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Abstract

We study discrete dynamical systems of the kind h(x) = x+g(x), where g(x)
is a monic irreducible polynomial with coefficients in the ring of integers of
a p-adic field K. The dynamical systems of this kind, having attracting
fixed points, can in a natural way be divided into equivalence classes, and
we investigate whether something can be said about the number of those
equivalence classes, for a certain degree of the polynomial g(x).



1 Introduction

The interest of discrete dynamical systems in fields provided with a non-
archimedean valuation has been increasing in the last couple of decades, see
e.g. Arrowsmith and Vivaldi [2], Benedetto [3], Khrennikov [5, 6], Khrennikov
and Nilsson [7, 8], Lubin [11], Nyqvist [12], and Svensson [14]. Among the ap-
plications one can find for instance cryptography (generating pseudorandom
sequences to be used for stream ciphers), see e.g. Anashin [1].

In this paper we will study a special class of discrete dynamical systems
defined over a p-adic field K. The class consist of polynomials of the kind

h(x) = x+ g(x),

where g(x) is a monic irreducible polynomial, whose coefficients belong to
the ring of integers in K. In Svensson [14], necessary and sufficient con-
ditions have been studied, for the fixed points of such a dynamical system
to be attracting. Some generalizations of these results have been made in
Khrennikov and Svensson [9], of which this paper can be contemplated as a
continuation.

2 Prerequisites and Notation

Let K be a p-adic field. By this, we will mean that charK = 0, that K
is complete with respect to a non-trivial discrete valuation defined on K,
and that the residue class field of K is finite. We let OK denote the ring
of integers in K, and PK the unique maximal ideal in OK . The residue
class field OK/PK of K (which, as mentioned, is finite by definition) will be
denoted by Kp. If charKp = p, then the field Kp is isomorphic to Fq, the
finite field of q elements, where q = pm for some m ∈ Z+. If u is any element
in OK , we write ū for its canonical image in Kp. In the same manner, f̄(x)
denotes the canonical image in Kp[x] of a polynomial f(x) ∈ OK [x].

Any p-adic field is isomorphic to some finite extension of the p-adic num-
ber field Qp, see Cassels [4]. In the special case when K = Qp, one usually
writes Zp and pZp for OK and PK , respectively. Here, the residue class field
Zp/pZp is isomorphic to the finite field Fp of p elements.

By a discrete dynamical system (or dynamical system, for short) h on L,
we will mean a mapping L ∋ β 7→ h(β) ∈ L, where h(x) is a polynomial in
K[x]. Given a dynamical system h on L and an element α in L, we define a
sequence (αj)

∞
j=0 of elements in L recursively by

{

α0 = α

αj = h(αj−1), j = 1, 2, . . . .
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We will write hj(α) = αj for every j, where we interpret hj as the composition
of h with itself j times.

3 Attracting Fixed Points

Let K be a p-adic field and g(x) ∈ OK [x] a monic polynomial that is irre-
ducible over K. We study the dynamical system

h(x) = x+ g(x) (3.1)

over an extension L of K that contains (at least one of) the fixed points of
h(x), i.e. elements α ∈ L having the property h(α) = α. These fixed points
are exactly the zeros of g(x) in L.

Even though the polynomial g(x) is claimed to be irreducible over K, its
canonical image ḡ(x) ∈ Kp[x] is of course not necessarily irreducible over Kp.
However, if this happens to be the case, we will say that g(x) is inertial.

Assume now that α ∈ L is an attracting fixed point of h, meaning that
there is a neighborhood V ⊆ L of α such that

lim
j→∞

hj(β) = α

for every β ∈ V . The following theorem (see Svensson [14]) gives a necessary
and sufficient condition for a fixed point of the dynamical system (3.1) to be
attracting.

Theorem 3.1. Suppose g(x) ∈ OK [x] is monic and irreducible over K.

Then a fixed point of h(x) = x + g(x) is attracting, if and only if g(x) is

inertial and if there exists a non-constant polynomial ψ(x) ∈ Kp[x] such that

ḡ(x) = ψ(xp) − x,

where p = charKp.

