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A (hyper)graph G is called k-critical if it has chromatic number k, but every proper
sub(hyper)graph of it is (k− 1)-colourable. We prove that for sufficiently large k, every
k-critical triangle-free graph on n vertices has at least (k−o(k))n edges. Furthermore, we
show that every (k+1)-critical hypergraph on n vertices and without graph edges has at
least (k−3/ 3

√
k)n edges. Both bounds differ from the best possible bounds by o(kn) even

for graphs or hypergraphs of arbitrary girth.

1. Introduction

In this paper, we continue studying colour-critical graphs and hypergraphs
with few edges (cf. [10–12]).

A hypergraph G = (V,E) consists of a finite set V = V (G) of vertices
and a set E = E(G) of subsets of V , called edges, each having cardinality
at least two. An edge e with |e| = 2 is called an ordinary edge. A graph is
a hypergraph in which each edge is ordinary. The degree dG(x) of a vertex
x in G is the number of the edges in G containing x. The subhypergraph
of G induced by X ⊆ V (G) is denoted by G[X], i.e. V (G[X]) = X and
E(G[X])={e∈E(G) |e⊆X}; further, G−X =G[V (G)−X].
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Consider a hypergraph G and assign to each vertex x of G a set L(x) of
colours (positive integers). Such an assignment L of sets to vertices in G is
referred to as a colour scheme (or briefly, a list) for G. An L-colouring of G
is a mapping ϕ of V (G) into the set of colours such that ϕ(x)∈L(x) for all
x∈V (G) and |{ϕ(x) |x∈e}|≥2 for all e∈E(G). If G admits an L-colouring,
then G is said to be L-colourable. In case of L(x)={1, . . . ,k} for all x∈V (G),
we also use the terms k-colouring and k-colourable, respectively. G is said
to be k-choosable or k-list-colourable if G is L-colourable for every list L
of G satisfying |L(x)| = k for all x ∈ V (G). The chromatic number χ(G)
(choice number χl(G)) of G is the least integer k such that G is k-colourable
(k-choosable).

We say that a hypergraph G is L-critical where L is a given list for G if G
is not L-colourable but every proper subhypergraph of G is L-colourable. In
case of L(x)={1, . . . ,k−1} for all x∈V (G), we also use the term k-critical.
A hypergraph G is said to be k-list-critical if G is L-critical for some list L of
G where |L(x)|=k−1 for all x∈V (G). Clearly, every k-critical hypergraph
is k-list-critical.

It is known (see, e.g. [6]) that for every integer k≥3, there are infinitely
many k-critical graphs with average degree less than k. Our first result is
that this is not the case for triangle-free k-critical graphs provided that k is
large.

Theorem 1. Let G be a triangle-free graph on n vertices. If G is k-list-
critical, then G has at least (k − o(k))n edges. In particular, the average
degree of G is at least 2k−o(k).

The value 2k−o(k) is asymptotically tight (in k), since there are k-critical
graphs of arbitrary girth and with average degree at most 2(k−2) (see, e.g. [2,
3,9]).

For hypergraphs and large k, there is a large gap between lower and
upper bounds on the number of edges in a uniform k-critical hypergraph. It
was proved in [5,14–16] that, for given integers k≥3, r≥3 and n>k, every
k-critical r-uniform hypergraph on n vertices has at least max{1,(k−1)/r}n
edges. The hypergraphs obtained by the best known constructions (see [1,
3]) have about (k− 2)n edges. We will prove that these constructions are
close to the truth for large k.

Theorem 2. Let G be a hypergraph on n vertices and without ordinary
edges. If G is k-list-critical, then G has at least k(1−3/ 3

√
k)n edges.

Theorem 2 implies, in particular, that every (k + 1)-critical hypergraph
on n vertices and without ordinary edges has at least k(1−3/ 3

√
k)n edges.
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Recently, it was proved in [9] that, for every k≥3, r≥3, g≥3 and infinitely
many n, there are (k+1)-critical r-uniform hypergraphs on n vertices having
girth g and fewer than kn edges.

2. Proof of Theorem 1

The proof of Theorem 1 is mainly based on the following recent result of
A. Johansson [7].

Theorem 3. If G is a triangle-free graph with maximum degree at most
∆, then χl(G)≤o(∆).

By a hereditary graph property we mean a class P of graphs such that if
G is a member of P, then every graph isomorphic to some induced subgraph
of G is a member of P, too. Theorem 1 is an immediate consequence of
Theorem 3 and the following result.

Theorem 4. Let P be a hereditary graph property such that χl(G)≤f(∆)
for every graph G∈P with maximum degree at most ∆ where f(k)=o(k).
Then every k-list-critical graph G∈P on n vertices has at least (k−o(k))n
edges.

