
EWCG 2005, Eindhoven, March 9–11, 2005

On the Number of Facets of Three-Dimensional Dirichlet Stereohedra III:
Cubic Group

Pilar Sabariego ∗ Francisco Santos †

Abstract

We prove that Dirichlet stereohedra for cubic crystal-
lographic groups cannot have more than 105 facets.
This improves a previous bound of 162 [3].

1 Introduction

A stereohedron is any bounded convex polyhedron
which tiles the space by the action of a crystallo-
graphic group. A particular case is the Voronoi region
of a point P in the Voronoi diagram of its orbit GP
under the action of a crystallographic group. These
stereohedra are called Dirichlet stereohedra and are
the object of study in this paper.
The study of the possible combinatorial types of

stereohedra and, in particular, of their maximum
number of facets, is related to Hilbert’s 18th prob-
lem [9]. The two main previous results are:

• The fundamental theorem of stereohedra (Delone,
1961 [5]) asserts that a stereohedron of dimen-
sion d for a crystallographic group G with a as-
pects cannot have more than 2d(a+1)−2 facets,
where the number of aspects of G is the number
of translational lattices in which a generic orbit
of G decomposes. 3D crystallographic groups can
have a maximum of 48 aspects, so 3D stereohedra
cannot have more than 390 facets.

• P. Engel (see [6] and [7, p. 964]), using a
computer search, found in 1980 a 3-dimensional
Dirichlet stereohedron with 38 facets, for a cubic
group with 24 aspects. This is the stereohedron
with the maximum number of facets known.

In previous papers, the second author together with
D. Bochiş has initiated an exhaustive study of the
number of facets of Dirichlet stereohedra for the dif-
ferent 3D crystallographic groups. They divided the
219 affine conjugacy clases of 3-dimensional crystallo-
graphic groups in three blocks, and gave upper bounds
for the number of facets of Dirichlet stereohedra in
them:
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• Within the 100 crystallographic groups which
contain reflection planes, the exact maximum
number of facets is 18 [1].

• Within the 97 non-cubic crystallographic groups
without reflection planes, there are Dirichlet
stereohedra with 32 facets and no Dirichlet stere-
ohedron can have more than 80 [2].

For cubic groups without reflection planes (there
are 22 of them), Bochiş and Santos were only able to
prove an upper bound of 162 facets [3]. Here we im-
prove this bound, and hence the general upper bound
for the number of facets of 3D Dirichlet stereohedra,
to 105. More precisely, our bound goes “group by
group” and it lies below 38 except in the eight so-
called “quarter groups” [4]. Our bounds for these
eight groups are respectively 42, 43, 53, 66, 73, 74, 73
and 105. Curiously enough, the last (and biggest) one
is precisely for the crystallographic group that pro-
duces Engel’s Dirichlet stereohedron with 38 facets.

2 Outline of the method

The sketch of the method is as follows:

1. We choose a tessellation of the 3-dimensional
Euclidean space “adapted” to the group G under
study. We call the tiles fundamental subdomains. By
“adapted” we mean that the tiles are in a finite (and
small) number of classes modulo the normalizer of G.
We choose one fundamental subdomain of each class,
and call them basic fundamental subdomains. If two
points lie in the same orbit of the normalizer of G then
the Dirichlet stereohedra based on them are affinely
equivalent. Hence, every Dirichlet stereohedra for G
is affinely equivalent to one with basis point in a basic
fundamental subdomain.

2. For each basic fundamental subdomain, say D0,
we compute an extended Voronoi region, i.e., a region
that is guaranteed to contain the union of the Dirich-
let stereohedra generated by all the points in D0. We
do this cutting out parts of space that are guaranteed
not to belong to any Voronoi region with basis in D0

because of the presence of certain rotations or trans-
lations in G. The precise method is the same used
in 2D in [2], except here we do it on the computer
because of the extra complexity of the problem.
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Of course, the extended Voronoi region is not
uniquely defined, and the smaller the one we get is,
the better the final bound will result.

3. The extended Voronoi region of a non-basic fun-
damental subdomain D is now trivial to compute:
Find the basic fundamental subdomain D0 related to
D = ρD0 by a motion ρ in the normalizer of G, and
apply ρ to the extended Voronoi region of D0. We call
influence region of a basic subdomain D0 the union of
all the subdomains whose extended Voronoi regions
intersect the extended Voronoi region of D0.

Theorem 1 For every p ∈ D0, the neighbors of p in
the Voronoi diagram of the orbit of p are contained in
the influence region of D0.

Corollary 2 The number of facets of Dirichlet stere-
ohedra with base point in D0 is bounded above by the
number of fundamental subdomains in the influence
region of D0 “counted with multiplicity” (i.e., each
one counted as many times as the number, perhaps
zero, of transformations in G that send it to D0. In
particular only those in the same class of D0 modulo
the action of G are counted).