With Theorem 3.1 in mind, we obtain in a natural manner a partition of all
dynamical systems into disjoint equivalence classes, in the following way. We
say that two polynomials in OK [x] areKp[x]-equivalent, if they have the same
canonical images in Kp[x]. Let N(m, p) denote the number of equivalence
classes that can be represented by an inertial polynomial, having a canonical
image of the kind ψ(xp)− x in Kp[x], for some ψ(x) ∈ Kp[x] of degree m. In
other words, N(m, p) is simply the cardinality of the subset

I(m, p) = {ψ(x) : ψ(x) is monic, degψ(x) = m, ψ(xp) − x is irreducible}

of the polynomial ring Kp[x].
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m

p 2 3 4 5 6 7 8 9

2 1 2 0 4 6 12 16 32

3 3 0 0 36 72 0 0 1,404

5 0 20 0 380 0 4,540 0 87,160

7 7 0 0 896 5,593 0 0 1,273,944

11 11 0 0 6,534 54,780 0 0 ?

Table 3.1: N(m, p) for some small values of m and p

Example 3.2. In Table 3.1 we list N(m, p) for some small values of m
and p, in the case when K = Qp.

1 We see for instance that N(2, 2) = 1.
This is due to ψ(x) = x2 + 1 being the only quadratic polynomial in F2[x]
such that ψ(x2) − x is irreducible over F2. On the other hand, for K = Q3

we obtain N(2, 3) = 3, since ψ(x) can be chosen as any of the polynomials
x2 + 2, x2 + x+ 1, and x2 + 2x+ 2 in F3[x].

As we can see from the table, N(9, 11) is unknown. This number is
however nonzero (since ψ(x) = x9 +x2 +4x+1 is an example of a polynomial
such that ψ(x11)−x ∈ F11[x] is irreducible), and by the next theorem—which
is a generalization of a theorem in Svensson [14]—we also know that it has
to be a multiple of 11. ♦

Theorem 3.3. Let K be a p-adic field, and define N(m, p) as above. If

m 6= 1 and p 6 | m, then p |N(m, p).

Proof. Let G be the set of all elements a ∈ Kp, such that ap = a. Then
(G,+) is a cyclic group of order p, generated by the unity 1 of Kp. Put

K
(m)
p [x] = {ψ(x) ∈ Kp[x] : ψ(x) is monic, deg ψ(x) = m},

where m ≥ 2, and define an action

G×K
(m)
p [x] ∋ (b, ψ(x)) 7→ b.ψ(x) ∈ K

(m)
p [x]

of G on K
(m)
p [x] by

b.ψ(x) = ψ(x+ b) − b

for each b ∈ G. Let Gψ(x) denote the stabilizer of a given polynomial ψ(x) in

K
(m)
p [x]. Suppose Gψ(x) 6= {0}. Then Gψ(x) = G, whence

ψ(x+ 1) = ψ(x) + 1. (3.2)

1These figures are results of computer calculations.
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But by plugging

ψ(x) = xm + am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0

into (3.2) and then identifying the coefficients, we obtain especially

am−1 = am−1 +m,

which is impossible since p 6 | m. Hence if p 6 | m, then the length of any orbit

in K
(m)
p [x] under the action of G equals p, especially those who contain a

polynomial ψ(x) such that ψ(xp)− x is irreducible over Kp. This proves the
theorem, since if f(x) = ψ(xp) − x is irreducible, then

b.ψ(xp) − x = ψ(xp + b) − b− x = ψ((x+ b)p) − (x+ b) = f(x+ b)

is also irreducible.

Remark 1. We must exclude the case when m = 1, since it is easily
shown that N(1, p) = p− 1 for all p, if Kp = Fp.

Remark 2. Computer calculations (for the case Kp = Fp) indicate that
p |N(m, p) is valid most of the time, even though p |m. The only known
counterexample is when m = p = 2, see Example 3.2.

4 Estimations and Plots

Let us assume that K = Qp, from now on. In Khrennikov and Svensson [9],
a question about the asymptotic behavior of N(m, p) is raised, namely what
one can say about

1

π(n)

∑

N(m, p),

where the sum is taken over all primes p such that p ≤ n, and π(n) denotes
the number of primes not exceeding n.

We recall (from e.g. Lidl and Niederreiter [10, Theorem 3.25]) that the
number Iq(n) of monic irreducible polynomials of degree n in Fq[x] is

Iq(n) =
1

n

∑

d|n

µ(d)qn/d,

where µ denotes the Möbius function. Thus, if pm is a large number, we can
do the approximation

Ip(pm) ≈
ppm−1

m
,
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i.e. there are about ppm−1/m monic irreducible polynomials of degree pm in
Fp[x]. If one randomly picks a monic polynomial of degree pm, not having
0 ∈ Fp as a zero, the probability for it to be irreducible is

ppm−1/m

ppm−1(p− 1)
=

1

m(p− 1)
.