Proof. We may assume that f is a continuous and monotonically increas-
ing function where f(0) ≥ 1. Consequently, there is function g such that
g(k)f(g(k))=k2 for every integer k≥1. Then it follows by an easy calcula-
tion that

(k − f(g(k)))(1 − k

g(k)
) ≥ k − 2f(g(k))(1)

for every integer k ≥ 1. Furthermore, because of f(k) = o(k), we conclude
that

f(g(k)) = o(k).

Next, consider a k-list-critical graph G ∈P on n vertices and m edges.
We show that if k is sufficiently large, then m≥(k−2f(g(k)))n=(k−o(k))n.

Since G is k-list-critical, there is a list L for G such that G is L-critical
and |L(x)| = k − 1 for every x ∈ V = V (G). For x ∈ V and U ⊆ V , let
d(x :U) denote the number of vertices in U that are adjacent to x in G. Let
X ={x∈V |dG(x)≥g(k)}, Y =V −X. We distinguish two cases.
Case 1. There exists a non-empty subset A of Y such that, for all a∈A,

d(a : V − A) ≤ k − 1 − �f(g(k))�.(2)
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Since G is L-critical, there is an L-colouring ϕ of G−A. For the induced
subgraph G′ = G[A] of G, define the list L′ by L′(a) = L(a)−{ϕ(v) | av ∈
E(G)&v∈V −A} for every a∈A. From (2) it then follows that, for all a∈A,

|L′(a)| ≥ k − 1 − d(a : V − A) ≥ �f(g(k))�.

Furthermore, for all a∈A, we have

dG′(a) ≤ dG(a) ≤ g(k).

Since G′ ∈ P, this implies that G′ is L′-colourable and, therefore, G is L-
colourable, a contradiction.
Case 2. For every non-empty subset A of Y there exists an a∈A such that

d(a : V − A) ≥ k − �f(g(k))� ≥ k − f(g(k)).

This implies, in particular, that there is an orientation of G such that for
the indegree of every vertex y ∈ Y we have d−(y) ≥ k − f(g(k)). Clearly,
d+(x) + d−(x) = dG(x) ≥ g(k) for every x ∈ X. Because of (1) and k2

g(k) =

f(g(k))=o(k), we now conclude that if k is sufficiently large, then (1− k
g(k))≥

k
g(k) and, moreover,

m =
∑
v∈V

k

g(k)
d+(v) +

∑
v∈V

(
1 − k

g(k)

)
d−(y)

≥
∑
x∈X

k

g(k)
(d+(x) + d−(x)) +

∑
y∈Y

(
1 − k

g(k)

)
d−(y)

≥ k|X| + (k − 2f(g(k)))|Y |
≥ (k − 2f(g(k)))n

This proves Theorem 4.

Remark. Recently, Johansson [8] proved that for every positive integer r
there is a constant cr such that χl(G) ≤ (cr ∆ log log ∆)/ log ∆ for every
Kr-free graph G with maximum degree at most ∆ ≥ 2. Using this result,
Theorem 4 implies that if r is an positive integer, then every k-list-critical
Kr-free graph on n vertices has at least (k−o(k))n edges.

3. Proof of Theorem 2

We need the Lovász Local Lemma in general form (see e.g. [4, p.53-54]):
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Lemma 1. Let A1, . . . ,An be events in an arbitrary probability space. A
directed graph D = (V,E) on the set of vertices V = {1, . . . ,n} is called a
dependency digraph for the events A1, . . . ,An if for each i, 1 ≤ i ≤ n, the
event Ai is mutually independent of all the events Aj such that (i,j) /∈E.
Suppose that D = (V,E) is a dependency digraph for the above events and
suppose there are real numbers x1, . . . ,xn such that 0≤xi <1 and

P(Ai) ≤ xi

∏
(i,j)∈E

(1 − xj)

for all 1≤ i≤n. Then

P(
n∧

i=1

Ai) ≥
n∏

i=1

(1 − xi).

In particular, with positive probability no event Ai holds.

The following technical observation will be also used.

Claim 1. Let k > 0, 0 < b ≤ 1/k and f(y) = ea−by/(k − y). Then f is a
monotonically increasing function on the interval (0,k).

Proof. For y∈(0,k) we have

f ′(y) =
−b ea−by(k − y) + ea−by

(k − y)2
=

ea−by(1 − bk + by)
(k − y)2

> 0.