All of the above actually follows the [Bochiş-
Santos]’s approach, but with two new ingredients:

• [Bochiş-Santos] compute 2-dimensional influence
regions for certain planar subgroups of G, and
take as 3D influence region the intersection of the
rectangular prisms over the 2D influence regions.
We bound directly in dimension 3, with the aid of
a computer program,resulting in a smaller region.

• Our understanding of cubic groups is greatly sim-
plified by a new classification of 3D crystallo-
graphic groups given by Thurston et al. [4].

Let us briefly describe this classification. Thurston
et al. first divide crystallographic groups into re-
ducible and irreducible, were irreducible groups are
those that do not have any invariant direction. They
coincide with the cubic groups.
For an irreducible subgroup G, they define its odd

subgroup as the one generated by the rotations of or-
der three, and they observe that there are only two
possible odd subgroups, that they denote T1 and T2.
The odd subgroup T of a group G is normal, and so
G lies between T and its normalizer N(T ). This is a
powerful property, because it reduces the enumeration
of irreducible space groups to the enumeration, up to
conjugacy, of subgroups of two finite groupsN(T1)/T1

and N(T2)/T2.
Hence, we study the cubic groups in two blocks.

The 27 groups with odd subgroup T1 are called “full
groups” in [4], and they include all the cubic groups
with reflections. The 8 groups with odd subgroup T2

are called “quarter groups”.

3 The 27 “full groups”

These are the groups between T1 and N(T1). N(T1) is
the automorphism group I 4

m3
2
m of the body centered

cubic lattice (here and elsewhere we use the Interna-
tional Crystallographic Notation for crystallographic
groups, see [8]). T1 is the crystallographic group F23,
generated by the triad rotations whose axes are the
diagonals of the unit cube and by the translations of
length 2 in the three edge directions of the cube. T1

coincides the crystallographic group F23.
We take as fundamental subdomains of any group

between T1 and N(T1) the Delaunay tetrahedra of a
body centered cubic lattice. They have two opposite
perpendicular edges with length 1/2 (in relation to the
fundamental translations of T1) and four edges paral-
lel to the four diagonals of the cube, with length

√
3

4 .
N(T1) has diad rotations over the first type of edges,
and triad rotations over the second type of edges. The
extended Voronoi region consists of five fundamental
subdomains: a central one and its four neighbors. The
influence region is made up of these tetrahedra plus
their 10 neighbors. These 15 tetrahedra fall into two
classes modulo T1, with 11 and 4 elements.
Now let G be one of the full groups. Let s be the

number of elements of G that preserve a fundamen-
tal subdomain. Then, the bound for G derived from
the influence region we have calculated is 15s − 1 or
11s − 1 depending on whether G contains elements
that exchange the two classes of subdomains or not.
Since the order of N(T1)/T1 is 16, the values of s for
groups other than N(T1) (which has reflections) are
1, 2, 4 and 8. This, in principle, gives a bound of 119
facets for these groups.
But we can do better. The worse this bound is the

more motions we have in G, not present in T1, that
can be used to cut the extended Voronoi region further
and produce better influence regions. Doing this, we
get the upper bounds of the following table for the 14
full crystallographic groups without reflections.

Group Our bound Previous bound
F23 10 102
F432 5 21
F43c 14 44
F 2

d3 14 69
P23 21 102
F4132 21 72
P432 12 15
I23 29 102
P 2

n3 24 79
F 41

d 3
2
n 29 89

P43n 29 72
P4232 33 79
P 4

n3
2
n 26 30

I432 26 33
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4 The 8 “quarter groups”

The normalizer N(T2) of the second odd group con-
sists of the automorphisms of the following arrange-
ment of lines: the lines x = y = z, 1 + y = z = −x,
1+z = x = −y, and 1+x = y = −z, together with all
their translates by vectors with integer even coordi-
nates. The odd subgroup T2 itself is generated by the
triad rotations on all these lines. The index of T2 in
its normalizer is eight. In crystallographic notation,
N(T2) is I 41

g 3
2
d and T2 is P213. There are 8 groups

between (and including N(T2) and T2. We can see
their graphic representations [8] in Figures 1 to 8.
For quarter groups we choose a more complicated

tesselation of space into fundamental subdomains.
They are of two types, with different volumes. In type
A the basic subdomain is the convex hull of the fol-
lowing five points: (0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 1/4),
(1/4, 1/8, 0) and (1/4, 0, 1/8). For type B we
use the convex hull of (0, 0, 0), (1/4, 1/4,−1/4),
(1/4, 0, 0), (1/4, 0,−1/4), (1/4, 1/4, 0), (1/8, 0,−1/4)
and (1/8, 1/4, 0). Replicating these two bodies by the
motions in N(T2) (Figure 1), tesselates space.
To calculate the extended Voronoi region we cut us-

ing the translations (1/2, 0, 0), (−1/2, 0, 0), (0, 1/2, 0),
(0,−1/2, 0), (0, 0, 1/2) and (0, 0,−1/2), and the fol-
lowing list of triad rotations, which belong to T2,
hence to all the groups. The two entries in each row
of the list are a point and the direction of the rotation
axis:

