it then follows that

21—m 22k 3 ay
(11)  X(e) > s exp{—2zk_12[1—;—?(1—1/2)}}.

vee

Let p(e) =P(A.)/X (e). We want to show that p(e) <1. If €#e, then from
(9) and (11) we obtain that

2m 1y 2zk 3 ay(z—1)
PO S e ay) eXp{sz—lZ{l_ 2 k2 }}

vee

This implies, using (7) and Claim 1 with y=a, and b= 23,‘52 e <l

that

2m=1g { 22k [1 3 (k—2k/2)(2 — 1)]}

ple) < (2k/z)m Pl 1™ z kz
- Zmtl . { 22k m[ 3 3z—2]}< Zmtl
X —_—— .
= o1 TP\ 9 1 PR = Qpm—1

Consequently, because of m > 2 and z = V/k , we obtain p(e) < 1. Now,
consider the case € =-e. Since G does not contain ordinary edges, we then
have |é|=|e|=m >3, Furthermore, from (10) and (11) it follows that

2m—1/{jz 2zk 3 av(z — 1)
12w Syemexp{m—lZ[l_T T}}

vee

Therefore, as in case €#e, we infer from (12), (7) and Claim 1 that
Zm—l—l
ple) < Yeopom—1

If m >4, then, since y, <k and z= vk, this implies p(e) < z™T1/(2k™2) < 1.
Now, assume m=3. If y. <2k/z, then we obtain

ok Zerl Zm 2’3 .
PO TomT—fmz -

If y. > 2k/z, then we argue as follows. Since y, <k —a, for each v €€, we

. . . 2(z—1
infer from (12) and Claim 1 with y=a, and b= 2(zk—1) that

m—1 o —1
ple) < 2_Kabe o {22]:k1m [1—§——k el (2 )]}
ye' zk —
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4kz Xp{ 62k {1_§ W]}

Y2 ¢ 22k — 1 z kz
_ 4kz 6(zye —ye —2k) |
e [l )

The function h is convex on the interval I =[2k/z, k], since, for all y€I, we
have

6(z — 1) 2

(Inh(y)) = —2/y + o1 and (Inh(y))”" = 7 > 0.

Therefore, in order to prove that p(e) <1 for the case y. > 2k/z it is sufficient
to show that h(y) <1 holds for y=2k/z as well as y=k. Since z= vk > 3,
we have, on the one hand,

h(2k/z) = %exp{—@z;zi_kl)z} = exp{—%} <1

On the other hand, we have

4kz 6k(z — 3) 4 3 z—3
h(k):?e}‘p{ 22k — 1 }:?eXp{l—l/zz‘l P }

4 -3
< S exp {3.042—} .
z z

The function h(z) = fgexp{3.04z;z3} reaches its maximum at zy = 4.56,

since (Inh(z)) = 21222 j5 positive on (0,29) and negative for all z > z.
Since

h(4.56) = ﬁexp {3.04%} < ﬁexp{1.04} <1,

we also have h(k)<1. This proves p(e) <1 provided that y.>2k/z.
Therefore, p(e) < 1 for all e € F. Consequently, by Lemma I,

P(/\eeFA_e) > 0 implying that there is an f/-colouring ~ of V such v is

not e-bad for every edge e € F. Hence there is an L-colouring of G. This

contradiction proves Theorem 2. |
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