Proof of Theorem 2. Let G = (V,E) be a hypergraph on n vertices and
without ordinary edges, and let L be a list for G such that |L(x)| = k for
all x∈ V . Assume that G is L-critical. Let z = 3

√
k. We have to show that

|E|≥k(1−3/z)|V |. For z≤3, this is evident. Now, asssume z>3. Define the
function g from the set of positive integers into the set of real numbers by

g(m) =
{

1 − 1/z if m = 1,
21−m/z if m ≥ 2.(3)

In order to count the number of edges in G, consider the following Procedure:
Step 0: Let V0 =V, E0 =E. If we have

w0(v) :=
∑

{e∈E0|v∈e}
g(|e|) < k(1 − 3/z)(4)

for every v∈V0, then stop. Otherwise, choose a vertex v1∈V0 for which (4)
does not hold and go to Step 1.
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Step t (t≥ 1): If t = n, then stop. Otherwise, let Vt = Vt−1−{vt} and let
Et denote the family of all non-empty sets e∩Vt where e∈E. If we have

wt(v) :=
∑

{e∈Et|v∈e}
g(|e|) < k(1 − 3/z)(5)

for every v ∈ Vt, then stop. Otherwise, choose a vertex vt+1 ∈ Vt for which
(5) does not hold and go to Step t+1.

First, suppose that the Procedure terminates in Step n. Then V =
{v1, . . . ,vn} and wi−1(vi)≥k(1−3/z) for i=1, . . . ,n. Let

S =
n∑

i=1

wi−1(vi) =
∑

e∈E0,v1∈e

g(|e|) + · · · +
∑

e∈En−1,vn∈e

g(|e|).

On the one hand, we have S ≥ k(1−3/z)|V |. On the other hand, we infer
that

S =
∑
e∈E

(1 − 1/z +
|e|∑
i=2

21−i/z) <
∑
e∈E

1 = |E|.

Consequently, |E|>k(1−3/z)|V |.

Now, suppose that the Procedure terminates in Step h, where h<n. In
the sequel, let Ṽ =Vh, Ẽ =Eh and ẽ= e∩ Ṽ for every e∈E. Note that Ẽ is
the family of all non-empty sets ẽ where e∈E. For every vertex v ∈ Ṽ , let
Fv denote the set of all edges e∈E such that ẽ={v}, and let av = |Fv|. Let
F ={e∈E | |ẽ|≥2}. Since the Procedure stopped in Step h, for every v∈ Ṽ ,
we have

wh(v) =
∑

ẽ∈Ẽ,v∈ẽ

g(|ẽ|) = av(1 − 1/z) +
∑

e∈F,v∈e

g(|ẽ|) < k(1 − 3/z)(6)

and, therefore,

av < k(1 − 3/z)/(1 − 1/z) < k(1 − 2/z).(7)

Since G is L-critical, there is an L-colouring ϕ of G− Ṽ . To arrive at a
contradiction we shall show that ϕ can be extended to some L-colouring of G.

For every edge e∈E such that e �= ẽ, let v(e) denote an arbitrary vertex
of e− ẽ and let ϕ(e)=ϕ(v(e)). Define a list L̃ for Ṽ by

L̃(v) = L(v) \ {ϕ(e) | e ∈ Fv}
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for every v∈ Ṽ . From (7) it then follows that

|L̃(v)| ≥ |L(v)| − av = k − av > k − k(1 − 2/z) = 2k/z ≥ 1(8)

for every v ∈ Ṽ . Consider a random L̃-colouring of Ṽ , that is, each vertex
v∈ Ṽ is coloured independently of all other vertices with a colour cv ∈ L̃(v)
and with equal probability 1/|L̃(v)|. We say that such a random colouring
γ is e-bad for some e∈F if all vertices of ẽ receive the same colour c and, in
case of ẽ �= e, we have c = ϕ(e). Clearly, if γ is not e-bad for all e∈F , then
ϕ∪γ is an L-colouring of G.

Let Ye =
⋂

v∈ẽ L̃(v) and ye = |Ye|. For every e∈F , denote by Ae the event
that our random colouring is e-bad. Then it follows immediately that, for
ẽ �=e, we have

P(Ae) ≤
{∏

v∈ẽ(k − av)−1 if ϕ(e) ∈ Ye,
0 otherwise,(9)

and, for ẽ=e, we have

P(Ae) ≤ ye

∏
v∈ẽ

(k − av)−1.(10)

In order to show that P(
∧

e∈F Ae) > 0, we apply the Local Lemma. For
every e∈F , let xe =21−|ẽ|/kz and F (e)={e′∈F | e′∩e �=∅}. Clearly, for each
e∈F , xe <1 and the event Ae is mutually independent of all the events Ae′

such that e′ �∈F (e). In what follows, consider some edge e∈F with |ẽ|=m.
Then m≥2 and

X(e) := xe

∏
e′∈F (e)

(1 − xe′) ≥
21−m

kz

∏
v∈ẽ

∏
(e′∈F,v∈e′)

(1 − xe′) ≥

≥ 21−m

kz

∏
v∈ẽ

exp


−

∑
(e′∈F,v∈e′)

1
zk2|ẽ′|−1 − 1




≥ 21−m

kz

∏
v∈ẽ

exp


−

∑
(e′∈F,v∈e′)