Triad rotations
Point Vector

(0, 0, 0) (1, 1, 1)
(0, 1/2, 0) (−1, 1, 1)

(−1/2, 0, 0) (−1,−1, 1)
(−1/2, 1/2, 0) (1,−1, 1)

(1/2, 0, 0) (−1,−1, 1)
(1/2, 1/2, 0) (1,−1, 1)

(1/2,−1/2, 0) (1,−1, 1)
(1/2, 1, 0) (−1,−1, 1)

(0,−1/2, 0) (−1, 1, 1)
(−1, 3/2, 0) (−1, 1, 1)

(1, 1, 0) (1, 1, 1)
(−3/2,−1, 0) (−1,−1, 1)
(−1/2,−1, 0) (−1,−1, 1)
(3/2,−1/2, 0) (1,−1, 1)

(−1,−1, 0) (1, 1, 1)
(−1, 0, 0) (1, 1, 1)
(0,−1, 0) (1, 1, 1)
(0, 1, 0) (1, 1, 1)
(1, 0, 0) (1, 1, 1)

(1,−1/2, 0) (−1, 1, 1)
(1, 1/2, 0) (−1, 1, 1)

(−1, 1/2, 0) (−1, 1, 1)

The resulting bounds with these extended Voronoi re-
gions are in the first column of Table 1. They are not very
good, the biggest being above 500. But, as in the case of
full groups, the worse bounds are in groups where addi-
tional motions can be used to cut the extended Voronoi
region. In particular, some of the groups have diad rota-

tions parallel to the coordinate axes or to the diagonals of
the faces of the unit cube, which we use too where we can.
The list of rotations is the following, and the resulting
bounds are in columns 2 and 3 of Table 1:

Diad rotations parallel to the coordinate axes
Point Vector

(1/2, 0, 1/4) (0, 1, 0)
(0, 1/4, 0) (1, 0, 0)

(1/4, 1/2, 0) (0, 0, 1)
(0, 0, 1/4) (0, 1, 0)

(−1/4, 1/2, 0) (0, 0, 1)
(0,−1/4, 0) (1, 0, 0)
(1/4, 0, 0) (0, 0, 1)

(1/2, 0,−1/4) (0, 1, 0)
(0, 1/4,−1/2) (1, 0, 0)
(−1/4, 0, 0) (0, 0, 1)
(0, 0,−1/4) (0, 1, 0)

(0,−1/4,−1/2) (1, 0, 0)
(0, 1/4, 1/2) (1, 0, 0)

(0,−1/4, 1/2) (1, 0, 0)
(0, 3/4, 0) (1, 0, 0)

(0, 3/4, 1/2) (1, 0, 0)
(0, 3/4,−1/2) (1, 0, 0)
(−1/2, 0, 1/4) (0, 1, 0)

(−1/2, 0,−1/4) (0, 1, 0)
(−1/2, 0,−3/4) (0, 1, 0)
(1/2, 0,−3/4) (0, 1, 0)
(0, 0,−3/4) (0, 1, 0)

(−1/4,−1/2, 0) (0, 0, 1)
(1/4,−1/2, 0) (0, 0, 1)
(3/4, 1/2, 0) (0, 0, 1)
(3/4, 0, 0) (0, 0, 1)

(3/4,−1/2, 0) (0, 0, 1)
(−1/2, 0, 3/4) (0, 1, 0)

(0, 0, 3/4) (0, 1, 0)
(1/2, 0, 3/4) (0, 1, 0)

Point Vector

(3/4, 0, 3/8) (−1, 1, 0)
(1/4, 0, 1/8) (1, 1, 0)
(1/4, 0, 5/8) (1, 1, 0)

(−3/4, 0, 1/8) (1, 1, 0)
(−3/4, 0, 5/8) (1, 1, 0)
(7/4, 0, 3/8) (−1, 1, 0)
(3/8, 3/4, 0) (0,−1, 1)
(1/8, 1/4, 0) (0, 1, 1)
(5/8, 1/4, 0) (0, 1, 1)

(1/8,−3/4, 0) (0, 1, 1)
(5/8,−3/4, 0) (0, 1, 1)
(3/8, 7/4, 0) (0,−1, 1)
(0, 3/8, 3/4) (1, 0,−1)
(0, 1/8, 1/4) (1, 0, 1)
(0, 5/8, 1/4) (1, 0, 1)

(0, 1/8,−3/4) (1, 0, 1)
(0, 5/8,−3/4) (1, 0, 1)
(0, 3/8, 7/4) (1, 0,−1)

Finally, in order to get better bounds in some of
the groups, we intersect the final influence region
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that we obtain with the one obtained in [3] with the
method of intersecting prisms over 2-dimensional re-
gions. Our final bounds are in column four, compared
tothe bounds in [3] in the last column.
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