In Fp[x], there are pm−1(p−1) monic polynomials such that f(x) = ψ(xp)−x
for some polynomial ψ(x) ∈ Fp[x] of degree m, where ψ(0) 6= 0. Thus a rough
estimation would be

N(m, p) ≈
pm−1(p− 1)

m(p− 1)
=
pm−1

m
,

when mp is large. Thereby

1

π(n)

∑

p≤n

N(m, p) ≈
1

mπ(n)

∑

p≤n

pm−1. (4.1)

By Nyqvist [12, Theorem 4.19],

1

π(n)

∑

p≤n

pm−1 ∼
nm−1

m
,

which together with (4.1) yields

1

π(n)

∑

p≤n

N(m, p) ∼
nm−1

m2
.

Thus, for a fixed degree m of ψ(x),

1

π(n)

∑

p≤n

N(m, p) = O(nm−1). (4.2)

Of course, the above reasoning has to be taken with a pinch of salt, since the
polynomials ψ(xp)−x are not picked randomly—in some cases, the irreducible
polynomials avoid those kind of polynomials. For instance, N(4, p) = 0 for
all primes p (see Example 5.5 below). On the other hand, no p is known such
that N(m, p) = 0, if m ≡ 1 (mod 4), see the remark at the end of this paper.

In Figure 4.1 on the next page we see a plot of the function

n 7→
1

π(n)

∑

p≤n

N(2, p)
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Figure 4.1: Plot of n 7→ π(n)−1
∑

p≤nN(2, p), along with a fitting line
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Figure 4.2: Plot of n 7→ π(n)−1
∑

p≤nN(3, p), along with a fitting curve
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for the 265 first primes (i.e. p ≤ 1697). The straight line in figure is of the
form y = kx, where k is calculated by the method of least squares. It turns
out that k ≈ 1.68646.

Figure 4.2 on the preceding page displays, on the other hand, the plot of

n 7→
1

π(n)

∑

p≤n

N(3, p).

Due to the time complexity, the calculations here only rely on the 70 first
primes (i.e. p ≤ 349). The fitting curve is the least squares fit of the form
y = kx2. Here k ≈ 1.85425.

The empirical investigations above should be compared to (4.2). However,
we would like to point out that the amount of data behind these calculations
is too small to make any general conclusions about the fitting line/curve.

5 Calculations

To calculate N(m, p) for a given m and p, we could simply use brute force,
and examine for all monic ψ(x) ∈ Fp[x] of degreem, whether f(x) = ψ(xp)−x
is irreducible or not. But then the time complexity will increase rapidly, the
larger m or p gets, so we need to reduce the calculations somewhat. The
simplest restriction we can do is to assume that the constant term of ψ(x)
is non-zero, since otherwise f(x) would have x as a factor. To reduce the
calculations a little bit more, we can use the following result.

Lemma 5.1. Let ψ(x) ∈ Fp[x] be monic of degree m. For every b ∈ Fp,

let ψb(x) = ψ(x + b) − b. Then there is exactly one b ∈ Fp such that the

coefficient of xm−1 of ψb(x) equals 0, provided that p 6 | m.

Proof. The coefficient of xm−1 of ψb(x) equals mb + am−1. Since p 6 | m, the
equation mb+ am−1 = 0 has exactly one solution for b in Fp.

Note that ψb(x) in the lemma above is the result obtained when the element b
of the group (Fp,+) acts on ψ(x) as described in the proof of Theorem 3.3.
Due to this, if ψ(x) ∈ Fp[x] is monic of degree m and ψ(xp)−x is irreducible,
then each one of the p polynomials in the same orbit has the same property.
Therefore it is enough (when p 6 | m) to check all polynomials

ψ(x) = xm + am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0

where am−1 = 0. The number of found polynomials of this kind is then
multiplied by p.
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For certain values of m and p, we do not need to investigate possible
polynomials for irreducibility, since there there are none to be found.

Theorem 5.2. Let m be a positive integer, p an odd prime, and n = mp.
Then N(m, p) = 0, whenever

(n + 1)(n(p− 1) − 4) 6≡ 0 (mod 8).

