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ON  THE  NUMBER  OF  FIELD  TOPOLOGIES
ON  AN  INFINITE  FIELD

JOHN O.   KILTINEN

Abstract. K.-P. Podewski has recently proven that every count-

able infinite field admits 22Í!o different field topologies. Using

methods of valuation theory, it is proven that every uncountable

field, and more generally, every field F of infinite transcendence

degree over some subfield, admits 22 field topologies. By purely set

theoretic considerations, it then follows that there are 22 field

topologies on any infinite field F, no two of which are topologically

isomorphic This latter result is then generalized to any infinite

commutative ring without proper zero-divisors. A further aspect of

Podewski's work on countable fields is generalized in a final theorem

which states that a field F of infinite transcendence degree admits

22 field topologies which fail to be suprema of locally bounded

ring topologies.

1. Introduction. This paper extends to the uncountable case some

recent results of K.-P. Podewski [7] on the number of field topologies on

a countable infinite field. One then has that any infinite field F admits
\F\

22    field topologies, the maximum number possible.

Our methods of proof follow Podewski's in identifying a class of 2|i'1

topologies on F which are interrelated so that the suprema of distinct

subclasses are distinct. However, for uncountable fields, and more

generally for fields of infinite transcendence degree over a subfield, one is

able to use a class of 2I'F| valuation topologies,1 and the details of the

proof become much easier than in the countable case. Valuation topologies

are clearly not directly applicable to obtaining 22 topologies which are

not suprema of locally bounded ones, so to do this, we turn in §3 to the

inductive ring topologies developed in [4], [5], and [6].
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1 The author wishes to acknowledge the suggestion by the referee of an earlier version

of this paper that valuation topologies can be used here. A proof previously based on the

inductive topologies discussed in §3 was thereby greatly simplified.
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We state here two requisite known theorems—one from valuation

theory and the other from set theory. We will consider valuations as

mapping into the ordered multiplicative group of positive real numbers,

with zero adjoined.

Theorem 1.1. Let B be a transcendence basis over a subfieldfor afield F.

Then for any function ffrom B into R*, the positive real numbers, there is a

valuation v¡ on F such that vf(x)=f(x)for every x in B.

This theorem can be proven by transfinite induction using standard

methods from valuation theory found in a reference such as [8].

Definition. Let A' be a set and let y be a subset of â?(X), the power

set of X. We will say that 37 has the finite intersection property with com-

plements (f.i.p.c.) if for each pair of natural numbers m and n and each

pairwise distinct collection of sets Sx, S2, ■ ■ • , Sm, Tx, T2, ■ • ■ , Tn from

37, the set (H*Li S()n(f}î*ïl?) is not empty. Here T° denotes the

complement of T} in X.

Theorem 1.2 (Hausdorff [2]). If X is an infinite set, then there exists

a subset 37 of &{X) such that 37 has the f.i.p.c. and \37\ =2W.

2. The main results.

Theorem 2.1. Let F be an infinite field of transcendence degree \F\

over a subfield K. Then there are 22 distinct field topologies on F, each of

which is the supremum of a family of valuation topologies.

Proof. Let B be a transcendence basis for F over K, and let X be an

index set such that | Y[ = |Ä|. Since B is infinite, we may choose countably

many subsets Bt of B such that B=\jf=xBi, Bir\Bj=0 if i^j, and

|/?¿| = |Y| for each /. For each /, let j>i:X^>-Bi be a bijection. Let 3* be a

subset of 0>(X) with the f.i.p.c. such that |^|=2|X|.

Now for each Se 37, let/s:ß-*/?* be defined by

fs(x)= I In   iTxefJS),
= 1       otherwise.

Then by Theorem 1.1, there is a valuation vs on F which agrees on B

with fs. Let the topology on F induced by vs be denoted by 37 s. Note

that for any a in X, the sequence (<pn(ct)) in B converges to zero in &'s if

a e S and is bounded from zero otherwise.

We now let 37e denote the supremum of the family {&~S\S e 0} for

each subset 6 of ¿7. We will show that each of these 22 field topologies

&'ta on F is distinct.

