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ON THE NUMBER OF HAMILTONIAN CIRCUITS IN THE «-CUBE

E. DIXON AND S. GOODMAN

ABSTRACT.    Improved upper and lower bounds are found for the number of

hamiltonian circuits in the zz-cube.

I.   Introduction.   The ?7-cube  Q     is an undirected 72-regular graph with

2" nodes.   Each node is labeled  a a      ...-a,,  where each  a. is either 0
n   n— 1 1' z

or  1.   Two nodes of  Q     ate adjacent if and only if their binary representa-

tions differ in exactly one place.   A hamiltonian circuit is a closed alternat-

ing succession of adjacent nodes and edges in which each node of the graph

is visited exactly once.   Two hamiltonian circuits are said to be distinct if

they are not identical.   The number of distinct hamiltonian circuits in Q

will be denoted by  Mtz).   Figure 1 shows  Q2  and  2,   along with their values

of hin).
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Figure 1.   Q2  and  Q,
h(3)= 6

A problem of considerable interest is that of determining the exact value

of hin) for 77 > 3.   This problem arises in switching theory when trying to

minimize errors in analog-digital systems (cf. [l], [2]).   As yet only coarse

bounds are known, and the purpose of this paper will be to derive better upper

and lower bounds for hin).
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IT.    Lower bounds.    In [3] Douglas derived the result that

/ \2n

(1) hin) y C{ljT8)    ,       n y 2.

In deriving our lower bound we shall make use of the following lemma

from Abbott [4].

Lemma 1.   // 77    denotes the number of distinct hamiltonian circuits
'       n

which traverse a given edge of Q  ,   then

(2) T   = 2h(n)/n.
n

The following lemma is a restatement of the definition of  Q     and of an

observation by Gilbert [2].

Lemma 2.    Let G.   and G2   be two copies of Q      ,.    Then the graph of 0

can be constructed by connecting each node in G.   to the node in G-  that

has the same labeling.

Since   0      has 2"   nodes,   each  with  degree   zz,   there  are n2n/2 =

722"""      edges  in   0  .    Now keeping the  above  construction of   Q     in mind,

consider the following class of hamiltonian circuits.   In  Gj   consider any

hamiltonian circuit traversing some fixed edge (there are  T    such circuits),

and any hamiltonian circuit in G.  traversing the corresponding edge there.

If we now include the two edges connecting  Gj   to C,  through these four

nodes and exclude the two original edges we will now have a hamiltonian cir-

cuit on  Q  .   Since there are (72 - l)2"~  /2  ways to choose the first edge we

see that

hin) yin- D2n~1T2ln- l)/2.

This is similar to a result obtained by Abbott [A].

Now using the result of Lemma 1 we get

(3) hln)>2nh2ln-l)/ln-l).

Using this  relation  and  a known  value  for   hin)   (for   ?2 =  3,  hl3) = 6) we

can solve this recurrence relation and get a lower bound on hin).   Thus we

see that

M4)>24(6)2/3,       M5)>(25/4)L24(6)2/3]2, •• •

which leads to the following form:
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[2^_-13(„ + l-í)2í-1]   2n-3

(4) hin)^7—--—-,        rz>4.

U"-Hn-i)2
z = 1

Simplification of (A) leads to

[2»-3 + 2n-l_n_2]   2n-3

(5) hin) >-— ,       77 > 4.

nn-Mn-i)2
z = l

The construction used to derive (3) is called composition in [2]. We note

that the lower bound (5) applies to a special kind of hamiltonian circuit called

ultracomposite in [2]. The improved bound in (8) below does not apply to this

class because some of the hamiltonian circuits in  Q.   ate not ultracomposite.

Some manipulations are necessary before we can compare (5) with (1).

Douglas' bound can be written as:

/ \?n

bin) = C^V18/     = Go2  ,    where  bin) is the actual bound,

so we now have

bin + 1) = C«2* + ' = Cla2")2 = b2ln)/C.

Thus, we see that Douglas' bound satisfies the recurrence relation

<6) bin) = b2ln - D/C

where  C is a constant (about  1/5.2).   Our recurrence relation is of the form

(7) b1in) = Cln)b\ln- 1)

where G(tz) is an increasing function of ?7. For n = A, ClA) > l/C and b A3)

= 6 > bl3) and therefore for all ?2 > 4, (7) will dominate (6), hence (5) will be

a better bound than (1).

If we use the results from [5] on  QA, we find that h(A) = 1, 344.   This

value can also be deduced from the symmetry properties of the hamiltonian

circuits in Q4  as developed by Gilbert in [2].   Now using this as a base we

get

l2n-2+2n-3_2_n] )2»-4

(8) hin) y t-LIl3^-,        „ > 5,

n*-05(z2- 1-z')2*

which is a significant improvement over (5).
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III.   Upper bounds.    It is stated in [l] that the best known upper bound

for hin) is

(9) bin) <n2",       nyA.

We now derive an improved upper bound using an argument first suggested

to us by Gilbert [6],

Let each node in  Q    be represented by the binary 72-tuple a a  _ . • • • a.

where each  a.  is either 0  or   1.   A node will be called odd if the sum a, +
1 1

a + • • • + a is odd, and even otherwise. It is easily verified that each edge

in Q joins an odd node to an even node. The edges in any particular hamil-

tonian circuit can be specified by giving the edge pairs incident at each even

node. At each of the 2"~ even nodes there are (») possible edge pairs.

For any hamiltonian circuit selection of edge pairs for all but one of the even

nodes uniquely determines the two edges incident to the remaining even

node.   Therefore we have

(10) hin) < [77(77- l)/2]2"
-1

IV.   Concluding remarks.   Some numerical calculations based on equa-

tions (1), (8), (9), and (10) are shown in Table 1.   Although equations (8) and

(10) represent a considerable tightening on the bounds for hin),  there is

still much room for improvement.

Table 1

old
lower  (I)

new

lower   (8)
old
upper  (9)

new

upper  (10)

1.03 X   I05 .45 x   I07 2.33 x   1022 .00 x   I015

5.50 x  I010 2.67 x   I015 6.33 x   10
i*9

2.88 x   I036

1.57  x   I022 1.52 x   I032 1.49 x   10108 1.99 x   I083

1.28 x  I045 8.50 x   I065 .55 x   10231 6.24 x   I0184

).52 x   1090 4.62 x   I0133 3.76 x   IO"88 7.29 x   I0396

3.77  x   10182 2.43 x   I0269 1.0 x   I01024 5.82 x   10830
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ERRATUM

The following abstract is to an article which appeared in the January

issue of the Proceedings on pages 41-44 under the subject classification

Algebra and Number Theory.   It should have appeared in the Combinatorics

section.

COUNTING PATTERNS WITH A GIVEN AUTOMORPHISM GROUP

DENNIS E. WHITE

ABSTRACT.   A formula, analogous to the classical Burnside lemma, is

developed which counts orbit representatives from a set under a group ac-

tion with a given stabilizer subgroup conjugate class.   This formula is

applied in a manner analogous to a proof of Polya's theorem to obtain an

enumeration of patterns with a given automorphism group.
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