Before we prove this theorem, we need to do some preparations. First, we
recall the notion of the resultant of two polynomials: Let F be any field, and
q(x), r(x) ∈ F [x] two polynomials. Suppose

q(x) = a(x−α1)(x−α2) . . . (x−αn) and r(x) = b(x−β1)(x−β2) . . . (x−βm)

over a field that is large enough to contain the splitting fields of both q(x)
and r(x). Then the resultant of q(x) and r(x) is given by

res(q, r) = ambn
n

∏

i=1

m
∏

j=1

(αi − βj) = am
n

∏

i=1

r(αj) = bn(−1)mn
m
∏

j=1

q(βj).

where a and b are the leading coefficients of q(x) and r(x), respectively.
(Alternatively, one can define res(q, r) as the determinant of the eliminant
matrix of q(x) and r(x), see e.g. Ribenboim [13, p. 22].)

The discriminant of a polynomial f(x) ∈ F [x] of degree n and leading
coefficient c can now be defined, by means of the discriminant, as

disc(f) =
1

c
· (−1)n(n−1)/2 · res(f, f ′),

where f ′(x) is the (formal) derivative of f(x).

Lemma 5.3. Let F be a field with charF = p > 0. If f(x) = ψ(xp) − x
for some monic polynomial ψ(x) ∈ F [x], then

disc(f) = (−1)n(n+1)/2,

where n = p · deg ψ(x).

Proof. We have f ′(x) = −1 and thereby res(f, f ′) = (−1)n, from which the
lemma follows.

Next we state a lemma that can be found, along with a proof, in von zur
Gathen [16] (see also Swan [15]).
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Lemma 5.4. Let f(x) ∈ Fq[x] be a monic square-free polynomial of de-

gree n, where q is supposed to be odd. Suppose furthermore, that the fac-

torization of f(x) into irreducibles over Fq consists of r factors. Then r is

odd, if and only if disc(f)(q−1)/2 = (−1)n+1.

We are now prepared to prove the theorem on the previous page.

Proof of Theorem 5.2. Suppose N(m, p) > 0. Then there is at least one
monic polynomial ψ(x) ∈ Fp[x] of degree m ≥ 1, such that ψ(xp) − x is
irreducible over Fp. We note that the degree of this polynomial is mp = n.
By Lemma 5.4 and Lemma 5.3,

(−1)n+1 = [disc(ψ(xp)−x)](p−1)/2 =
(

(−1)n(n+1)/2
)(p−1)/2

= (−1)n(n+1)(p−1)/4,

whence
n(n + 1)(p− 1)

4
− n− 1 = 2k,

for some integer k. But then (n + 1)(n(p− 1) − 4) is divisible by 8.

Corollary. Depending of the remainder of m when divided by 4, we can

make the following conclusions:

(i) If m ≡ 0 (mod 4), then N(m, p) = 0 for all p 6= 2;

(ii) If m ≡ 2 (mod 4), then N(m, p) = 0 whenever p ≡ 1 (mod 4);

(iii) If m ≡ 3 (mod 4), then N(m, p) = 0 whenever p ≡ 3 (mod 4).

Example 5.5. According to the Corollary, N(4, p) = 0 whenever p is odd.
If p = 2, we have to check g(x) = ψ(x2) − x for irreducibility, where

ψ(x) = x4 + a3x
3 + a2x

2 + a1x+ 1, a1, a2, a3 ∈ F2.

If all or exactly one of a1, a2, and a3 is non-zero, then g(x) has a zero in F2.
The remaining four polynomials to check, i.e.

x8 + x4 + x2 + x+ 1 = (x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)

x8 + x6 + x2 + x+ 1 = (x3 + x+ 1)(x5 + x2 + 1)

x8 + x6 + x4 + x+ 1 = (x3 + x2 + 1)(x5 + x4 + x2 + x+ 1)

x8 + x+ 1 = (x2 + x+ 1)(x6 + x5 + x3 + x2 + 1)

are all reducible. Hence N(4, p) = 0 for all p. ♦
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Remark. A natural question is whether ‘whenever’ can be replaced with
the phrase ‘if and only if’ in (ii) and (iii) of the Corollary above. We believe
that this is possible for the statement (iii).

When it comes to (ii), there are a number of known counterexamples, but
all of them occurs when m = 2. For instance, when it comes to primes less
than 100, N(2, p) = 0 if p ∈ {19, 23, 31, 47, 67, 83}, and among the 265 primes
used for Figure 4.1 on page 6, there are 44 primes such that N(2, p) = 0 even
though p ≡ 3 (mod 4). If m > 2, no counterexample is known.

It is also an open question if N(m, p) > 0 for all p 6= 2, if m ≡ 1 (mod 4).
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