To see this, suppose Gt £ 37 for /= 1, 2, and that <S^(92. Let us suppose
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in particular that there is a subset S0 of X such that S0 6 (91 and S0 $ 62.

It will follow that 5"^$^""^, and hence &?9¿k&8t.

Suppose to the contrary that ^"^S^T^. Let t/={x e F\vSo(x)<%}.

Then Í/ is a ^~s -, and hence also a ^"^ -neighborhood of zero, for /= 1

and 2. Hence, there are sets Su S2,---,Sn in (92 and s>0 such that

n"=i F¿c (7, where F¿ = {x eF|t>s (*)<£}. Let m be an integer such that

1 \m < e.

Now since ^ has the f.i.p.c, there is an element a in (p)"=i S.-JnSo.

For each /, 15"/^«, <£„,(*) e (f>m(S¡), so t;s<(0m(a))=l/m. Thus,

«
¿«(a) e fi ^

1=1

However, since a £ S0, <pm(u.)$<f>m(S0), so i>So(<rS»(a))=1> and hence

<f>m(a.) <£ U. This is a contradiction, so we conclude that ^"ji $<^"ff •

Since an uncountable field F satisfies the conditions of Theorem 2.1,

taking K to be the prime subfield, from Podewski's result and the above

theorem, we have the following

Corollary 2.2. Every infinite field F admits 22    distinct field topologies.

We note that in the proof of Theorem 2.1, the topologies 17'e dis-

tinguished themselves from each other by their behavior on B, and thus,

their restrictions to any subring of F which contains B will remain distinct.

This suggests the following generalization.

Theorem 2.3. If R is any infinite commutative ring without proper

zero-divisors, then there are 22 distinct ring topologies on R for which

(if R has an identity element) multiplicative inversion is continuous every-

where that it is defined.

Proof. Let F denote a quotient field of R, let K be the prime subfield

of F. It is easily seen that there exists a transcendence basis B for F over K

such that ASA. If B is infinite (in particular, if R is uncountable) then

as was observed above, the 22 =22 distinct topologies on F presented

in Theorem 2.1 have distinct restrictions to R. These relative topologies

are, of course, ring topologies for which multiplicative inversion is

continuous where it is defined.

The proof for the case where R and F are countable is based on the

fact that the 22Í<0 topologies which Podewski produces on F actually

distinguish themselves from each other by their behavior on a certain

inductively defined set. (The set is the union over all n e N and all/e n2

of pf(0, l)n(f| {p9(n,0)\gEn2 and ##/}. See the development after

Theorem 12 in [7].) At the «th stage in the definition of this set, one

chooses finitely many elements, subject to certain restrictions keeping
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them out of certain finite subsets of F. Let us now impose the further

restriction that these elements be chosen from /?. It then follows that the

22No distinct topologies on /"remain distinct when relativized to /?.

We conclude this section with the observation that any infinite field F
\F\ »

admits 22 field topologies which are really distinct from each other in

the sense of not being topologically isomorphic. This follows from

Corollary 2.2 via purely set-theoretic considerations.

Theorem 2.4. If F is an infinite field, then there is a set 2 o/22 field

topologies on F such that if 37 x and 3^2 are distinct members ofL, then

(F, ^~j) and (F, 3*~2) are not topologically isomorphic. The analogous

statement for commutative rings without proper zero-divisors is also true.

Proof. Let S' be the family of all field topologies on F. Then, by

Corollary 2.2, |2'|=22 . Let 2 be a set which contains one topology out

of each equivalence class on S' for the equivalence relation 3^xr^372 iff

(F, ¿7~x) is topologically isomorphic to (F, 3*~2). Since there are at most

\FF\=2^' (see [9, p. 417]) field automorphisms of F, each equivalence

class has at most 2|F| elements in it. But then 22|jPi =|S'|^2'^' ■ |S|. The

only way this cardinal inequality can be satisfied is if 222s|2J. Clearly

then |S|=22'f'1.

3. Suprema of nonlocally bounded topologies. The 22 field topologies

produced on F in §2 are suprema of valuation topologies, which are, of

course, locally bounded. We outline here how it can be shown that a

field F of infinite transcendence degree over a subfield also admits 22

field topologies which are not the suprema of locally bounded ring

topologies.