21−|ẽ′|

zk − 1/2




=
21−m

kz
exp


−

∑
v∈ẽ

2zk
2zk − 1

∑
(e′∈F,v∈e′)

21−|ẽ′|

zk




=
21−m

kz
exp


−

∑
v∈ẽ

2zk
2zk − 1

∑
(e′∈F,v∈e′)

g(|ẽ′|)
k


 .
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From (6) it then follows that

X(e) ≥ 21−m

kz
exp


− 2zk

2zk − 1

∑
v∈ẽ

[
1 − 3

z
− av

k
(1 − 1/z)

]
 .(11)

Let p(e) = P(Ae)/X(e). We want to show that p(e)≤ 1. If ẽ �= e, then from
(9) and (11) we obtain that

p(e) ≤ 2m−1kz∏
v∈ẽ(k − av)

exp


 2zk

2zk − 1

∑
v∈ẽ

[
1 − 3

z
− av(z − 1)

kz

]
 .

This implies, using (7) and Claim 1 with y=av and b= 2zk
2zk−1

z−1
kz = 2(z−1)

2zk−1 ≤ 1
k ,

that

p(e) <
2m−1kz

(2k/z)m
exp

{
2zk

2zk − 1
m

[
1 − 3

z
− (k − 2k/z)(z − 1)

kz

]}

≤ zm+1

2 km−1
exp

{
2zk

2zk − 1
m

[
−3

z
+

3z − 2
z2

]}
≤ zm+1

2 km−1
.

Consequently, because of m ≥ 2 and z = 3
√

k , we obtain p(e) ≤ 1. Now,
consider the case ẽ = e. Since G does not contain ordinary edges, we then
have |ẽ|= |e|=m≥3, Furthermore, from (10) and (11) it follows that

p(e) ≤ ye
2m−1kz∏

v∈ẽ(k − av)
exp


 2zk

2zk − 1

∑
v∈ẽ

[
1 − 3

z
− av(z − 1)

kz

]
 .(12)

Therefore, as in case ẽ �=e, we infer from (12), (7) and Claim 1 that

p(e) < ye
zm+1

2 km−1
.

If m≥4, then, since ye≤k and z= 3
√

k, this implies p(e)<zm+1/(2km−2)≤1.
Now, assume m=3. If ye≤2k/z, then we obtain

p(e) <
2k
z

zm+1

2 km−1
=

zm

km−2
=

z3

k
= 1.

If ye > 2k/z, then we argue as follows. Since ye ≤ k−av for each v ∈ ẽ, we
infer from (12) and Claim 1 with y=av and b= 2(z−1)

2zk−1 that

p(e) ≤ 2m−1kz ye

ym
e

exp
{

2zk
2zk − 1

m

[
1 − 3

z
− (k − ye)(z − 1)

kz

]}
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=
4kz

y2
e

exp
{

6zk
2zk − 1

[
1 − 3

z
− (k − ye)(z − 1)

kz

]}

=
4kz

y2
e

exp
{

6(zye − ye − 2k)
2zk − 1

}
=: h(ye).

The function h is convex on the interval I =[2k/z,k], since, for all y∈I, we
have

(ln h(y))′ = −2/y +
6(z − 1)
2zk − 1

and (ln h(y))′′ =
2
y2

> 0.

Therefore, in order to prove that p(e)≤1 for the case ye>2k/z it is sufficient
to show that h(y)≤ 1 holds for y = 2k/z as well as y = k. Since z = 3

√
k > 3,

we have, on the one hand,

h(2k/z) =
z3

k
exp

{
− 12k

(2zk − 1)z

}
= exp

{
− 12k

(2zk − 1)z

}
≤ 1.

On the other hand, we have

h(k) =
4kz

k2
exp

{
6k(z − 3)
2zk − 1

}
=

4
z2

exp
{

3
1 − 1/2z4

z − 3
z

}

≤ 4
z2

exp
{

3.04
z − 3

z

}
.

The function h̃(z) = 4
z2 exp

{
3.04z−3

z

}
reaches its maximum at z0 = 4.56,

since (ln h̃(z))′ = 9.12−2z
z2 is positive on (0,z0) and negative for all z > z0.

Since

h̃(4.56) =
4

4.562
exp

{
3.04

1.56
4.56

}
<

1
4.56

exp {1.04} < 1,

we also have h(k)≤1. This proves p(e)≤1 provided that ye>2k/z.
Therefore, p(e) ≤ 1 for all e ∈ F . Consequently, by Lemma 1,

P(
∧

e∈F Ae) > 0 implying that there is an L̃-colouring γ of Ṽ such γ is
not e-bad for every edge e ∈ F . Hence there is an L-colouring of G. This
contradiction proves Theorem 2.
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