We will use the same notation in this section as in §2. The basic idea

will be to define a nonlocally bounded topology 5*~'s on /"for each S e 37

such that, for each cue X, (f/>„(a)) converges to zero in 3*~s if a e 5 and is

bounded away from zero otherwise. One sees that this is precisely what

made the proof of Theorem 2.1 work.

To get these topologies, we modify the inductive procedure of [5]

somewhat. This procedure involved inductively building up a basis

V0^ Kx2 ■ • ■ of neighborhoods of zero for a ring topology ^~((a„), (C„))

on F such that a„ e Vn for each n and such that Cn+X • Vn+1 £ V„ for each

set Cn+X in a nested sequence Cx £ C2£ • • • of subsets of F. This procedure

can easily be generalized to yield a ring topology 3*~((An), (C„)), where

now the A „'s are subsets of F, and for each n, An<^ Vrr

In what follows, K0, Kx, • • • will be a sequence of subfields of F defined

by K0=K, and, for each «2;0, Kn+l equals the algebraic closure of Kn(Bn)
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in F. We note that K„^Kn+x, that  \Jn=of(,=F, and that  \J?=n Bt is

algebraically independent over Kn.

For each S in ¿?, we will take &~'g t0 be the inductive ring topology

¿7~((<pn(S)), (Kn)). By this definition, it is automatically the case that for

ole S, the sequence (</>„(<x)) converges to zero in ¿7~'s, The following lemma

will assure that (</>„(<*)) is bounded from zero if a is not in S, and will

assure that suprema of sets of these topologies are of the desired type.

Lemma 3.1. Let {K„|«g:0} denote the inductively generated basis for

the inductive ring topology ¿7~'s. If x is in Vnri(Km+1~Km), then x has the

form P(ax, ■ ■ ■ ,ak), where:

(a) P(YX,--, Yk) is a polynomial with coefficients in Km;

(b) The degree ofP in any one of the indeterminates Yi is at most 2m ; and

(c) The a¡s are all in \JJL i </>j(S).

Proof. To define the topology .7({(j>n(S)), (Kn)), one would modify

the development in [5, §1] merely by putting an indeterminate for each

element of (¡>k+x(S) into the set W\%\ defined in [5, (1.10), p. 151], rather

than just putting one indeterminate into this set. One may check that the

lemmas in [5, §2], suitably modified, would still hold.

In particular, Lemma 2.2, (1.19), and (1.12) of [5] would assure that

x=P(ax, ■ ■ ■ , ak), where, for some integer r, (i) {a^l^/^&Js lj;=i <£;(£);

(ii) P(YX, • ■ ■ , Yk) has coefficients in Kr; (iii) the degree of F in any Y¿ is

at most 2r; (iv) at least one at, say ak, is in <pr(S); and (v) the degree of

P(ax, • • • , ak_x, Yk) in Yk is at least one. (Some of the details of the proof

parallel those of [5, §4].) Thus, {a¡\l<i^k}Z \JU B¡, while ak and

perhaps others of the a/s are in Br. It follows that x e Kr+1. Since ak e Bt,

and Br is algebraically independent over Kr, it follows that x $ Kr, for if it

were then, by (v), x=P(ax, ■ ■ ■ , ak) would be an equation of algebraic

dependence over Kr for elements in Br, which is a contradiction. Thus,

x e Kr+x~Kr, so it follows that r = m. Statements (a)—(c) now follow

from (i)—(iii).

As a consequence of Lemma 3.1, one has that if te e Ji~S, then

<f>„((*)$V0 for each n. Since <f>n(ct.) e B„, </>„(«) e Kn+l^Kn. Thus, if

<f>n(a) e V0, then <pn(a.)=P(ax, ■ ■ • , ak), with P and the afs as specified in

Lemma 3.1. Since <f>n(a) $ |J"=1 <f>¡(S), (a) and (c) show that q>n(cn.) =

P(ax, • • • , ak) is a nontrivial equation of algebraic dependence for <£„(<*),

and perhaps other elements of Bn, over Kn, which is a contradiction.

Theorem 3.2. For distinct, nonempty subsets (9 of Sf, the ring topologies

■^5=sup {.^"s | S e ^1 are distinct, and fail to be suprema of locally bounded

ring topologies on F. Thus, afield F of infinite transcendence degree over a

subfield admits 22    ring topologies of this latter type.
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Proof. As we have noted, the fact that (<pn(a.)) converges to zero in

3~'s if oc e 5 and is bounded from zero if a £ S assures that the proof of

Theorem 2.1 will adapt to prove the first assertion.

To prove the second assertion, we use a result of J. Heine [3] which

says that ¡F'q is not the supremum of a family of locally bounded ring

topologies on F provided that there is a ^"¿-neighborhood U of zero

such that for every ^¿-neighborhood V of zero, there is an integer m

suchthat Vm%U.

To get such a neighborhood U, we fix any See, and let U= V0, the

Oth neighborhood of zero in the inductively defined basis for 3^'s. Then

U is also a .^"¿-neighborhood of zero. If V e <^"¿ and 0 e V, then there

are sets Sx, S2,--,Sk in 6, and for each ; a ^"¿-neighborhood Wi of

zero such that Ç\*=x Jff£ V. Since 37 has the f.i.p.c, there is an element

a in PlLi S¿. Then the sequence (<j>n(u.)) converges to zero in each of the

topologies S~'s, so for a sufficiently large integer m, <j>m(a.) e (\*=1 W»-

We claim that </>m(a.)r $ U= V0, where r=2m+l. Suppose otherwise.

Then since <f>m(a) e Bm, <pm{<£)r e V0ry(Km+1~Km), so by Lemma 3.1,

tf>m(a)r=P(ax, • • ■ , ak), where P has coefficients in Km, the a,'s are in Km

or in Bm, and the degree of P in each indeterminate is at most 2m. This

equation then gives a nontrivial equation of algebraic dependence for

</>m(a), and perhaps other elements of Bm, over Km, a contradiction.

We thus have that Vr^ U, and the desired result is proven.

Remark. We wish to note here that Theorem 3.2 can be strengthened

to prove the existence of 22 field topologies on F which are not suprema

of locally bounded ring topologies. To do so, one needs to make more

extensive modifications in the methods of [5]. Specifically, in order to

build continuity for multiplicative inversion into an inductive topology,

one must work with rational functions rather than polynomials, (such as

appeared in Lemma 3.1). However, a presentation here of all the technical

details is perhaps not justified for the sake of this relatively minor

improvement in the result.

We conclude with two further questions of the type considered herein

which to the writer's knowledge remain unanswered.

1. In the proof of Theorem 2.1, we displayed 2|i'1 first countable,

locally bounded field topologies (the maximum number possible) on a

field F of infinite transcendence degree over a subfield. The only fields

not of this type are those of finite transcendence degree over their prime

subfields. How many first countable, locally bounded field topologies are

there on a field of this latter type? It is known [5, Theorem 6.1, p. 159]

that if F is algebraic over its finite prime subfield, then there are two,

namely the discrete and indiscrete topologies. Otherwise, there are at least

countably many determined by valuations. In particular, it would be of
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interest to know how many there are on the rational numbers and on a

simple transcendental extension of a field of prime order.

2. We have seen that on a field F of infinite transcendence degree, there

are as many first countable, locally bounded field topologies as possible,

namely 2'"F|. Are there as many nonfirst countable, locally bounded ones

as possible, namely 22    ?

Added in proof. Results close to those obtained herein have just

recently been published by J. Heine [Ringtopologien auf nichtalgebraischen

Körpern, Math. Ann. 199 (1972), 205-211]. By quite different means, he

obtains, for any nonalgebraic field F, 22 ring topologies which are, and

22 ring topologies which are not suprema of locally bounded ones.

Thus, this paper extends these results for most nonalgebraic fields by

obtaining like numbers and types of field topologies. It does not appear

that Heine's methods generalize to give field topologies. However,

Podewski writes that he now has extended his methods to the uncountable

case. Heine also points out in correspondence that question 2 above has

an easy negative answer; since a locally bounded topology on Fis uniquely

determined by a bounded neighborhood of zero, there can be at most 2|jr| of

them, whether or not they are first countable.
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